@ Best Practices

Practical Software Measurement,
Performance-Based Earned Value

Paul Solomon
Northrop Grumman Corporation

Successful software project management can be achieved by focusing on requirements, selecting the most effective soft-
ware metrics, and using Earned Value Management. Best practices and lessons learned by the Northrop Grumman
team in developing weapons system software for the B-2 Stealth Bomber are discussed.

his article discusses a set of integrat-
ed, performance measurement tech-
niques that increased Northrop

Grumman Corporation’s software suc-

cess. These techniques can enable excel-

lent project management in the following
ways:

* Defining effective metrics for sizing
the project and measuring progress.

* Using Earned Value Management
(EVM) as the key, integrating tool for
control.

* Defining quality goals in terms of
project milestones and metrics.

* Planning for incremental releases and
rework.

* Revising the plan for deferred func-
tionality and requirements volatility.

* Focusing on requirements, not
defects, during rework.

* Using testable requirements as an
overarching progress indicator.

These techniques are based on the follow-

ing industry and professional standards:

* CMU/SEI-92-TR-19, Software Mea-
surement of Department of Defense
Systems.

* “A Guide to the Project Management
Body of Knowledge (PMBOK),”
Project Management Institute,
December 2000.

* DPractical Software and Systems Mea-
surement: A Foundation for Objective
Project Management (PSM) [1].

* (ANSI/EIA)-748-98, EVM Systems
Standard (Standard), American Na-
tional Standards Institute/ Electronics
Industry Association.

The techniques evolved from lessons
learned and continuous process improve-
ment during development of embedded
weapons system software for the U.S. Air
Force B-2 Stealth Bomber and other pro-
grams at Northrop Grumman Corpora-
tion’s Air Combat Systems (ACS), a busi-
ness area of the company’s Integrated
Systems Sector. The ACS software organ-
ization achieved Level 4 using the
Software Engineering Institute’s (SEI)
Capability Maturity Model® (CMM) in
1998 and has a goal of achieving Level 5
in 2001.

September 2001

The essence of EVM, per the
Standard, is that at some level of detail
appropriate for the degree of technical,
schedule, and cost risk or uncertainty
associated with the program, a target
value (i.e., budget) is established for each
scheduled element of work. As these ele-
ments of work are completed, their target
values are earned. As such, work progress
is quantified and the earned value
becomes a metric against which to meas-

“The essence of EVM
... is that at some level
of detail appropriate
for the degree of
technical, schedule,
and cost risk or
uncertainty associated
with the program, a
target value ... is
established.”

ure both what was spent to perform the
work and what was scheduled to have
been accomplished. The combination of
advance planning, baseline maintenance,
and earned value analysis yields earlier
and better visibility into program per-
formance than is provided by non-inte-
grated methods of planning and control.

Improvements in
Opportunities

Despite being at SEI CMM Level 3 since
1995 and having a validated EVM sys-
tem, the software development organiza-
tion was not consistently achieving its
objectives and customer expectations.
More importantly, the management con-
trol system was failing to accurately
report project performance. These issues
were identified and disclosed in the qual-
ity audits of the EVM organization. In

1996, an audit defined the following
issues and goals:

“The process for managing soft-
ware projects with regard to base-
line planning, determination of
schedule milestones, and earned
value could be improved to pro-
vide better milestones and metrics
for interim performance measure-
ment during development, testing,
and rework ... actual progress
against the total technical require-
ments is not displayed on a sched-
ule in relation to a plan, a project-
ed or actual software release on a
schedule may not reflect comple-
tion of all effort originally
planned, and earned value does
not necessarily represent the per-
centage of completion of the total
statement of work.

It is recommended that the
Software Engineering Process
Group (SEPG) be empowered to
develop a better process for meas-
uring and reporting progress on
software projects. It is recom-
mended that the following topics
be addressed:

* Criteria for determining which
planned requirements are sig-
nificant for tracking progress.

* Criteria for milestone defini-
tions.

* Farned value and internal re-
planning for deferred require-
ments or functionality.

* Farned value and internal re-
planning for revised require-
ments.

* Planning and measuring pro-
gress during rework phase.”

Existing Measure
Shortcomings

A team was formed to review existing
measures and processes. It found that,
although they adhered to company poli-
cies and relevant quality standards,
including the SEI core set of software
measures (size, effort, schedule, and qual-

www.stschillafmil 25

Best Practices

ity), the measures used were not effective
for technical progress.

The first finding was that during the
initial coding phase, the most common
sizing measure was source lines of code
(SLOC). SLOC was utilized as a sizing
measure as the basis for budgets and for
earned value using a percent of comple-
tion method. However, the analysis con-
cluded that there is usually a significant
error in estimating SLOC. Consequently,
any progress metric based on SLOC,
including EV, was highly volatile. For
example, all projects reviewed had soft-
ware components that experienced multi-
ple, significant increases in estimated
SLOC. When the new estimate was first
used as a denominator for percent com-
plete, then negative progress and earned
value were reported.

Second, while the schedule metrics
and procedure discussed completion mile-
stones, the milestone definitions and
completion criteria lacked quantifiable
objectives. Normally, an incremental
build is released despite not incorporating
all the planned functional requirements.
It had been practice to display a complet-
ed milestone on the schedule and to take
all of the earned value that was budgeted
for that milestone without disclosing that
not all the base-lined requirements or
functionality had been achieved.

Third, the process review disclosed a
deficiency regarding product quality
measures such as defects found and
closed. A manager normally uses a burn-
down curve of defects or trouble reports
and tends to focus on eliminating defects
rather than attaining requirements.
Earned value had been based on the burn-
down plan. However, because the pres-
ence of defects indicates the failure to
meet requirements, measures of defects
are not the best measures of progress.
Also, any measure of progress based on
defects is unstable because the number of
defects discovered during reviews and
testing is always different than planned,
and removal of one defect often results in
detection of new ones. There were no
metrics to track progress toward meeting
all system requirements. As a result,
progress measured as the ratio of defects
removed to total estimated defects was a
more volatile measure than the percent of
SLOC completed. Also, there was no
budget to enable earned value for the
remaining work.

Fourth, the schedule and performance
measurement baseline had been predicat-
ed on a discrete number of software builds
but completion of the project often
required many additional builds.

26 CrossTALK The Journal of Defense Software Engineering

However, earned value was taken as origi-
nally budgeted when builds were com-
pleted. As a result, there was no remaining
budget for the additional builds and the
cost performance reports overstated
schedule status.

Practical Software and
Systems Measurement

A good source of metrics is the Practical
Software and Systems Measurement
(PSM) guide. PSM provides project and
technical managers with the quantitative
information required to make informed
decisions that impact project cost, sched-
ule, and technical performance objectives.
PSM is applicable to the overall planning,
requirement analysis, design, implemen-
tation, and integration of systems and
software activities. It provides a process to
collect and analyze data at a level of detail
sufficient to identify and isolate problems.
This data includes estimates, plans,
changes to plans, and counts of actual
activities, products, and expenditures.
The unit level (as defined by the product
component structure or system architec-
ture) is the most commonly used level of
detail.

Resultant Process
Improvements

The set of process improvements had five

components:

* Developing the Performance Measure-
ment Baseline (PMB).

* Requirements decomposition and
traceability.

* Planning for defects and rework.

* Selection and use of software metrics.

¢ Performance-Based Earned Value.

* Revisions to plan for deferred func-
tionality.

Performance Measurement
Baseline

EVM begins with defining the project’s
product and management objectives.
These technical, schedule, and cost objec-
tives are transformed into a PMB sched-
ule and budget baseline (also commonly
called a Work Breakdown Structure). The
team developed standard templates for
the PMB. The templates ensured knowl-
edge transfer and inclusion of common
project components such as key schedule
constraints, subcontractor control mile-
stones, and systems engineering activities.

Requirements
During the requirements phase, high-level
requirements are defined and decom-

posed to the levels needed to govern the
design, implementation and integration,
and test phases. Establishing a time-
phased requirements baseline against
which progress can be consistently meas-
ured is the most important EVM step. It
drives the project sizing, the resource
forecast (budget), and the schedule. The
technical requirements also establish the
criteria for completing tasks. The output
of the requirements phase defines the cri-
teria or attributes for completing signifi-
cant milestones, or taking earned value in
all subsequent levels and stages of devel-
opment. Of equal importance are a disci-
plined requirements traceability process
and a requirements traceability data base.

To ensure the acceptance of the end
product and enable consistent perform-
ance measurement, allocated require-
ments should be testable and traced to
detailed specifications, software compo-
nents, and test specifications. Per PSM,
some requirements may not be testable
until late in the testing process, others are
not directly testable, and some may be
verified by inspection.

Dr. Peter Wilson, of Mosaic, Inc., dis-
cusses the utility of testable requirements
[2]. Per Dr. Wilson, a testable require-
ment is one that is precisely and unam-
biguously defined, and one for which
someone must be able to write a test case
that would validate whether or not the
requirement has or has not been imple-
mented correctly. The number of testable
requirements may be very different from
the number of test cases. There are a
number of reasons for this:

* A testable requirement may require
more than one test case to validate it.

* Some test cases may be designed to
validate more than one testable
requirement.

* Testable requirements appear to have
the granularity and flexibility to make
earned value a practical tool for soft-
ware developers.

To redirect management focus on
meeting requirements, a Systems Eng-
ineering (SE) process improvement team
rewrote the SE procedures. The new pro-
cedures mandated requirements traceabil-
ity and the use of technical performance
measures (TPM). Per the procedure,
“TPMs are used to plan and track key
technical parameters throughout a devel-
opment program,” and “to the maximum
extent practical, earned value, both
planned budget and earned value taken,
should be based on those TPMs that best
indicate progress towards meeting the
system requirements.” The procedure also
requires verification of the testability of

September 2001

requirements.

The time-phased plan for each project
phase and each build should include mile-
stones that objectively define the func-
tional content to be achieved at that
point. The milestones should be defined
in terms of incremental functionality,
both the number of testable requirements
and the functional capabilities to be
achieved. An incremental milestone is
normally defined as 100 percent of the
requirements needed to achieve a func-
tional capability. However, for earned
value purposes, it can also be targeted as a
lesser percentage. The functionality tar-
gets should be documented as part of the
criteria for completing the milestone and
taking objective earned value. The per-
centage target is normally related to the
targeted quality, as measured by defects.

Planning for Defects and Rework
In planning for incremental builds, the
Statement of Work for all builds subse-
quent to the first should include an esti-
mate for rework of requirements or code
to fix defects that were found in previous
builds but will be fixed in subsequent
builds. To ensure adequate budget and
period of performance, the planning
assumptions should include a planned
rate or number of defects to be found in
each build, and a plan to fix these defects
within the rework Statement Of Work of
each build. Furthermore, rework should
be planned in separate work packages.
Failure to establish a baseline plan for
rework and to accurately measure rework
progress caused many projects to get out
of control.

The team’s remedy was to change the
EVM procedure. The procedure requires
that rework is planned in separate work
packages from the initial development
effort and that objective metrics for
rework are used for earned value.

Selection and Use of Software
Metrics

For tracking progress against a plan using
EVM, the most effective measures are
those that address the issues, product size
and stability, and schedule and progress.
Three measurement categories are
mapped to these issues: functional size
and stability, work unit progress, and
incremental capability.

The specific measures to be discussed
are requirements, requirements status,
component status, test status, increment
content-components, and increment
content-functions.

Issue: Product Size and Stability.
(Category: Functional Size and Stability)

September 2001

Practical Software Measurement, Performance—Based Earned Value

The requirements measure counts the
number of requirements in the system or
product specification. It also counts the
number of requirements that are added,
modified, or deleted and provides infor-
mation about the total number of
requirements and the risk due to growth
and/or volatility in requirements.

When incremental builds are
planned, this measure is also the basic
component of the measure, increment
content-function, as discussed below.
Issue: Schedule and Progress. (Category:
Work Unit Progress.) The recommended
measures for Work Unit Progress are
requirements status, component status,
test status, increment content-compo-
nents, and increment content-functions.
* Requirements Status: The require-

ments status measure counts the
number of requirements that have
been defined and allocated to soft-
ware components, allocated to test
cases, and successfully tested. When
used to measure test status, the meas-
ure is used to evaluate whether the
required functionality has been suc-
cessfully demonstrated against the
specified requirements. Some require-
ments may not be testable until late in
the testing process. Others are not
directly testable or may be verified by
inspection.

This measure is ideal for EVM
because it is objective. The budget
allocated to requirements may be
equally distributed or weighted
according to the estimated effort for
those requirements. Consequently,
requirements-based EVM, as the inte-
grating tool for technical, schedule,
and cost objectives, provides
Northrop Grumman’s best measure of
project status, progress, and remain-
ing effort. Since implementing
requirements-based EVM, program
progress has never been significantly
overstated and the management con-
trol system has provided more reliable
data and earlier warning of program
problems (see Table 1, page 28).

Tables 1 through 5 (see page 28) are
abstracts of measures that are fully
described in PSM. Per PSM, there are
three aggregation structures to accu-

mulate measurement data. Tables 1

and 2 are component-based and func-

tional-based aggregation structures.
Component-based aggregation
structures are derived from the rela-
tionship of the system components
within a particular architecture or
design. For projects that implement
an incremental development

approach, lower-level components
(such as units and configuration
items) are usually mapped to the
incremental delivery products as part
of the aggregation structure.

Functional-based aggregation struc-
tures define the functional decompo-
sition of system requirements. They
are often mapped to the system
design components. If they are
mapped to design components, then
measures of the requirements (such as
the number of requirements tested)
can be aggregated and evaluated for a
particular function.

The data collection level describes
the lowest level at which data is col-
lected to allow problems to be isolat-
ed and understood. It can then be
rolled up using the aggregation struc-
ture.

* Component Status: The component
status measure counts the number of
software components that complete a
specific activity. An increase in the
planned number of components may
indicate unplanned growth and cost
impacts. However, the number of
components, although not constant,
is the perpetual denominator for
measuring percent complete.

In the initial design phase for
EVM, a unit of measurement should
be selected based on the design stan-
dards and practices employed for each
build. This may be modules, pack-
ages, pages, or another appropriate
component.

Completion of components during
the design and implementation phas-
es should be based on component
reviews, inspections, walkthroughs or
specified tests, as appropriate (see
Table 2 page 28).

o Test Starus: The test status measures
count the number of tests attempted,
executed to completion, or completed
successfully. It can be applied for each
unique test sequence, such as compo-
nent, integration, system, and regres-
sion test and is a good basis for earned
value (see Table 3, page 28).

Issue: Schedule and Progress. (Category:
Incremental Capability.) Incremental
capability measures count the cumulative
functions or product components with a
product at a given time. An increment is
a predefined group of work units, func-
tions, or product components delivered
to the next phase of development. These
measures determine whether the capabil-
ity is being developed as scheduled or
delayed to future deliveries. There are two
measures of increment content.

www.stsc.hillafmil 27

Best Practices

» Increment Content-Components: The
increment content-components meas-
ure identifies the components that are
included and assembled into incre-
ments. Increment content is often
deferred to preserve the scheduled

essential to quantify the deferred con-
tent in terms of earned value and to
annotate the schedule to indicate that
the true status and the expected com-
pletion date of the base-lined work
(see Table 4).

delivery date. When this occurs, it is * Increment Content-Functions: The
Tables 1-5: Abstracts of Measures Fully Described in PSM
Issue: SCHEDULE AND PROGRESS Table 1
Aggregation Structure: FUNCTION
Category: WORK UNIT PROGRESS
Measure: REQUIREMENTS STATUS
Typically Collected for Each: REQUIREMENTS SPECIFICATION
DATA ITEM COMPLETION CRITERIA
Requirements Traced to: - Completion of Specification Review
- Detailed - Baselining of Specifications
Specifications - Baselining Requirements Traceability
Software Matrix
Components - Successful Completion of all Tests, in
Test Specifications Appropriate Test Sequence
Tested Successfully
Issue: SCHEDULE AND PROGRESS Table 2
Aggregation Structure: COMPONENT
Category: WORK UNIT PROGRESS
Measure: COMPONENT STATUS
Typically Collected for Each: CONFIGURATION ITEM (Cl) OR EQUIVALENT
DATA ITEM COMPLETION CRITERIA
Total # of Components Component Reviews, Inspections,
of Components Completed Walkthroughs
Successfully by Activity: Successful Completion of Specified Test
. Preliminary Design Released to Configuration Management
Detailed Design Resolution of Action Items
Implementation
Component Test
Cl Test
Issue: SCHEDULE AND PROGRESS Table 3
Aggregation Structure: SOFTWARE ACTIVITY
Category: WORK UNIT PROGRESS
Measure: TEST STATUS
Typically Collected for Each: CONFIGURATION ITEM
DATA ITEM COMPLETION CRITERIA
Total # Test Cases Successful Completion of Each Test Case in
of Test Cases Appropriate Sequence
Attempted
of Test Cases Passed
Issue: SCHEDULE AND PROGRESS Table 4
Aggregation Structure: COMPONENT
Category: INCREMENTAL CAPABILITY
Measure: INCREMENT CONTENT — COMPONENTS
Typically Collected for Each: CONFIGURATION ITEM (Cl) OR EQUIVALENT
DATA ITEM COMPLETION CRITERIA
of Components Successful Integration
of Components Successful Testing
Successfully Integrated
Issue: SCHEDULE AND PROGRESS Table 5
Aggregation Structure: FUNCTION
Category: INCREMENTAL CAPABILITY
Measure: INCREMENT CONTENT — FUNCTIONS
Typically Collected for Each: FUNCTION OR EQUIVALENT
DATA ITEM COMPLETION CRITERIA
of Functional Requirements Successful Integration
of Functional Successful Testing
Requirements Successfully
Implemented

28 CrossTALK The Journal of Defense Software Engineering

increment content-functions measure
is preferred for schedule progress and
for earned value because it directly
maps to the number of functional
requirements. It requires a formal,
detailed list of functions and require-
ments by increment, as documented
in the Requirements Traceability data-
base (see Table 5).

The completion criteria for both incre-

ment measures are successful integration

and successful testing, as described in

Tables 4 and 5.

Performance-Based Earned Value
The recommended software metrics for
schedule and progress are also the basis
for performance-based earned value
(PBEV). PBEV is a lean, cost-effective
means of implementing EVM to mini-
mize administrative costs and to focus on
the big picture. It results in less work
packages to track, more emphasis on
objective measures of technical perform-
ance related to achieving requirements,
and less emphasis on tracking support
activities. PBEV has the following char-
acteristics:

* Emphasize key performance metrics
and project progress relative to plan
(schedule and budget), system
requirements, and TPMs that support
requirements.

* Maximize budget to key technical
activities.

* Measure products and product com-
ponents, not tasks and inch-stones.

* Use no EV for reviews, meetings, and
recurring reports.

* Manage costs, not schedule of support
tasks.

* Budget for support, from the level of
effort tasks can be allocated, to dis-
crete tasks to maximize focus on tech-
nical progress.

Plan for Deferred Functionality
To prevent the overstatement of progress
and the premature consumption of budg-
et, it is recommended that the increment
content-functions measure is the primary
basis for earned value during the design
and integration and test phases.

To illustrate how deferred functional-
ity should be quantified at the work pack-
age level, assume that a work package for
implementation of code has release of a
build as its completion milestone with a
budget of 500 hours. Also, assume the
build includes 100 testable requirements
that are budgeted to require five hours
each to implement. If the build was
released with 90 requirements integrated,

September 2001

then earned value would be 450 hours.
The event of releasing the build short of
its targeted functionality is cause to close
the work package and replan the remain-
ing work. In this case, transfer the
deferred requirements and the residual
budget of 50 hours to the work package
for the next planned build. Place the
budget in the first month of the receiving
work package to preserve the schedule
variance. If no planned builds remain,
establish them through the normal inter-
nal replan process by closing the last work
package and opening a new one for the
next build with the unused budget.

Process Improvement Ups
Customer Satisfaction

These practices have improved our man-
agement effectiveness and increased cus-
tomer satisfaction. The Air Force
Acquisition Newsletter cited our success as
follows:

“The B-2 Spirit Stealth Bomber
Program implemented several
innovative process improvements
using EVM. These include inte-
grating earned value with systems
engineering processes, defining
improved software engineering
metrics to support EVM, and
developing a leaner, more effective
methodology called performance-
based earned value (PBEV).
These changes paid off during
upgrades of the B-2 weapon sys-
tem. One of those upgrades was
the development of the Joint
Standoff Weapon/Generic Weap-
on Interface System (JSOW/
GWIS), a software intensive
effort. The new metrics helped to
make it a very successful program.
The PBEV methodology was used
to ensure that the warfighter
received the most functionality
from software development
efforts. On JSOW, we provided 85
percent more capability than orig-
inally planned, on schedule and

under budget [3].”

The most important business objec-
tives of a best practice are increased cor-
porate profit and customer satisfaction.
Evidence of achieving these objectives is
in the Air Force quarterly assessment
report of the B-2 software maintenance
contract. We received excellent award fee
ratings for the year ended April 2001 in
all categories: technical, program man-
agement, scheduling, and cost.

September 2001

Practical Software Measurement, Performance—Based Earned Value

Conclusion

Using earned value to plan and manage
software projects can prevent expensive
failures. Earned value should be based on
testable requirements and selected soft-
ware measures that best underlay the plan
and progress to achieve all project objec-
tives. We are now revising our systems
engineering process to incorporate les-
sons learned and improved processes
from software development. 4

References
1. Practical Software and Systems
Measurement: A Foundation for

Objective Project Management. U.S.
Department of Defense and U.S.

Army. October 2000, Version 4.0b,
available at <www.psmsc.com>.

2. P B. Wilson. “Sizing Software with
Testable Requirements.” Journal of
Systems Development Management.
August 2000, reprint available at
<www.testablerequirements.com>.

3. “Aerospace Acquisition 2000.” Air
Force Acquisition Reform Newsletter.
Jan./Feb. 2000, Vol. 3, Number 1.

About the Author

Paul J. Solomon is the
director, Earned Value
| Management Service
on the B-2 Stealth
Bomber program for
Northrop Grumman
Corporation’s Air Combat Systems, a
business area of the company’s
Integrated Systems Sector. He is on
the board of the National Defense
Industrial ~ Association, Program
Management Systems Subcommittee
that authored ANSI/EIA-748. He
was a member of the team that
received the 1998 David Packard
Excellence in Acquisition Award. He
presented the concepts in this article
at the 2001 Software Technology
Conference and the 2001 SEPG
Conference in India. Solomon holds
MBA and BA degrees from
Dartmouth College and is a Project
Management Professional.

Northrop Grumman Corporation
3520 E. Ave. M, TD21/4B

Palmdale, CA 93550

Phone: (661) 540-0618

E-mail: solompa@mail.northgrum.com

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/TISE
7278 FOURTH STREET
HiLL AFB, UT 84056
FAx: (801) 777-8069 DSN: 777-8069
PHONE: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:

RANK/ GRADE:

PosITIoN/TITLE:

ORGANIZATION:

ADDRESS:

BAse/CiITY:

STATE: Zp:

PHONE:()

Fax:()

E-MAIL: @

CHEeck Box(es) To REQUEST BAcK IssUES:
JAN2000 []| LEssoNs LEARNED
FEB2000 [| Risk MANAGEMENT
APR2000 [| CosT ESTIMATION
MAY2000 [| THE F-22

JuN2000 []| PSP&TSP

JAN2001 [| MODELINGAND SIMULATION
FEB2001 [| SOFTWARE MEASUREMENT
APrR2001

[] WeB-Basep Apps

MAY2001 [| SoFTwARE ODYSSEY

Jur2001 [] TesTING AND CM

29

www.stsc.hill.af.mil

