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Mixed-level factorial experimental designs involve factors with different numbers of levels. Full factorial

designs require runs at all possible combinations of the factor levels. As the number of factors and/or factor

levels increases, the total number of experiments increases dramatically. As a result, interest has focused on

developing orthogonal or near-orthogonal mixed-level fractional factorial designs. Currently existing mixed-

level designs are all balanced. However, relaxing the requirement of balance may result in a reduced number

of experimental runs in practice. The objective of this paper is to develop mixed-level fractional factorial

designs with economical run sizes that are as nearly balanced and orthogonal as possible. A new criterion

is developed to assess the degree of near-balance for comparing and constructing designs. A modified J2-

optimality criterion is used for evaluating design near orthogonality. These criteria are combined and used

to assess different design alternatives. Three algorithms are then compared and used to build designs with

desirable combinations of near balance and near orthogonality.

Key Words: Balance; Columnwise-Pairwise Algorithm; Coordinate Exchange Algorithm; Design of Experi-

ments; Desirable Properties; Genetic Algorithm; Orthogonality.

T
RADITIONAL two-level factorial designs are widely
used in industrial research and development. In

some situations, however, factors with more than two
levels are required, especially when those factors have
qualitative levels. Accordingly, mixed-level factorial
designs are employed. Two desirable properties used
in assessing the adequacy of mixed-level designs are
balance and orthogonality. Balance requires that each
level of a factor be run the same number of times
in an experiment, resulting in an even distribution
of information for each factor level. Orthogonal de-
signs are column pairwise linearly independent and
are useful in assessing factor significance. Construct-
ing mixed-level designs with balance, small run sizes,
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and conditions approaching orthogonality has been
a focus in the literature. Several authors have de-
veloped algorithms to build balanced orthogonal
mixed-level designs. Additionally, balanced near-
orthogonal designs have been generated as alterna-
tives to strictly orthogonal designs when orthogonal
designs are either difficult or impossible to produce.

Wang and Wu (1991) first proposed an ap-
proach for constructing orthogonal mixed-level de-
signs based on difference matrices. This construction
method applies the generalized Kronecker sum and
uses the technique of adding columns. Wang (1996)
introduced another distinct method, also based on
difference matrices that can produce a new class of
designs. DeCock and Stufken (2000) proposed an
algorithm for constructing orthogonal mixed-level
designs using existing two-level orthogonal designs.
Wang and Wu (1992) and Nguyen (1996) constructed
near-orthogonal mixed-level designs. Xu (2002) pro-
posed an algorithm to construct orthogonal and
near-orthogonal designs based on the concept of J2-
optimality. The J2-optimality is equivalent to sev-
eral other orthogonality criteria, including the (M, S)
criterion (Eccleston and Hedayat (1974)), the A2-
optimality criterion (Xu (2002)), the B(2) criterion
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(Lu et al. (2006)), and the ave(s2) criterion (Booth
and Cox (1962)). However, the J2-optimality is more
appropriate for situations where factor levels are not
denoted by contrasts because J2-optimality does not
require computing the value of |XTX|, where X is
the contrast matrix of the design. The theory of or-
thogonal designs was systematically discussed by He-
dayat et al. (1999).

The number of runs required for factorial designs
increases dramatically as the number of factors or
factor levels increases. Fractionating mixed level fac-
torials often necessitates that balance be compro-
mised. For example, consider a design with three
factors: one with 3 levels, one with 4 levels, and a
third with 5 levels. The full factorial design, rep-
resented as 314151, involves 60 runs and balance is
maintained. Any fraction of the 60 runs will sacri-
fice balance. Suppose an engineer only has resources
for 30 tests and the test objective is factor screen-
ing. The intent of this paper is to introduce efficient
mixed-level fractional factorial designs that are as
nearly balanced and orthogonal as possible and capa-
ble of meeting scarce-resource requirements. Efficient
mixed-level fractional factorial designs are empha-
sized, conserving resources (runs) while obtaining the
best possible balance and orthogonailty properties.
The design construction process involves evaluating
balance and orthogonality properties by proposing,
studying, and implementing relevant criteria. By us-
ing these design balance and orthogonality criteria
in combination with design-selection algorithms, effi-
cient near-balanced, near-orthogonal mixed-level de-
signs can be constructed.

A new optimality criterion, the balance coefficient,
will be defined and formulated. J2-optimality is a
useful measure of design orthogonality, although it is
not invariant to design size. As such, a modified J2-
optimality is proposed for measuring the degree of
orthogonality across designs with different run sizes.
Different types of algorithms are compared to con-
struct efficient mixed-level designs.

In the next section, we propose and formulate a
balance coefficient and modify the J2-optimality cri-
terion. Using these balance and orthogonality cri-
teria, three algorithms are then compared for con-
structing efficient mixed-level designs. The perfor-
mance of these algorithms is discussed in the subse-
quent section. Finally, examples are provided of gen-
erating near-balanced near-orthogonal mixed-level
fractional factorial designs.

Optimality Criteria for
Mixed-Level Designs

Factor levels are coded to measure the balance
and orthogonality properties of mixed-level designs.
A new criterion, the balance coefficient, is developed
to measure the degree of balance for mixed-level de-
signs. A standardized J2-optimality criterion is used
in assessing design near-orthogonality. These criteria
are combined to generate designs containing both de-
sirable properties.

Balance Coefficient for Factorial Designs

In a balanced design, each factor level occurs the
same number of times, so there is consistency in the
variance of the difference of observations at two treat-
ment combinations. With mixed-level designs, the “1,
2, 3,. . .” representation is commonly used for factor
levels. For an n×m design matrix D, let n represent
the number of rows and m the number of columns.
Rows correspond to runs and columns to factors.
Column j contains lj levels and crj is the number
of times the rth level appears in that column. Let
cj = [c1j , c2j , . . . , cljj ]T be the counts for each level
for column j.

For example, consider a half fractional 213141 de-
sign D with 12 runs (Figure 1). The corresponding
values of parameters for D are shown in Figure 2.

For a factor j, the degree of unbalance can be
determined by the cj . When the crj for all r equal
a common value, then factor j is balanced. Because∑lj

r=1 crj = n, cj can be represented by a lj − 1
dimensional coordinate hyperplane. For the design D
in Figure 1, the number of levels for the second factor
can be expressed as c12+c22+c32 = 12. This equation
has two degrees of freedom and can be represented

D =




1 1 1
1 1 2
1 1 3
1 1 4
1 2 1
1 2 2
2 2 3
2 2 4
2 3 1
2 3 2
2 3 3
2 3 4




FIGURE 1. A Half Fractional Factorial 213141 Design.
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Parameter Value

n 12
m 3
l = [l1, l2, l3] [2, 3, 4]
c1 = [c11, c21] [6, 6]
c2 = [c12, c22, c32] [4, 4, 4]
c3 = [c13, c23, c33, c43] [3, 3, 3, 3]

FIGURE 2. Parameters for 213141, 12 Run Design.

by a two-dimensional coordinate plane in a three-
dimensional coordinate system (Figure 3).

All the feasible solutions of c12+c22+c32 = 12 are
scattered on this plane. Figure 4 shows some of the
feasible solutions. The remaining feasible points are
not shown because they are symmetric with regard
to the center point. The point in the center, [4, 4, 4],
represents a balanced column. In general, a column
with lj levels can be characterized by an equation,∑lj

r=1 crj = n, which denotes a lj − 1 dimensional
hyperplane. We employ a distance function and de-
fine

Hj =
lj∑

r=1

(crj − T )2

as the column j balance coefficient, where the center
point of the hyperplane T = n/lj is fixed. Using this
definition, Hj becomes

Hj =
lj∑

r=1

(
crj −

n

lj

)2

.

FIGURE 3. Graphical Representation of the Concept of

Distance Associated with the Balance Coefficient for a 3-

Level, 12-Run Column.

The balance coefficient H for the design matrix is
defined as

H =
m∑

j=1

Hj =
m∑

j=1

lj∑
r=1

(
crj −

n

lj

)2

.

The balance coefficient H is a function of n and
it can be standardized to be independent of n. The
standardized frequency for a specific level is defined
as flj = crj/n. If frj is used to replace crj , then
standardized Hj and H can be given by

Ĥj =
lj∑

r=1

(
frj −

1
lj

)2

and

Ĥ =
m∑

j=1

Ĥj =
m∑

j=1

lj∑
r=1

(
frj −

1
lj

)2

. (1)

When the design is balanced, frj = (1/lj) and crj =
(n/lj) for all levels lj in column j, and the distance
function reaches its minimum value, which is Ĥ∗ = 0,
where Ĥ∗ = minfrj∈[0,1](Ĥ).

Standardized J2-Optimality

Besides the property of balance, orthogonality is
also a useful property of design quality that can be
integrated into a combined design criterion. Con-
sider an n × m matrix D = [aij ], where aij are
the elements of D. The coincidence between two el-
ements aij and akj is defined by δ(aij , akj), where
δ(aij , akj) = 1 if aij = akj and 0 otherwise. The
value of

∑m
j=1 δ(aij , akj) measures the coincidence

between the ith and jth rows of D. The design D
is orthogonal if the coincidence of every two rows of
D is minimized (Xu (2002)). The J2-optimality cri-
terion is defined by Xu (2002) as

J2(D) =
∑

1≤i≤j≤n


 m∑

j=1

δ(aij , akj)




2

.

For a fixed number of runs, a design is J2-optimal
if it minimizes J2. A balanced design D is orthogonal
if it is J2-optimal (Xu (2002)). J2-optimality can be
standardized to be independent of the design size in
a way similar to the standardization of the balance
criterion. One way to standardize J2-optimality is to
use the average coincidence. For any two rows, ai and
aj , δ(ai, ak) is the number of coincidences between
the ith and kth rows. The standardized coincidence
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FIGURE 4. Partial Feasible Solutions of c12 + c22 + c32 = 12.

is defined as

δ̂(ai, ak) =
δ(ai, ak)

m
=

∑m
j=1 δ(aij , akj)

m
,

where the number of factors m is the length of the
row. The interpretation of this standardized coinci-
dence value is the degree of similarity between two
rows. Then the average of squared standardized co-
incidences is defined as

ave(δ̂(D)) =

∑n
i=1

∑n
k=i+1

[
δ̂(ai, ak)

]2

(
n
2

) .

For a fixed n, designs with smaller ave(δ̂(D)) values
are more orthogonal. However, for increasing n, de-
signs with larger ave(δ̂(D)) values are more orthogo-
nal. That is, the optimal ave(δ̂(D)) is monotonically
increasing with n. Therefore, a parameter, 1/n, is
used to adjust the ave(δ̂(D)) so that the standardized
orthogonality measure will decrease as n increases. A
standardized J2-optimality is then proposed and de-
fined as

Ĵ2(D) =
1
n

∑n
i=1

∑n
k=i+1

[
δ̂(ai, ak)

]2

(
n
2

) . (2)

Figure 5 shows an example for a 23−1 balanced or-
thogonal design. Applying the definitions, J2(D) = 6
and Ĵ(D) = 0.0278, which is J2 optimal and orthog-
onal. Optimality is verified using the lower bound
equation in Xu (2002).

Other Optimality Criteria

Other than the standardized balance coefficient
and a standardized J2-optimality, several other cri-
teria have been proposed for evaluating mixed-level
designs. Yamada and Lin (2002) constructed mixed-
level supersaturated designs that maximize the value
of a χ2 statistic, which is used for a measure of de-
pendency of the design columns. Additional discus-
sion regarding χ2 dependency is given by Yamada
and Matsui (2002). Fang et al. (2003a) used a cri-
terion called E(fNOD) to measure nonorthogonality
of mixed-level supersaturated designs. Fang et al.
(2003b), Xu and Wu (2001), and Mukerjee and Wu

D =




1 1 1
2 1 2
1 2 2
2 2 1




FIGURE 5. A 23-1 Design.
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(2001) discussed the construction of minimum aber-
ration mixed-level designs.

Mixed-Level Design
Construction Algorithms

One commonly used notation for characterizing
orthogonal fractional factorial mixed-level designs is
OA(n, lk1

1 , lk2
2 · · · lkT

T ), which denotes a column pair-
wise orthogonal array with number of runs n, having∑T

t=1 kt columns (factors) such that there are kt fac-
tors with lt levels. The notation EA(n, lk1

1 , lk2
2 · · · lkT

T )
is introduced here to denote a near-balanced, near-
orthogonal, efficient mixed-level fractional design.

With a large number of factors and/or factor lev-
els, finding efficient optimal designs can be a large
nonlinear integer programming problem. Approxima-
tion algorithms such as the genetic algorithm (GA)
can be considered. For a detailed discussion of us-
ing the GA for constructing optimal designs, see
Guo (2003), Borkowski (2003), Heredia-Langner et
al. (2003), Heredia-Langner et al. (2004), and Ortiz
et al. (2004).

Starting from randomly generated initial designs,
a GA can be designed for constructing mixed-level
designs using a combination of the standardized bal-
ance coefficient and the standardized J2-optimality
as a single objective function. We consider using
Z = aĴ2(D)+bĤ(D) as an objective function, where
a and b are nonnegative coefficients for adjusting the
relative weight of the two criteria. Preliminary stud-
ies showed that such a GA is insensitive to values
of a and b. If the designs generated by this GA are
not near balanced (by observing cj), the designs can
be further improved by compelling the factor levels
to distribute more evenly. This additional procedure
actually helps a GA generate efficient mixed-designs
with optimal near-balance property and with im-
proved near orthogonality. More details with respect
to tuning parameters of this GA and the MATLAB
source codes of this GA can be found in Guo (2003).

Besides the GA, exchange algorithms can also
be used to construct efficient mixed-level designs.
Nguyen and Miller (1992) reviewed several exchange
algorithms (Fedorov (1972), Mitchell and Miller
(1970), Wynn (1970), Mitchell (1974), and Atkin-
son and Donev (1989)). The two types of exchange
algorithms are the row-exchange algorithm and the
column-exchange algorithm. Meyer and Nachtsheim
(1995) proposed a row-exchange algorithm called a
coordinate exchange algorithm to construct exact op-

timal experimental designs. The coordinate exchange
algorithms are used by many commercial softwares,
such as JMP and DESIGN EXPERT. The coordinate
exchange algorithm starts from a random initial de-
sign and does not guarantee balance at intermediate
or final iterations. However, the additional procedure
to compel the factor levels to distribute more evenly
can also improve designs generated from coordinate
exchange algorithm in terms of balance property as
well as orthogonality property.

Unlike the GA and the row-exchange algorithm,
column-exchange algorithms (Li and Wu (1997), Xu
(2002)) maintain the best possible balance property
at each iteration. The algorithm proposed by Xu
(2002) is an example of a column-exchange algo-
rithm. See Xu (2002) for more information on his
algorithm. The C source code is available at Xu’s
website. The basic idea is to add balanced/near-
balanced columns sequentially to existing columns
based on the J2-optimality criterion. However, the
J2-optimality was standardized in this paper so that
design orthogonality can be compared for designs
with a different number of runs.

The genetic, coordinate exchange, and column-
wise-pairwise algorithms were each used to construct
several efficient mixed-level designs for the purpose
of comparison. The Appendix provides the best of
these designs along with their factor-level counts cj .
In general, optimal designs are featured with supe-
rior balance and superior orthogonality. In terms of
algorithm performance (Table 1), the columnwise–
pairwise approach consistently performs better than
the genetic and coordinate exchange approaches, al-
though it is not known whether the generated designs
are indeed optimal. Both the genetic algorithm and
the coordinate exchange algorithm perform well, but
in general, the designs from these two algorithms are
inferior to those from the columnwise–pairwise algo-
rithm. Comparing the designs by individual criterion,
designs constructed using both the genetic algorithm
and the columnwise–pairwise algorithm had the opti-
mal balance values and were consistently better than
designs constructed by the coordinate exchange al-
gorithm. In terms of orthogonality, the columnwise–
pairwise algorithm performs the best, only slightly
better than coordinate exchange and generally bet-
ter than the genetic algorithm.

An Example

Consider a situation where there are three fac-
tors, one with three-levels, one with five-levels, and
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TABLE 1. Comparison of EAs Constructed by Three Algorithms

Genetic algorithm Coordinate exchange Columnwise–0airwise

Efficient designs Ĥ Ĵ2 Ĥ Ĵ2 Ĥ Ĵ2

EA(20, 243141) 0.00028 0.009510 0.00280 0.009325 0.00028 0.009305
EA(20, 243151) 0.00028 0.009205 0.00110 0.008845 0.00028 0.008840
EA(15, 21315171) 0.00150 0.005513 0.00150 0.005513 0.00150 0.005513
EA(21, 26315171) 0.00096 0.007610 0.00200 0.007414 0.00096 0.007381
EA(30, 26315171) 0.00018 0.005637 0.00140 0.005533 0.00018 0.005493
EA(21, 325171) 0.00045 0.003924 0.00160 0.003343 0.00045 0.003329
EA(21, 314171) 0.00057 0.004057 0.00057 0.003705 0.00057 0.003705
EA(21, 324171) 0.00043 0.004648 0.00043 0.003657 0.00043 0.003657
EA(20, 235171) 0.00043 0.007400 0.00043 0.006935 0.00043 0.006895
EA(20, 245171) 0.00036 0.008280 0.00200 0.007480 0.00036 0.007435
EA(20, 314151) 0.00056 0.005175 0.00390 0.004530 0.00056 0.004475
EA(20, 23314151) 0.00028 0.007480 0.00110 0.007075 0.00028 0.007040
EA(20, 24314151) 0.00024 0.007980 0.00170 0.007555 0.00024 0.007480
EA(28, 236171) 0.00034 0.005343 0.00034 0.005093 0.00034 0.005093
EA(28, 246171) 0.00028 0.005936 0.00071 0.005529 0.00028 0.005521
EA(21, 316171) 0.00110 0.003452 0.00110 0.002948 0.00110 0.002948
EA(24, 416171) 0.00099 0.002617 0.00099 0.002113 0.00099 0.002113
EA(24, 516171) 0.00150 0.002317 0.00150 0.001879 0.00150 0.001879
EA(24, 31516171) 0.00110 0.002738 0.00200 0.002200 0.00110 0.002188
EA(20, 41516171) 0.00140 0.002385 0.00260 0.001940 0.00140 0.001860

one with seven-levels. The full 315171 factorial de-
sign contains 105 runs, and all 105 runs are required
to make the design balanced, so no mixed-level frac-
tional will have Ĥ = 0. In this situation, efficient
designs with near-balance and near-orthogonality
properties are needed. Three designs will be con-
structed using the columnwise–pairwise algorithm:
EA(15, 315171), EA(21, 315171) and EA(30, 315171).
By using design sizes of 15, 21, and 30, at least two
factors in each design can be balanced, making it
fairly easy to assess balance performance and accord-
ingly the algorithm performance. For each design, the
standardized balance coefficient and standardized J2-
optimality values are given for comparison.

The first design generated is EA(15, 315171). Fig-
ure 6 gives this design and its factor level count vec-
tors c1, c2 and c3. Both of the three-level and five-
level factors are balanced, and although the seven-
level factor is not balanced, the algorithm has al-
located the levels such that the corresponding stan-
dardized distance from the centroid of the coordinate
plane is minimized. The seven-level factor count is
c3 = [2, 3, 2, 2, 2, 2, 2]. The standardized balance co-

efficient Ĥ = 0.0013, which can be seen from c3,
is the best value for this design. The standardized
orthogonality value of 0.0038 was the best value ob-
tained from 20 passes through each of the all three
types of algorithms. No lower bound of standardized

D =




1 1 7
1 2 2
1 3 5
1 4 4
1 5 3
2 1 2
2 2 5
2 3 6
2 4 7
2 5 1
3 1 4
3 2 1
3 3 2
3 4 3
3 5 6




[ c1 c2 c3 ] =




5 3 2
5 3 3
5 3 2

3 2
3 2

2
2




FIGURE 6. EA(15, 315171) and Its Factor Level Count

Vectors.
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D =




1 1 1
1 4 2
1 3 3
1 5 4
1 4 5
1 3 6
1 2 7
2 2 1
2 1 2
2 5 3
2 2 4
2 5 5
2 4 6
2 3 7
3 4 1
3 3 2
3 1 3
3 1 4
3 3 5
3 2 6
3 5 7




[ c1 c2 c3 ] =




7 4 3
7 4 3
7 5 3

4 3
4 3

3
3




FIGURE 7. EA(21, 315171) and Its Factor Level Count

Vectors.

J2-optimality for near-balanced designs is currently
available for comparison.

We now consider designs requiring 21 runs for the
same factors, resulting in an EA(21, 315171) (Figure
7). The factor level count vectors of this design are
also provided in Figure 7. In this case, both three-
and seven-level factors are balanced, and the five-
level factor is the most balanced. The balance coef-
ficient of this design is 0.0006 and the standardized
J2-optimality is 0.0033.

A third case considers a design with 30 runs,
EA(30, 315171). The generated design (Figure 8) is
balanced in the three- and five-level factors, while
the seven-level factor is the best possible balance.
The balance coefficient of this design is 0.00053 and
the standardized J2-optimality is 0.0026. Again, by
inspecting c (Figure 8), the balance coefficient is op-
timal for this design and the Ĵ2 value was the lowest
obtained from 20 trials of each type of algorithm.

A comparison can be made among the three effi-
cient designs together with the full factorial (Table
2). The full factorial design (D4) is clearly balanced,
but it requires all 105 design points. As the number
of runs increases, the values of standardized balance
coefficient and standardized J2-optimality both de-
crease.

D =




1 1 1
1 2 7
1 3 4
1 4 2
1 5 6
1 1 3
1 2 6
1 3 1
1 4 5
1 5 2
2 1 4
2 2 5
2 3 2
2 4 7
2 5 1
2 1 7
2 2 3
2 3 6
2 4 3
2 5 4
3 1 2
3 2 2
3 3 5
3 4 1
3 5 7
3 1 6
3 2 1
3 3 3
3 4 4
3 5 5




[ c1 c2 c3 ] =




10 6 5
10 6 5
10 6 4

6 4
6 4

4
4




FIGURE 8. EA(30, 315171) and Its Factor Level Count

Vectors.

Summary

Mixed-level factorial designs are necessary alter-
natives to traditional two-level factorial designs when
qualitative factors are involved. With the exception
of computer-generated designs, only balanced or-
thogonal and near-orthogonal designs have been pre-

TABLE 2. Comparison of EAs with the Full Factorial

No of
Design runs Ĥ Ĵ2

D1 EA(15, 315171) 15 0.00130 0.0038
D2 EA(21, 315171) 21 0.00060 0.0033
D3 EA(30, 315171) 30 0.00053 0.0026
D4 Full Factorial 315171 105 0.00000 0.0009
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viously addressed in the literature. For the myriad
of situations when balance cannot be obtained, near-
balanced, near-orthogonal designs are a reasonable
choice. This paper proposes a criterion called a bal-
ance coefficient to assess relative deviations from per-
fect balance and combines it with a modified orthog-
onality criterion into an objective function for design
selection. Designs are generated and compared us-
ing three methods: the GA, the coordinate exchange
algorithm, and the columnwise–pairwise algorithm.
These efficient mixed-level fractional designs are a
possible solution to the excessive run requirements
associated with many balanced mixed-level fractional
factorial designs.
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Appendix
Efficient Mixed-Level Designs

TABLE A1. EA(20, 243141)




1 1 1 2 1 4
1 2 1 2 3 1
1 1 1 1 1 4
1 2 2 1 1 2
1 1 2 1 3 4
1 2 2 2 2 3
1 1 2 2 1 3
1 2 1 1 2 3
1 1 1 1 2 1
1 2 2 2 3 2
2 1 2 2 2 2
2 2 2 1 2 4
2 1 2 1 3 3
2 2 2 2 1 1
2 1 1 2 2 2
2 2 1 2 2 4
2 1 2 1 1 1
2 2 1 1 1 2
2 1 1 2 3 1
2 2 1 1 3 3




[ c1 c2 c3 c4 c5 c6 ]




10 10 10 10 7 5
10 10 10 10 7 5

6 5
5




TABLE A2. EA(20, 243151)




1 1 1 2 2 3
1 2 1 1 1 1
1 1 2 2 3 1
1 2 1 1 3 2
1 1 2 1 2 2
1 2 2 2 1 5
1 1 1 2 3 4
1 2 2 2 2 4
1 1 2 1 1 3
1 2 1 1 2 5
2 1 1 1 2 1
2 2 2 1 3 4
2 1 2 2 1 2
2 2 2 1 3 3
2 1 1 1 1 4
2 2 1 2 1 3
2 1 2 1 2 5
2 2 2 2 2 1
2 1 1 2 3 5
2 2 1 2 1 2




c1 c2 c3 c4 c5 c6




10 10 10 10 7 4
10 10 10 10 7 4

6 4
4
4




TABLE A3. EA(15, 21315171)




1 1 4 4
1 2 5 7
1 3 3 6
1 1 2 1
1 2 1 3
1 3 5 1
1 1 3 5
2 2 4 6
2 3 2 5
2 1 1 7
2 2 3 1
2 3 1 4
2 1 5 3
2 2 2 2
1 3 4 2




c1 c2 c3 c4
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8 5 3 3
7 5 3 2

5 3 2
3 2
3 2

2
2




TABLE A4. EA(21, 26315171)




1 1 1 2 2 2 2 1 4
1 2 2 1 2 2 2 2 7
1 1 1 2 1 1 2 2 2
1 2 2 2 1 2 1 4 5
1 1 2 2 1 2 3 5 1
1 2 2 2 1 1 1 3 4
1 1 1 1 1 1 2 4 6
1 2 1 1 1 1 3 1 5
1 1 2 1 2 1 3 1 3
1 2 1 1 2 2 1 5 2
2 1 1 1 1 2 1 2 3
2 2 1 1 2 2 3 4 4
2 1 2 1 1 2 3 3 2
2 2 1 2 2 2 2 3 3
2 1 1 2 1 2 1 1 6
2 2 2 1 1 1 2 1 1
2 1 2 2 2 1 1 4 7
2 2 2 2 2 1 3 2 6
2 1 2 1 2 1 2 5 5
2 2 1 2 1 1 3 5 7
1 1 1 1 2 1 1 3 1




c1 c2 c3 c4 c5 c6 c7 c8 c9


11 11 11 11 11 7 5 3
10 10 10 10 10 7 4 3

7 4 3
7 4 3

4 3
4 3

3
3




TABLE A5. EA(30, 26315171)




1 1 2 2 1 2 3 3 1
1 2 2 1 2 1 3 1 3
1 1 1 2 2 1 3 4 4
1 2 1 1 1 1 1 3 7
1 1 2 1 1 1 1 4 5
1 2 1 1 2 1 3 5 5
1 1 2 1 1 2 2 2 4
1 2 1 2 2 2 1 2 2
1 1 2 2 1 1 2 1 2
1 2 1 2 1 1 3 2 1
1 1 1 2 2 1 2 3 6
1 2 1 1 2 2 1 1 6
1 1 1 1 1 2 2 5 3
1 2 2 2 1 2 2 4 7
1 1 2 1 2 2 1 5 1
2 2 1 1 1 1 2 1 1
2 1 1 1 2 2 3 4 2
2 2 2 1 2 1 2 4 1
2 1 1 1 1 1 3 2 6
2 2 1 1 2 2 2 3 4
2 1 2 1 2 1 1 2 7
2 2 2 2 2 2 2 2 5
2 1 2 2 2 2 3 1 7
2 2 2 2 1 2 3 5 6
2 1 1 2 1 2 1 1 5
2 2 2 2 1 1 1 5 4
2 1 2 2 2 1 1 3 3
2 2 1 2 1 2 1 4 3
2 2 2 1 1 2 3 3 2




c1 c2 c3 c4 c5 c6 c7 c8 c9


15 15 15 15 15 10 6 5
15 15 15 15 15 10 6 5

10 6 4
7 4 3

6 4
6 4

4
4
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TABLE A6. EA(21, 325171)




1 1 2 4
1 2 1 5
1 3 1 2
1 1 3 7
1 2 5 6
1 3 4 1
1 1 4 3
2 2 4 4
2 3 3 5
2 1 1 6
2 2 5 7
2 3 3 3
2 1 1 1
2 2 2 2
3 3 1 7
3 1 4 5
3 2 3 1
3 3 2 6
3 1 5 2
3 2 2 3
3 3 5 4




c1 c2 c3 c4


7 7 5 3
7 7 4 3
7 7 4 3

4 3
4 3

3
3




TABLE A7. EA(21, 314171)




1 1 6
1 2 3
1 3 1
1 4 5
1 1 2
1 2 7
1 3 4
2 4 4
2 1 3
2 2 5
2 3 2
2 4 6
2 1 7
2 2 1
3 3 5
3 4 3
3 1 1
3 2 2
3 3 6
3 4 7
3 1 4




c1 c2 c34


7 6 3
7 5 3
7 5 3

5 3
3
3
3
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TABLE A8. EA(21, 324171)




1 1 4 7
1 2 1 4
1 3 3 6
1 1 1 5
1 2 2 1
1 3 3 3
1 1 2 2
2 2 4 2
2 3 4 4
2 1 1 3
2 2 1 6
2 3 2 5
2 1 3 1
2 2 3 7
3 3 1 1
3 1 3 4
3 2 2 3
3 3 2 7
3 1 4 6
3 2 4 5
3 3 1 2




c1 c2 c3 c4


7 7 6 3
7 7 5 3
7 7 5 3

5 3
5 3

3
3
3




TABLE A9. EA(20, 235171)




1 1 2 4 4
1 2 1 5 3
1 1 2 5 2
1 2 1 2 5
1 1 2 3 5
1 2 2 3 1
1 1 2 2 6
1 2 1 1 4
1 1 1 1 7
1 2 1 4 6
2 1 1 5 4
2 2 1 3 2
2 1 1 2 2
2 2 2 5 5
2 1 1 4 1
2 2 2 4 3
2 1 1 3 3
2 2 2 1 6
2 1 2 1 1
2 2 2 2 7




c1 c2 c3 c4 c5


10 10 10 4 3
10 10 10 4 3

4 3
4 3
4 3

3
2
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TABLE A10. EA(20, 245171)




1 1 1 1 1 2
1 2 2 1 4 3
1 1 2 1 2 1
1 2 1 2 4 4
1 1 2 2 5 5
1 2 1 2 3 1
1 1 1 2 1 3
1 2 1 1 5 7
1 1 2 2 2 6
1 2 2 1 3 6
2 1 2 2 4 7
2 2 2 2 1 1
2 1 1 1 4 5
2 2 2 2 5 2
2 1 1 2 3 2
2 2 1 2 2 3
2 1 2 1 3 4
2 2 2 1 1 4
2 1 1 1 5 6
2 2 1 1 2 5




c1 c2 c3 c4 c5 c6


10 10 10 10 4 3
10 10 10 10 4 3

4 3
4 3
4 3

3
2




TABLE A11. EA(20, 314151)




3 1 1
2 1 2
1 1 3
1 1 4
2 1 5
1 2 1
3 2 2
2 2 3
1 2 4
2 2 5
2 3 1
3 3 2
1 3 3
2 3 4
3 3 5
2 4 1
1 4 2
3 4 3
3 4 4
1 4 5




c1 c2 c34


7 5 4
7 5 4
6 5 4

5 4
4
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TABLE A12. EA(20, 23314151)




1 1 2 1 2 2
1 2 1 1 1 2
1 1 2 2 3 5
1 2 2 3 4 1
1 1 1 1 3 1
1 2 2 2 3 3
1 1 1 3 2 4
1 2 2 2 1 4
1 1 1 3 4 3
1 2 1 2 2 5
2 1 2 3 1 5
2 2 1 3 3 2
2 1 2 1 1 1
2 2 1 1 4 5
2 1 2 2 4 2
2 2 2 1 2 3
2 1 1 1 4 4
2 2 2 3 3 4
2 1 1 2 1 3
2 2 1 2 2 1




c1 c2 c3 c4 c5 c6


10 10 10 7 5 4
10 10 10 7 5 4

6 5 4
5 4

4




TABLE A13. EA(20, 24314151)




1 1 2 2 2 3 3
1 2 1 2 1 1 3
1 1 2 1 3 1 2
1 2 1 2 3 4 4
1 1 2 1 1 4 1
1 2 1 1 2 3 2
1 1 1 2 2 4 5
1 2 2 1 3 2 5
1 1 2 2 1 2 4
1 2 1 1 1 2 1
2 1 2 2 2 2 2
2 2 2 1 1 3 4
2 1 1 1 3 2 3
2 2 2 1 2 4 3
2 1 1 2 3 3 1
2 2 2 2 3 3 5
2 1 1 1 1 1 5
2 2 2 2 2 1 1
2 1 1 1 2 1 4
2 2 1 2 1 4 2




c1 c2 c3 c4 c5 c6 c7


10 10 10 10 7 5 4
10 10 10 10 7 5 4

6 5 4
5 4

4
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TABLE A14. EA(28, 236171)




1 1 1 2 2
1 2 2 4 3
1 1 1 4 6
1 2 1 3 7
1 1 1 6 1
1 2 2 6 3
1 1 2 5 5
1 2 1 2 4
1 1 1 1 7
1 2 2 3 2
1 1 2 3 4
1 2 2 2 1
1 1 2 1 5
1 2 1 5 6
2 1 2 4 2
2 2 1 6 5
2 1 2 3 1
2 2 2 1 6
2 1 1 5 4
2 2 2 4 7
2 1 1 2 3
2 2 1 4 5
2 1 2 6 6
2 2 2 1 4
2 1 1 3 3
2 2 1 5 2
2 1 2 2 7
2 2 1 1 1




c1 c2 c3 c4 c5


14 14 14 5 4
14 14 14 5 4

5 4
5 4
4 4
4 4

4




TABLE A15. EA(28, 246171)




1 1 2 2 5 7
1 2 2 1 6 3
1 1 2 2 2 6
1 2 1 2 4 4
1 1 2 2 1 3
1 2 1 1 3 5
1 1 2 1 1 5
1 2 2 2 3 4
1 1 1 1 4 1
1 2 1 2 2 7
1 1 1 1 2 2
1 2 2 1 6 1
1 1 1 2 3 2
1 2 1 1 4 6
2 1 1 1 2 3
2 2 1 1 1 7
2 1 2 1 4 7
2 2 1 2 1 1
2 1 1 1 5 4
2 2 2 1 2 3
2 2 2 2 2 5
2 1 2 1 1 4
2 2 2 2 4 2
2 1 1 2 6 6
2 2 2 1 5 2
2 1 2 2 3 1
2 2 2 1 3 6
2 1 1 2 6 5
2 2 1 2 5 3




c1 c2 c3 c4 c5 c6


14 14 14 14 5 4
14 14 14 14 5 4

5 4
5 4
4 4
4 4

4
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TABLE A16. EA(21, 316171)




1 1 4
1 2 5
1 3 1
1 4 6
1 5 3
1 6 2
1 1 7
2 2 2
2 3 7
2 4 3
2 5 5
2 6 1
2 1 6
2 2 4
3 3 2
3 4 5
3 5 4
3 6 7
3 1 3
3 2 1
3 3 6




c1 c2 c3




7 4 3
7 4 3
7 4 3

3 3
3 3
3 3

3




TABLE A17. EA(24, 416171)




1 1 1
1 2 3
1 3 7
1 4 5
1 5 6
2 1 6
2 2 1
2 3 4
2 4 7
2 5 2
2 6 3
3 1 4
3 2 2
3 3 3
3 4 1
3 5 5
3 6 7
4 1 2
4 2 6
4 3 1
4 4 4
4 5 3
4 6 5




c1 c2 c3


6 4 4
6 4 4
6 4 4
6 4 3

4 3
4 3

3
3
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TABLE A18. EA(24, 516171)




1 1 6
2 1 3
3 1 2
4 1 7
5 2 2
1 2 1
2 2 7
3 2 3
4 3 2
5 3 6
1 3 3
2 3 5
3 4 1
4 4 5
5 4 4
1 4 2
2 5 4
3 5 5
4 5 1
5 5 3
1 6 4
2 6 1
3 6 7
4 6 6




c1 c2 c3




5 4 4
5 4 4
5 4 4
5 4 3
4 4 3

4 3
3




TABLE A19. EA(24, 31516171)




1 4 1 3
1 1 2 7
1 5 3 5
1 3 4 6
1 1 5 3
1 4 6 4
1 2 1 1
1 3 2 2
2 1 3 2
2 4 4 2
2 2 5 7
2 3 6 1
2 1 1 4
2 4 2 5
2 2 3 6
2 5 4 3
3 3 5 5
3 1 6 6
3 5 1 7
3 5 2 1
3 3 3 3
3 2 4 4
3 4 5 1
3 2 6 2




c1 c2 c3 c4


8 5 4 4
8 5 4 4
8 5 4 4

5 4 3
4 4 3

4 3
3
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TABLE A20. EA(20, 41516171)




1 1 2 3
1 2 5 6
1 3 6 7
1 4 3 5
1 5 1 2
2 1 1 4
2 2 6 5
2 3 4 6
2 4 2 2
2 5 3 1
3 1 4 2
3 2 2 1
3 3 1 3
3 4 5 4
3 5 6 6
4 1 4 7
4 2 3 3
4 3 2 4
4 4 1 1
4 5 4 5




c1 c2 c3 c4


5 4 4 3
5 4 4 3
5 4 3 3
5 4 3 3

4 3 3
3 3

2
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