
IJRECE VOL. 3 ISSUE 1 JAN-MAR 2015 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 91 | P a g e

GreenDroid Mobile Application Processor

Sonal Sarode1, Ruchika Singh2

1E&TC Department, GMCOE, Balewadi, Pune, Maharastra, India.

Savitribai Phule Pune University.

(E-mail: 27sonal@gmail.com)

2E&TC Department, GMCOE, Balewadi, Pune, Maharastra, India.

Savitribai Phule Pune University.

(E-mail:ruchikasingh03@gmail.com)

Abstract— As innovation in microprocessor desktop

processors are sonly replaced by mobile application

processors. These processors support multicore processing and

execution, so these processors are more power hungry. In

mobile application processors fundamental limiter is dark

silicon. In recent work, we are using this dark silicon which is

natural evolution of modern mobile processor. We are going

to create energy saving cores which are generated

automatically using dark silicon area. These automatically

generated cores are called as conservation cores, which can

reduce consumption of energy. This paper describes
GreenDroid, in which conservation cores are used to save

energy across hotspots in general purpose smart phone

applications.

Keywords—Smartphone application, Conservation Cores,

Dark silicon, Utilization Wall .

I. INTRODUCTION

Mobiles are recently emerged as fast changing segment of
computing platform. The GreenDroid mobile processor is
45nm multicore processor. Android mobile software stack is
targeted by GreenDroid mobile processor. And this
GreenDroid mobile processor can execute general purpose
programs of mobile with very less energy compare to other
energy efficient design. This is done by using conservation
cores, which are automatically generated, energy reducing,
specialized cores.

In this paper, we are attacking on technological problem,
which is utilization wall [1]. The utilization wall means, due to
power constraint at full frequency the percentage of transistor
drops exponentially with each process generation. These
directly affect the dark silicon area, which is silicon area of
chip; to stay within power budget this area should remain
passive. Currently, within 3W power budget only one percent
of 32nm chip can switch at full frequency.

With each process generation, power budget increases
exponentially, whereas dark silicon gets cheaper exponentially.

In this paper, there are two key insights. First, compare to
general purpose processor specialized logic can give 10X to
1000X better energy efficiency. Second, to find architectural
techniques for dark silicon, this is cheap resource. Using
architectural techniques dark silicon can be made more
valuable resource and energy efficient. Our approach is to fill
specialized cores in dark silicon area of chip. This saves energy
in common applications. From code base specialized cores are
automatically generated.

II. RELATED WORK

GreenDroid mostly related to specialized accelerators [2]
[3]. Accelerators are another class of specialized cores, which
are widely used in smart phones and other systems. In
accelerator, performance or speed up of program is first goal
while energy saving is second goal. While in GreenDroid
energy saving is the primary goal and performance is second
goal.

Accelerators generally depend upon structure of program
for improvement of performance. Accelerators have properties
which include moderate or high levels of parallelism, small
number of lines of code and branch directions. Even using this
structure accelerator requires human guidance.

TABLE I. CLASSICAL VS. LEAKAGE SCALING

Transistor property Classical

scaling

Leakage-limited

scaling

ΔVt (threshold voltage)

1/S 1

ΔVDD (supply voltage) 1/S

1

Δ quantity S² S²

Δ frequency S S

Δ capacitance 1/S 1/S

Power 1 S²

Utilization 1 1/ S²

mailto:27sonal@gmail.com

IJRECE VOL. 3 ISSUE 1 JAN-MAR 2015 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 92 | P a g e

 The transformation that parallelizing compiler performs
same transformation is required to generate accelerators.
Accelerator creation requires many years effort. Accelerators
are limited in their applicability.

III. UNDERSTANDING THE UTILIZATION WALL

Utilization wall can be demonstrated in two ways. First,
extend the CMOS scaling because of leakage limitation on
threshold voltage scaling to limit on power scaling. Second
with experimental result demonstrate utilization wall [4].

Table I shows with each process generation how transistor
properties change. Here scaling factor is denoted by S. The
column of classical scaling shows transistor properties changed
before 2005. Before 2005 it was possible to scale supply
voltage and threshold voltage together. The second column
leakage limited scaling shows chip properties. This second
column shows properties that we could no longer lower the
supply voltage or threshold.

In case of classical scaling, threshold voltage and supply
voltage drops by 1/S. While in case of leakage limited scaling,
threshold voltage and supply voltage remains constant. In both
cases, operating frequency increases by factor S, quantity of
transistor increases by S² and capacitance drops by 1/S.

As Table I shows power and utilization of silicon resources
remain constant in case of classical scaling. While power
increases by S² and utilization of silicon resources drops by
1/S² in case of leakage limited constant.

IV. UTILIZATION WALL

Poor CMOS scaling is dictated by utilization wall,
improvement in performance of processor are determined by
degree at which each process shrink to reduce switching energy
of transistor on chip. Improvement in performance of processor
does not depend on improvement transistor count or transistor
frequency. Underlying energy efficiency is not improving as
faster as transistor counts are growing. Due to this phenomenon
of dark silicon occurs. Dark silicon is chip silicon area which
should remain passive to stay in power budget.

Desktop processor industries decided to build multicore
processors and stop scaling clock frequency because of dark
silicon problem. With each generation power budget is
increasing exponentially and dark silicon is becoming
exponentially cheaper.

V. GREENDROID ARCHITECTURE

GreenDroid architecture uses conservation cores or c-cores
[1] [3]. These c-cores are energy efficient and specialized
processors used to execute frequently used portion of code.
GreenDroid processor combines application specific processors
which are energy efficient with general purpose processors.

Fig.1: GreenDroid architecture.

a. Array of Tiles

b. One Tile

c. Interface between CPU and C core

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

Data Cache
C

P
U

OCN

I $

C

C

C

C

 C

C

C

C

C

C

C

C

OCN

Nnn
I cache D cache

cache

CPU

FPU

S
p
ec

ia
li

ze
d
 i

n
te

rf
ac

e

C core

C core

C core

IJRECE VOL. 3 ISSUE 1 JAN-MAR 2015 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 93 | P a g e

 Fig.1 shows architecture of GreenDroid processor.
GreenDroid consist of an array of tiles. Each tile has one CPU,
data cache of 32 Kbytes and On Chip Network (OCN) which is
point to point mesh connection [5]. The On Chip Network is
used for synchronization and memory traffic. Each tile consists
of 8 to 15 c-cores and each tile is unique. Specialized interface
and data cache couples the c-cores with CPU. CPU can pass
argument by specialized interface to c-cores. Hardware is
reconfigured to change application code and context switching
is also performed by CPU.

 To create GreenDroid, hotspots region is determined [6].
The hotspot is portion of code where more time is spent by
processor. These hot spots are automatically transformed to
specialized circuit. The cold code is run on CPU; cold code
means code that is not executed frequently. While hot code is
handled by c-core. As code moves from hot to cold code or
cold code to hot code execution also jump from c-core to CPU
or CPU to c-core.

Energy saving of overall system is impacted by three
things: first energy required for less efficient CPU to run cold
code, second energy required in data cache and third energy
required by clock and leakage. First problem is solved by
executing code on c-cores. Second is resolved by using novel
memory optimization. And third is solved by using clock
power reducing technique and power gating.

A. Implementation

The CPU in each tile is 32 bits and has seven stage
pipeline.

Each CPU has

 A multiplier.

 Floating Point Unit which is single précised.

 An instruction cache of 16 Kbytes.

 A data cache of 32 Kbytes.

 Translation Look-aside Buffer (TLB).

Cache access time set the target frequency of 1.5 GHz and
which is frequency for 45nm design. Data cache is shared by
CPU and c-cores. And multiplier and FPU are optionally
shared by c-cores with CPU, depending on execution of code.
To reduce consumption of energy most of tiles and c-cores are
power gated.

B. Execution

At runtime, initially application runs on any general
purpose CPU but as it enters in hot code region execution is
automatically transferred to appropriate c-core. Depending
upon c-core used and applications which are active currently
execution moves from tile to tile. To reduce static power
dissipation clock rating and power rating is used.

VI. TARGETTING THE ANDROID MOBILE

Android is developed by Google, which is open source
mobile software stack. Android consist of set of application

libraries, a Linux kernel and virtual machine. On the top of
Dalvik virtual machine user applications run.

There are several reasons to Android to suit c-cores. First,
Android has set applications which are used commonly such as
media player, email and Web browser. Typically, virtual
machine and application libraries have hot code. For Android
application high coverage is achieved by using less number of
c-cores which targets virtual machine and application libraries.

In experiment Android workloads include mail client, web
browser, media player, map navigation and many applications.
According to experiment 95 percent of Android mobile is
covered using less number of static instructions that is about
43000 instructions. Out of 95 percent, 72 percent was of virtual
machine or library code which was shared between two or
more applications.

VII. CREATING CONSERVATION CORE

 Each c-core consists of control state machine and data path

which is directly derived from code it targets [7]. The structure

of C code is mimicked by control components and data path.

The data path consists of multiplexer, functional unit and

registers. Multiplexers used to implement control decisions, to

execute instructions functional units are used and register

across clock cycle holds program values. State machine is

implemented using control unit which mirrors the code of

control flow graph (CFG). It tracks the outcomes of branch

during each cycle to determine which hardware block will be
active.

Communication occurs via shared data cache between CPU

and c-cores. C-cores are constructed using memory interface

for application with access pattern. As conventional

accelerators can’t extract memory parallelism so they can’t

applications. In absence of memory parallelism energy saving
can be attainted by conservation cores.

C code is translated to state machine and hardware
schematic. Internal complier represents sample code which
correspond hardware. The Control Flow Graph (CFG) is
identical to the c core’s state machine. In data path to access
memory in order to write array has store unit and to read array
has load unit.

A. Synthesizing Conservation Cores

Greendroid processor will have different c cores which
target different part of Android mobile. It is not possible to
design each c core by hand. So we are building tool chain of
C/CPP to verilog which convert arbitrary part of code into c
core hardware [1].

Loops and key functions in target code are firstly identified
by tool chain. Inlining functions and outlining loops are
extracted by them. Internal representation of Dataflow graph
and control flow graph are generated by complier. Then verilog
code for data path and control unit is generated by complier.
Function stubs are also generated by complier. To invoke
hardware, function stubs can call applications instead of

IJRECE VOL. 3 ISSUE 1 JAN-MAR 2015 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 94 | P a g e

original functions. Finally, description of c core is generated by
complier.

Wider range of C construct can be targeted as c cores
mainly focus on power consumption and saving energy instead
of parallelism. To speedup applications with memory
parallelism and irregular control accelerators struggle.
Conservation core can significantly lower the power cost and
save energy of such code.

VIII. CONCLUSION

 Dark silicon problem becomes worse due to utilization

wall in both mobile and desktop processors. We attack on dark

silicon problem through GreenDroid and conservation cores.
Due to conservation code dark silicon is converted to energy

saving and reduce power budget. Conservation cores can be

used in key regions of Android mobile using conservation

cores to save energy, even in regions which are irregular to

control. Dark silicon is a new area which will open new

opportunities. About 91 percent of energy consumption of

processor is reduced using conservation cores.

IX. ACKNOWLEDGMENT

I would like to thank all department staff of my college for
their helpful suggestion and support.

X. REFERENCE

[1] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin,J Lugo-
Martinez, S. Swanson, and M. B. Taylor, \Conservation Cores: Reducing

the Energy of Mature Computations", ASP-LOS, 2010.

[2] D.E. Shaw et al., ‘‘Anton: A Special-Purpose Machine for Molecular
Dynamics Simulation,’’ Proc. 34th Ann. Int’l Symp. Computer
Architecture (ISCA 07), IEEE CS Press, 2007.

[3] P. Coussy and A. Morawiec, High-Level Synthesis: from
Algorithm to Digital Circuit, Springer, 2008.

[4] R. Dennard et al., ‘‘Design of Ion-Implanted MOSFET’s with Very

Small Physical Dimensions,’’IEEE J. Solid-State Circuits, vol. 9, no.
5, 1974, pp. 256-268.

[5] J. Sampson, G. Venkatesh, N. Goulding-Hotta, S. Garcia, S. Swanson,

and M. B. Taylor, \E_cient Complex Operators for Irregular Codes",
HPCA, 2011.

[6] M. Taylor et al., ‘‘The Raw Microprocessor: A Computational Fabric for
Software Circuits and General Purpose Programs,’’ IEEE Micro,
vol. 22, no. 2, 2002, pp. 25-35.

[7] N. Goulding-Hotta, J. Sampson, G. Venkatesh, S. Garcia, J. Au-ricchio,
J. Babb, M. B. Taylor, and S. Swanson, \GreenDroid: AMobile

Application Processor: A Mobile Application Processor for a Future of
Dark Future", HOTCHIPS 2010.

[8] G. Venkatesh, J. Sampson, N. Goulding-Hotta, S. Kota Venkata, M. B.

Taylor, and S. Swanson. \QsCores: Trading Dark Silicon for Scalable
Energy E_ciency with Quasi-Speci_c Cores", MI-CRO 2011.

Sonal Sarode recieved the BE degree in Electronics and
telecommunication from Savitribai Phule University, Pune in 2008.
She was working as lecturer in polytecnic college for 2.5 years. She
is currently doing ME in VLSI and Embedded system from Savitribai
Phule University,Pune.

