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Abstract—1In this paper, we consider a network of agents
with Laplacian dynamics, and study the problem of improving
network robustness by adding maximum number of edges
within the network while preserving a lower bound on its strong
structural controllability (SSC). Edge augmentation increases
network’s robustness to noise and structural changes, however,
it could also deteriorate network controllability. By exploit-
ing relationship between network controllability and distances
between nodes in graphs, we formulate an edge augmentation
problem with a constraint to preserve distances between certain
node pairs, which in turn guarantees that a lower bound on SSC
is maintained even after adding edges. In this direction, first we
choose a node pair and maximally add edges while maintaining
the distance between selected nodes. We show that an optimal
solution belongs to a certain class of graphs called clique chains.
Then, we present and analyze two algorithms to add edges
while preserving distances between a certain collection of nodes.
Finally, we evaluate our results on various networks.

Index Terms— Strong structural controllability, graph dis-
tances, edge augmentation, network robustness.

I. INTRODUCTION

Network controllability has been an active research topic
in the broad domain of systems and control as well as in net-
work science in recent years [1]. The main goal is to under-
stand how can we manipulate a network of dynamical agents,
often represented by a directed or an undirected graph, by
controlling only a small subset of agents, referred to as
leaders. In a networked dynamical system, the underlying
network topology significantly influences its controllability.
Therefore, it is crucial to develop a topological view-point
of network controllability [2], [3], [4], [5], [6], [7]. Another
important aspect here is to consider the effect of weights
given by nodes to each other’s information, which is typically
modeled by assigning edge weights in the graph. In fact, we
say that a network is strong structurally controllable if it is
possible to control the entire network with an arbitrary choice
of non-zero edge weights. This controllability notion, which
is independent of edge weights is particularly useful when
exact coupling strengths between nodes are unknown.

Along with the network controllability, we also desire to
improve other attributes of a networked dynamical system,
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in particular, its robustness to changes in the underlying
network topology as well as to the noisy information. A
network can be made robust by adding more links (edges)
between nodes. For instance, a widely used measure of
network robustness is Kirchhoff index Ky that measures the
effect of structural changes in the network topology as well
as the effect of noise on the overall dynamics [8], [9], [10]. It
is well known that adding edges always improves network’s
robustness as measured by K. In fact, network robustness
increases monotonically with edge additions. Adding edges
and densifying a graph is effective on the one hand as it
improves network’s robustness, but on the other hand it can
also deteriorate network controllability [11], [12].

In this paper, we study the problem of maximally adding
edges in a network with Laplacian dynamics while preserv-
ing its strong structural controllability (SSC). It is easy to
verify, in fact in a linear time, whether the entire network is
strong structurally controllable. If it is not, computing exactly
how much of the network is strong structurally controllable
is an extremely challenging problem. Thus, lower bounds
on the SSC of networks have been studied in the literature
[2], [13], [S], [3], [14], [7]. In this work, we utilize a tight
lower bound on SSC, which is based on the topological
distances between nodes, and propose algorithms to densify
the original network while preserving this lower bound.

Our main contributions are: First, we formulate the prob-
lem of adding maximal edges in a network while preserving
a lower bound on SSC as an edge augmentation problem
in which distances between certain node pairs in a graph
need to be maintained. Second, we show that for a fixed
node pair, optimal solution to the distance preserving edge
augmentation problem belongs to a class of graphs known as
clique chains. Third, we provide two algorithms, including
a randomized algorithm, to add edges in a graph while
preserving distances between a collection of node pairs,
thus solving the problem of adding edges while ensuring
that a lower bound on SSC is maintained. We also show
that the proposed randomized algorithm is an approximation
algorithm with high probability. Finally, we numerically
evaluate our results on various networks.

Numerous results are available in the context of graph
sparsification, where the objective is to remove edges while
preserving distances between nodes (e.g., see [15]). How-
ever, to the best of our knowledge, this paper is novel in
considering the opposite problem, that is the densification of
graphs while preserving distances between nodes, and then
applying it towards preserving SSC in networks. We mention
that a recent paper [16] studies the problem of characterizing



edges, which if added to a directed network preserve its
SSC. However, results hold if the entire network is strong
structurally controllable. In our case, we solve the maximal
edge addition problem in networks even if they are only
partially strong structurally controllable.

The rest of the paper is organized as below: Section II
introduces preliminaries. Section III presents the distance
preserving edge augmentation problem. Section IV provides
algorithms to add edges in a network. Section V evaluates
our results, and Section VI concludes the paper.

II. PRELIMINARIES AND PROBLEM DESCRIPTION
A. Notations

We consider a network of dynamical agents modeled by a
simple undirected graph G = (V, ), in which the node set
represents agents and the edge set represents interconnections
between agents. Nodes' @ and b are adjacent if there is an
edge between them. The neighborhood of node a, denoted
by N, is the set of nodes adjacent to a, and the number of
nodes in N, is the degree of a. The distance between nodes
a and b in G, denoted by dg(a,b), is the number of edges in
the shortest path between a and b. The maximum distance
between any two nodes in a graph is called its diameter.
Moreover, edges can be weighted by some weight function,
w : & — Ry. The edge weight represents coupling strength
between nodes.

Agent a has a state x, € R. Without loss of generality,
the overall state of the network is € R™ where n = |V|.
Agents follow the Laplacian dynamics given by

T =—Ly x+ Bu. (D)

Here, £,, € R™ "™ is a weighted Laplacian matrix of
the graph G, and is defined as £, = —A + A, where A
is the weighted adjacency matrix in which the ij*" entry,
that is \A;; is simply the weight on the edge between nodes
¢ and j if such an edge exists, and is zero otherwise. A
is the diagonal matrix whose ‘" diagonal entry is simply
Z?zl A;;. At the same time B € R" ™ is an input
matrix, where m is the number of inputs, or simply the
number of leaders—nodes with an external control signal.
Let Vo = {{1,02,-- ,¢y} C V be the set of leaders, then
B; ; = 1if node i € Vis also a leader ¢;, otherwise B; ; = 0.

B. Strong Structural Controllability (SSC)

A state xy € R" is reachable if an input exists
that can drive the network in (1) from an initial state
20 = [00---0" €R" to xy in a finite amount of time.
A network is completely controllable if every point in R™
is reachable. Complete controllability of a network G(V, €)
with given edge weights w and leaders 1, can be checked by
computing the rank of the following controllability matrix.

[(LyB) = B (—L,)" B .

'We use terms node and vertex interchangeably throughout the paper.

The network is completely controllable if and only if
rank(I'(Ly,, B)) = n, and the pair (L, B) is called the
controllable pair. In fact, the rank of I" defines the dimension
of controllable subspace consisting of all the reachable states.

In a network, if we fix the leaders () and the edge set (&),
the rank of controllability matrix can change with a different
choice of edge weights w’, that is the rank(T'(L,,B))
might be different from the rank(I'(L,,B)). A network
G = ((V,€) is called strong structurally controllable with
a given leader set Vy if it is completely controllable for
any choice of edge weights, or in other words (L, B) is
a controllable pair for any choice of w. At the same time,
the dimension of strong structurally controllable subspace,
or simply the dimension of SSC is the minimum rank of
the controllablility matrix I'(L,,, B) over all possible edge
weights w. Roughly, the dimension of SSC quantifies how
much of the network can be controlled by a given leader set
with arbitrary edge weights.

C. Problem Description

Our goal is to add a maximum number of edges within
the network while preserving the dimension of its strong
structurally controllable subspace at the same time. However,
computing the exact dimension of SSC with a given set
of leaders is a computationally hard problem. As a result,
finding good lower bounds on the dimension of such a
subspace has been an active research topic. Our approach is
to select a tight lower bound, and then add maximal edges
within the network while preserving the lower bound on the
dimension of SSC. We discuss the lower bound used in this
work in the next subsection.

Problem Consider a network of agents G = (V,€) with
the dynamics in (1). Let Vy C V be the leaders and the
dimension of SSC of G with V), is at least §. Then, our task
is to find a maximum size edge set £ such that £ C £ and
the dimension of SSC of the network induced by V and &',
say H = (V, &), is also at least § with the same leaders V.

D. A Tight Lower Bound on SSC Based on Graph Distances

We utilize a lower bound proposed in [5] that is based on
the distances between nodes in a graph. Assuming m leaders
Ve = {1, , L}, we define a distance-to-leader vector for
each node a € V in G as below,

Do = [ dg(tr,a) dg(ls,a) dg(bm,a) | € 2.

The jth component of D, denoted by D, ;, is the distance
between node a and leader j, that is D, ; = dg(¢;, a). Next,
we define a sequence of such vectors, called as pseudo-
monotonically increasing sequence as below.

Definition (Pseudo-monotonically Increasing Sequence
(PMI) A sequence of distance-to-leader vectors D is PMI if
for every i'" vector in the sequence, denoted by D;, there
exists some «(i) € {1,2,--- ,m} such that

D; a(i) < Dja@), Vi >t 2



An example of distance-to-leader vectors is illustrated in
Figure 1(a). A PMI sequence of length five is

p=[[SLle LIS LI LIRS

Note that for each vector in the sequence, there is an
index—of the circled value—such that the values of all the
subsequent vectors at the corresponding index are strictly
greater than the circled value, satisfying the condition in (2).
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Fig. 1: A network with two leaders V, = {/1,¢3}. The
distance-to-leader vectors of all nodes are also shown. A
PMI sequence of length five is D = [Dy; Dy --- Ds] =
[D¢, D¢, Dy D. Dy.

The length of PMI sequence of distance-to-leader vectors
is related to strong structural controllability as below.

Theorem 2.1: [5] If § is the length of a longest PMI
sequence of distance-to-leader vectors in a network, then the
dimension of SSC of the network is at least 4.

In [17], we presented a dynamic programming based exact
algorithm and an approximate greedy algorithm that returns
near optimal PMI sequence of distance-to-leader vectors in
O(mnlogn) time where m is the number of leaders and n
is the total number of nodes in a graph.

III. EDGE AUGMENTATION WHILE PRESERVING
DISTANCES IN GRAPHS

Our approach is to add a maximal edge set to the original
graph while ensuring that the maximum lengths of PMI
sequences’ of the resulting and the original graphs remain
the same. As a result, we preserve a lower bound on the
dimension of SSC in the original graph even after adding
edges to it. We note that the bound based on the maximum
length of PMI sequence (Theorem 2.1) is tight and numerical
evaluation in [17] shows that it generally performs better
than the other known bounds, such as the one based on
zero forcing sets [13]. Moreover, we provide algorithms to
efficiently compute maximum length PMI sequence in [17].

We proceed by letting G = (V,€) and H = (V,&)
respectively denote the original graph and the graph obtained
after adding edges, where £ C £’. At the same time, consider
D to be a PMI sequence of maximum length in G with
Vy leaders. If D is of length §, then by Theorem 2.1, the
dimension of SSC of G is at least §. At the same time, if H
is such that dg(¢,a) = dy (¢, a), where @ is any such node
whose distance-to-leader vector is included in D and ¢ is
an arbitrary leader in V;, then D is also a PMI sequence in
‘H. Consequently, the dimension of SSC of H is also lower

2For brevity, we use the term ‘PMI sequence’ instead of ‘PMI sequence
of distance-to-leader vectors’.

bounded by 4. Thus, to add edges while preserving a lower
bound on the dimension of SSC, our approach is to add
edges while ensuring that the distance between leaders and
a certain subset of nodes (whose distance-to-leader vectors
are included in a maximum length PMI sequence of G) are
preserved. In fact, if there are m leaders, and the maximum
length PMI sequence is |D| = 6, then we need to preserve
distances between m(”;_l) +m(§—m) node pairs. Thus, the
problem of edge addition while preserving strong structural
controllability becomes the edge augmentation problem in
networks while preserving distances between nodes.

A. Adding Edges While Preserving Distance Between Two
Nodes

We proceed by fixing a node pair a,b € V and finding
a maximal edge set, which if added to the original graph,
preserves the distance between a and b. We call this as the
Distance Preserving Edge Augmentation (DPEA) problem,
formally stated below. We solve the DPEA problem for all
the node pairs v, £ where / is a leader and v is a node whose
distance-to-leader vector is included in a maximum length
PMI sequence D. Taking an intersection of solutions to all
the instances of DPEA problem then gives a maximal edge
set that can be added to the original graph G to obtain a new
graph H in which distances between leaders and nodes in
the PMI sequence D are preserved. As a result, D is also a
PMI sequence in H and a lower bound on the dimension of
SSC of G also holds for . Next, we formulate and solve
the DPEA problem.

Distance Preserving Edge Augmentation (DPEA) Given
an undirected graph G = (V,€) and a,b € V such that
dg(a,b) = k, we are interested in H = (V,£’) where
& C &', such that dg(a,b) = dy(a,b) = k. Our goal is to
find H = (V,&’) with the maximum |£’].

We show that an optimal solution to the DPEA problem
for a given pair of nodes belongs to a class of graphs known
as clique chains [9], which we define below.

Definition (Clique chain)Let ng,ny,--- ,nx € Z4 and n =
Zf:o n;, then a clique chain of n nodes is a graph obtained
from a path graph of length & by replacing each node with
a clique® of size n; such that the vertices in distinct cliques
are adjacent if and only if the corresponding vertices in the
path graph are adjacent. We denote such a clique chain by
Gr(no, - ,ng).

An example of a clique chain is illustrated in Figure 2.
Note that the diameter of Gg(ng, - ,nk) is k.

Theorem 3.1: For a given G = (V,€), and a,b € V
where dg(a,b) > 1, optimal solution to the DPEA problem
is a clique chain of the form Gy (ng = 1,nq,- - -
1), where Zf:o n; = |V|.

Proof: See [18].

Note that when dg(a,b) = 1, optimal solution to the
DPEA problem is a complete graph. Next, we construct a

y N—1, Nk =

3 All vertices in a clique are pair-wise adjacent.
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Fig. 2: A clique chain G3(1,2,2,1) with ng = 1, ny = 2,
n2:2andn3:1.

clique chain for a given pair of nodes a,b. Note that the
original graph G must be a subgraph of this clique chain.

B. Clique Chain Construction

To construct a clique chain, we define S to be the set
of nodes that are at a distance ¢ from a and similarly define
Sb.If dg(a,b) = k is odd, then the sets S where i €
{0,1,---,|k/2]} and v € {a, b} are all non-empty and are
pairwise disjoint. Similarly, for even k, the sets S where
i€{0,1,-- ,k/2} and S? where i € {0,1,--- , % — 1} are
all pairwise disjoint and non-empty. Next, we define free and
fixed nodes as below:

Definition (Fixed and free nodes) For a given pair of nodes
a,b € V, all such nodes that are included in some shortest
path between a and b are referred to as fixed nodes, while
the remaining nodes are called free nodes.

We note that every fixed node must lie in S}, where
v € {a,b}. However, there could be free nodes that might
not be included in any S¢ or S?. For instance, if k is even,
consider a node = with dg(z, a) > k/2 and dg(z,b) > £—1;
and if k is odd, consider x such that dg(z,a) > |k/2] and
dg(x,b) > |k/2|. We can always include such a free node
z into the set S‘le /2 by adding an edge between x and y for
some y € S ‘fk /2]-1 while preserving the distance k& between
nodes a and b. Furthermore, if a free node is already included
in some S¢ (or SY), it might be possible to place it in some
53 (or Sj’?) for some j # ¢ by creating an edge between x
and some y € S7_; (ory € S;Ll) as long as the distance
between a and b is maintained. However, if x is a fixed node
in some S§ (or Sf), then it can never be placed in S]‘-l (or
Sj’?) for any j # ¢ without changing the distance between a
and b. Moreover, each of the S¢ and S? contains at least one
fixed node. As a result, for given @ and b in G = (V, &), we
always have a partition of V into k + 1 subsets given by,

8 = {S(l)l) Sil7 e 7S(|.1§JaSl|-)§J y " aSi?a Sg}v (Odd k)’ (3)
and
S = {Sg7 1o 7513/2752,13 T 75577‘98} (even k)a 4)
2
where S§ = {a} and S§ = {b}.
Figure 3 illustrates the above notions. Next, we
induce a clique chain over subsets in &, that is
Gi(1,15¢1,15%|,- - ,|S5],15%],1). The distance between a

and b in this clique chain is k, and it contains the original
graph G as a subgraph. We illustrate this in Figure 3(d).
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Fig. 3: All white nodes are fixed as each one of them lies on
some shortest path between a and b, whereas black nodes
do not lie on any shortest path between a and b and are
free nodes. (b) Nodes are partitioned into sets S} where v €
{a,b} and i € {0,1,2}. Note that free nodes x; and x5 are
not included in any S¢ or S?. (c) Both z1 and x5 are included
in S§ by creating an edge between z; and some node in S,
and similarly by an edge between x5 and a node in S¢. The
distance between a and b does not change by adding edges.
(d) Clique chain is induced over all S¢ and S?.

As for the time complexity of constructing such a clique
chain, a breadth-first search (BFS) tree starting at a (similarly
starting at b) gives us distances dg(a,v) (similarly dg (b, v))
for all vertices v. Once these two distances are available for
each node v, we can determine the subset in S to which v
belongs to. Further, we can check if the node is free or fixed
by verifying the equation: dg(a,b) = dg(a,v) + dg(b,v).
Consequently, for a given graph G = (V,€) and a pair
of nodes a,b, we can construct the desired clique chain in
O(|V] + |€]) time.

IV. EDGE AUGMENTATION WHILE PRESERVING A
LOWER BOUND ON SSC

In this section, we present two algorithms to add maximal
edges in a graph while preserving a (PMI based) lower bound
on the dimension of SSC. For a graph G, our algorithms take
PMI sequence of distance-to-leader vectors D as input and
return edges whose addition to G does not change distance-
to-leader vectors of nodes included in D. As a result, D is
also a PMI sequence of the graph even after adding edges.

A. Intersection Algorithm

If D is a PMI sequence and Y C V is the set of nodes
whose distance-to-leader vectors are included in D, then our
goal is to add edges that do not change the distance between
nodes in the node pair (v,¥), where v € V and £ € V,.
One way of achieving this is to solve DPEA problem (as
discussed in Section III-A) for each such node pair, and then
select edges that are common in solutions of all such DPEA
instances. These common edges, if added to the graph, will
preserve the distance between any leader node and v € V.
We summarize this scheme in Algorithm 1.

Proposition 4.1: If ¢ is a distance-based lower bound on
the dimension of SSC of G = (V, &) with leaders V, C V),



Algorithm 1 Intersection Algorithm

1: Consider a PMI sequence D in G with leaders in V.

2: Identify nodes whose distance-to-leader vectors are in-
cluded in D, and denote them by V C V.

3: For each node pair (¢, v) where £ € V, and v € V, solve
the DPEA problem. Let &, be a solution.

4: Compute
&= N

LEV,; vEY

Ep- &)

then ¢ is also a lower bound on the dimension of SSC of a
graph H = (V,&’), where £’ is given in (5).

Proof Let D be a PMI sequence of length § in G = (V, )
containing distance-to-leader vectors of nodes in V C V.
Using the above scheme, we compute £’ and obtain a graph
H = (V,€&’). Note that the distances between leaders and
nodes in V is exactly same in G and H. Consequently, D
is also a PMI sequence in H, and hence ¢ is also a lower
bound on the dimension of SSC of H. [

Since there are at most |Vy| x |D| instances of the DPEA
problem, and each such instance takes O(|V| + |€]) time,
Algorithm 1 runs in O(|V| x |D| x (|]V]| + |£])) time.

Example: As an example, consider the network in Fig-
ure 4(a) with 15 nodes and 23 edges. With a single leader
(Ve = {v1}), the dimension of SSC is at least 6, as the
maximum length of a PMI sequence is 6. We can add 41
extra edges (shown in Figure 4(b)), while ensuring that the
distance between the leader node v; and each of the node
in V = {vg,v3,v4,vs,06} is preserved in the new graph.
Similarly, with two leaders Vy = {v1, v4}, the dimension of
SSC is at least 10. We can add 21 extra edges while ensuring
that the maximum length of a PMI sequence is at least 10
in the new graph (Figure 4(c)).

S0y ‘D“l‘
I
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() Ve = {v1}

(©) Ve = {v1,v4}

Fig. 4: Extra edges that can be added to the original graph
with one and two leaders while preserving a lower bound on
the dimension of SSC. Edges that are added are colored red.

B. Randomized Algorithm

Next, we present a randomized algorithm to add edges
while preserving distances between certain node pairs in a
graph. Let £¢ be the set of edges not included in the original
graph G = (V, £). In other words, £°UE induces a complete
graph. The main idea is to randomly select an edge in £¢ and
add it to the existing graph if its addition does not decreases
distances between nodes in the desired node pairs. We outline

the algorithm below. As previously, D is a PMI sequence and
Y C V is the set of nodes whose distance-to-leader vectors
are included in D.

Algorithm 2 Randomized Algorithm

1: Given G = (V,€), V,, D, V
2: Initialize £’ <+ &
3: Compute &€ .
4: While £¢ # 0
5: Randomly select e € £°, and obtain H = (V, &’ U {e}).
6: Compute dy (¢, v) for all £ € V, and for all v € V.
7: If (dyy (¢,v) = dg(¢,v)) forall £ € Vy, and for all v € V),
then
&+ & ue}.
8: Update £¢ < £°\ {e}.

9: End While
10: Return &’

1) Analysis: In this subsection we analyze the perfor-
mance of the randomized algorithm. Let T < |£€¢| be the
number of edges that are (individually) legal to add to the
input graph and let 7 < T be the size of an (unknown)
optimal solution that is, the maximum number of edges
from the legal set that can actually be added to the graph.
Algorithm 2 randomly picks 7/ < 7 legal edges, one at
a time, to add to the graph. Next, we show that if the
randomized algorithm is repeated c times, then with a certain
probability we get a solution that is within a factor of o < 1
of the optimal solution.

Proposition 4.2: Algorithm 2 returns an «-approximate
solution with probability at least (1 — e_c(%)w>, when
repeated c times.

Proof: See [18].

We note that Proposition 4.2 provides a rather loose bound
on the probability of success of finding an «-approximate
solution when we repeat randomized algorithm c times. We
expect many suboptimal solutions of required size to exist
that are not subsets of one fixed optimal solution. In any case,
this bound is still helpful in guessing a reasonable value of c.
For instance, if there are 7" = 100 individually legal edges, 7
is 0.92T, and we are interested in a solution that is at least
a = 3/4 times the size of optimal solution, then setting
¢ > 500 will give us a good chance (success probability
of at least 0.8) of finding a desired solution. Regarding the
runtime of Algorithm 2, note that in each iteration we need to
compute distances from each leader to all nodes in the PMI
sequence. Since there are at most |£| iterations, Algorithm 2
runs in O(|E] X [V¢| x (|V] + |€])) time.

V. NUMERICAL EVALUATION

Here, we evaluate our algorithms on Erd&s-Rényi (ER)
networks in which any two nodes are adjacent with proba-
bility p, and Barabdsi-Albert (BA) networks in which each
new node is adjacent to vy existing nodes through a prefer-
ential attachment strategy. For both ER and BA models, we
consider networks of 50 nodes.



Figure 5 illustrates results for ER graphs. For a selected p,
first we plot distance-based lower bound on the dimension of
SSC as a function of the number of leaders selected randomly
(Figure 5(a)). Then, using Algorithms 1 and 2, we add
edges to networks while preserving lower bounds on their
dimensions of SSC. We also compare results against an upper
bound on the optimal number of edges that can be added
without changing PMI sequence. The bound is obtained by
observing that an edge cannot be added between two such
nodes that lie on a shortest path between a leader and a
node whose distance-to-leader vector is included in a given
PMI sequence. This observation gives an upper bound on
the maximum number of edges that can be added in a graph
while preserving a PMI sequence. Figure 5(b) illustrates
that new networks obtained after applying Algorithms 1
and 2 contain significantly more edges as compared to the
original network. Algorithm 2 performs slightly better than
the Algorithm 1, especially when the number of leaders
increases. However, our experiments show that as the value
of p increases, the difference between two algorithms is
negligible. To obtain results of Algorithm 2, we perform 150
repetitions (that is ¢ = 150) and then select the best solution.
We also mention that Algorithm 1 takes significantly less
time as compared to the Algorithm 2 (based on the choice of
c). Similar results are obtained for BA networks as illustrated
in Figure 6. In all the plots, value at each point is an average
of 100 randomly generated instances.
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Fig. 5: ER—Networks: (a) Lower bound on the dimension of
SSC. (b) A comparison of Algorithms 1 and 2.
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Fig. 6: BA-Networks: (a) Lower bound on the dimension of
SSC. (b) A comparison of Algorithms 1 and 2.

VI. CONCLUSION

Adding extra links between nodes improves network’s
robustness to noisy information and to structural changes

in the underlying network topology, but at the same time,
these extra links can deteriorate network controllability. We
introduced the problem of improving network robustness
by adding edges while maintaining a lower bound on the
dimension of SSC. By exploring the relationship between
strong structural controllability and distances between nodes
in a graph, we showed that the above problem can be formu-
lated as an edge augmentation problem with the constraint
of maintaining distances between a certain pair of nodes. We
believe that characterizing densest graphs that preserve dis-
tances between certain node pairs is an interesting problem
in its own respect. We aim to study this problem further and
design efficient exact algorithms to solve it.
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