
1

CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu

2

Schedule

• 12/5, 12/7: Machine learning (classification, regression,

clustering, deep learning(neural networks))

• 12/7: Project presentations and class project due

– Project code due tonight 12/5 at 12am on Moodle.

• Final exam on 12/14

– 12pm in GL-139

• Evaluation

– Log on to MyFIU portal at https://my.fiu.edu.

– Click on SPOTs.

– Select the course from the list of SPOTs.

– Click on the instructor's name.

– You will now be on the form and can share your perceptions and type

comments.

https://my.fiu.edu/

3

Announcements

• HW4 (final homework assignment) was due Friday

12/1 on Moodle

• Project final paper due 12/7: 2-4 page paper in pdf

• Project presentations: ~2-3 minutes each

– Ok for just one student to present from a group of 2-3

4

Machine learning

• An agent is learning if it improves its performance on

future tasks after making observations about the world.

Learning can range from the trivial, as exhibited by

jotting down a phone number, to the profound, as

exhibited by Albert Einstein, who inferred a new

theory of the universe.

• We will start by concentrating on one class of learning

problem, which seems restricted but actually has vast

applicability: from a collection of input-output pairs,

learn a function that predicts the output for new inputs.

5

Machine learning

• Why would we want an agent to learn? If the design of

the agent can be improved, why wouldn’t the designers

just program in that improvement to begin with? There

are three main reasons.

6

Machine learning

• First, the designers cannot anticipate all possible

situations that the agent might find itself in. For

example, a robot designed to navigate mazes must

learn the layout of each new maze it encounters.

7

Machine learning

• Second, the designers cannot anticipate all changes

over time; a program designed to predict tomorrow’s

stock market prices must learn to adapt when

conditions change from boom to bust.

8

Machine learning

• Third, sometimes human programmers have no idea

how to program a solution themselves. For example,

most people are good at recognizing the faces of family

members, but even the best programmers are unable to

program a computer to accomplish that task, except by

using learning algorithms.

9

Supervised learning

• The task of supervised learning is this: Given a training set of

N example input-output pairs (x1, y1),(x2, y2),…,(xN, yN),

• Where each yj was generated by an unknown function y = f(x),

discover a function h that approximates the true function f.

• Example: xi, can be True/False for whether email says “Prize” in

it, and yi can be True/False for whether or not it is Spam.

• x and y can be any value, they need not be numbers.

– E.g., x can be {red, green, blue} for jacket color, and y can be price.

• The function h is a hypothesis. Learning is a search through the

space of possible hypotheses for one that will perform well,

even on new examples beyond the training set.

10

Supervised learning

• To measure the accuracy of a hypothesis we give it a test

set of examples that are distinct from the training set.

– What would happen if we tested on the examples that were

trained on?

• We say a hypothesis generalizes well if it correctly

predicts the value of y for novel examples. Sometimes

the function f is stochastic—it is not strictly a function of

x, and what we have to learn is a conditional probability

distribution, P(Y|x).

11

Supervised learning

• When the output y is one of a finite set of values (such as

sunny, cloudy, or rainy), the learning problem is called

classification, and is called Boolean or binary

classification if there are only two values. When y is a

number (such as tomorrow’s temperature), the learning

problem is called regression. (Technically, solving a

regression problem is finding a conditional expectation or

average value of y, because the probability that we have

found exactly the right real-valued number for y is 0).

12

Supervised learning

13

Supervised learning

• The figure shows a familiar example: fitting a function of a single variable to

some data points. The examples are points in the (x,y) plane, where y = f(x).

We don’t know what f is, but we will approximate it with a function h

selected from a hypothesis space, H, which for this example we will take to

be the set of polynomials such as x5 + 3x2 + 2. Figure a shows some data with

an exact fit by a straight line (the polynomial 0.4x + 3). The line is called a

consistent hypothesis because it agrees with all the data. Figure b shows a

high-degree polynomial that is also consistent with all the data. This

illustrates a fundamental problem in inductive learning: how do we choose

from among multiple consistent hypotheses? The answer is to prefer the

simplest hypothesis consistent with the data. This principle is called

Ockham’s razor, after the 14th-century English philosopher William of

Ockham, who used it to argue sharply against all sorts of complications.

Defining simplicity is not easy, but it seems clear that a degree-1 polynomial

is simpler than a degree-7 polynomial, and thus (a) should be preferred to (b).

We will make this intuition more precise later.

14

Supervised learning

• Figure c shows a second data set. There is no consistent straight

line for this data set; in fact, it requires a degree-6 polynomial for

an exact fit. There are just 7 data points, so a polynomial with 7

parameters does not seem to be finding any pattern in the data and

we do not expect it to generalize well. A straight line that is not

consistent with any of the data points, but might generalize fairly

well for unseen values of x, is also shown in c. In general, there is

a tradeoff between complex hypotheses that fit the training data

well and simpler hypotheses that may generalize better. In figure

d we expand the hypothesis space H to allow polynomials over

both x and sin(x), and find that the data in c can be fitted exactly

by a simple function of the form ax + b + csin(x). This shows the

importance of the hypothesis space.

15

Supervised learning

• In some cases, an analyst looking at a problem is willing to make

more fine-grained distinctions about the hypothesis space, to say—

even before seeing any data—not just that a hypothesis is possible

or impossible, but rather how probable it is. Supervised learning

can be done by choosing the hypothesis h* that is most probable

given the data:

– h* = argmaxh in H P(h|data)

– By Bayes’ rule, this is equivalent to h* = argmaxh in H P(data|h) P(h)

• Then we can say that the prior probability P(h) is high for a degree-

1 or -2 polynomial, lower for a degree-7 polynomial, and

especially low for degree-7 polynomials with large, sharp spikes as

in Figure 18.1(b). We allow unusual-looking functions when the

data say we really need them, but we discourage them by giving

them a low prior probability.

16

Supervised learning
• Why not let H be the class of all Java programs, or Turing

machines? After all, every computable function can be

represented y some Turing machine, and that is the best we can

do. One problem with this idea is that it does not take into

account the computational complexity of learning. There is a

tradeoff between the expressiveness of a hypothesis space and

the complexity of finding a good hypothesis within that space.

For example, fitting a straight line to data is an easy

computation; fitting high-degree polynomials is somewhat

harder; and fitting Turing machines is in general undecidable. A

second reason to prefer simple hypothesis spaces is that

presumably we will want to use h after we have learned it, and

computing h(x) when h is a linear function is guaranteed to be

fast, while computing an arbitrary Turing machine program is

not even guaranteed to terminate. For these reasons, most work

on learning has focused on simple representations.

17

Learning decision trees

• A decision tree represents a function that takes as

input a vector of attribute values and returns a

“decision”—a single output value. The input and

output values can be discrete or continuous. For now

we will concentrate on problems where the inputs have

discrete values and the output has exactly two possible

values; this is Boolean classification, where each

example input will be classified as true (a positive

example) or false (a negative example).

18

Decision trees

• A decision tree reaches its decision by performing a

sequence of tests. Each internal node in the tree

corresponds to a test of the value of one of the input

attributes, Ai, and the branches from the node are

labeled with the possible values of the attribute, Ai =

vik. Each leaf node in the tree specifies a value to be

returned by the function. The decision tree

representation is natural for humans; indeed, many

“How To” manuals (e.g., for car repair) are written

entirely as a single decision tree stretching over

hundreds of pages.

19

Decision tree

20

Decision trees
• As an example, we will build a decision tree to decide whether

to wait for a table at a restaurant. The aim here is to learn a

definition for the goal predicate WillWait. First we list the

attributes that we will consider as part of the input:

– Alternate: whether there is a suitable alternative restaurant nearby.

– Bar: whether the restaurant has a comfortable bar area to wait in.

– Fri/Sat: true on Fridays and Saturdays.

– Hungry: whether we are hungry.

– Patrons: how many people are in the restaurant (values are None, Some,

and Full).

– Price: the restaurant’s price range ($, $$, $$$).

– Raining: whether it is raining outside.

– Reservation: whether we made a reservation.

– Type: the kind of restaurant (French, Italian, Thai, or burger).

– WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60,

or >60).

21

Decision trees

• Note that every variable has a small set of possible

values; the value of WaitEstimate, for example, is not

an integer, rather it is one of the four discrete values 0-

10, 10-30, 30-60, or >60. The decision tree usually

used by one of us for this domain is shown in Figure

18.2. Notice that the tree ignores the Price and Type

attributes. Examples are processed by the tree starting

at the root and following the appropriate branch until a

leaf is reached. For instance, an example with Patrons

= Full and WaitEstimate = 0-10 will be classified as

positive (i.e., yes, we will wait for a table).

22

Decision trees

• An example for a Boolean decision tree consists of an

(x,y) pair, where x is a vector of values for the input

attributes, and y is a single Boolean output value. A

training set of 12 examples is shown in Figure 18.3.

The positive examples are the ones in which the goal

WillWait is true (x1, x3,…); the negative examples are

the ones in which it is false (x2, x5,…).

23

Decision tree

24

Decision trees

• Consider the set of all Boolean functions on n attributes. How

many different functions are in this set? This is just the number

of different truth tables that we can write down, because the

function is defined by its truth table. A truth table over n

attributes has 2n rows, one for each combination of values of the

attributes. We can consider the “answer” column of the table as

a 2n-bit number that defines the function. That means that there

are 22^n different functions (and there will be more than that

number of trees, since more than one tree can compute the same

function). This is a scary number. For example, with just the ten

Boolean attributes of our restaurant problem there are 21024-bit,

or about 10308, different functions to choose from, and for 20

attributes there are over 10300,000. We will need some ingenious

algorithms to find good hypotheses in such a large space.

25

Decision trees

• We want a tree that is consistent with the examples and is as

small as possible. Unfortunately, no matter how we measure

size, it is an intractable problem to find the smallest consistent

tree; there is no way to efficiently search through the 22^n trees.

With some simple heuristics, however, we can find a good

approximate solution: a small (but not smallest) consistent tree.

The DECISION-TREE-LEARNING ALGORITHM adopts a

greedy divide-and-conquer strategy; always test the most

important attribute first. This test divides the problem up into

smaller subproblems that can then be solved recursively. By

“most important attribute,” we mean the one that makes the

most difference to the classification of an example. That way,

we hope to get to the correct classification with a small number

of tests, meaning that all paths in the tree will be short and the

tree as a whole will be shallow.

26

Decision trees

• Figure 18.4(a) shows that Type is a poor attribute, because it

leaves us with four possible outcomes, each of which has the

same number of positive as negative examples. On the other

hand, in (b) we see that Patrons is a fairly important attribute,

because if the value is None or Some, then we are left with

example sets for which we can answer definitively (No and Yes,

respectively). If the value is Full, we are left with a mixed set of

examples. In general, after the first attribute test splits up the

examples, each outcome is a new decision tree problem in itself,

with fewer examples and one less attribute. There are four cases

to consider for these recursive problems:

27

Decision trees

1. If the remaining examples are all positive (or all negative), then we are

done: we can answer Yes or No. Figure 18.4(b) shows examples of this

happening in the None and Some branches.

2. If there are some positive and some negative examples, then choose the best

attribute to split them. Figure 18.4(b) shows Hungry being used to split the

remaining examples.

3. If there are no examples left, it means that no example has been observed

for this combination of attribute values, and we return a default value

calculated from the plurality classification of all the examples that were

used in constructing the node’s parent. These are passed along in the

variable parent_examples.

4. If there are no attributes left, but both positive and negative examples, it

means that these examples have exactly the same description., but different

classifications. This can happen because there is an error or noise in the

data; because the domain is nondeterministic; or because we can’t observe

an attribute that would distinguish the examples. The best we can do is

return the plurality classification of the remaining examples.

28

Decision tree learning algorithm

• The DECISION-TREE-LEARNING algorithm is shown in

Figure 18.5. Note that the set of examples is crucial for

constructing the tree, but nowhere do the examples appear in the

tree itself. A tree consists of just tests on attributes in the interior

nodes, values of attributes on the branches, and output values on

the leaf nodes. The output of the learning algorithm on our

sample training set is shown in Figure 18.6.

29

Decision tree

30

Decision trees
• The tree is clearly different from the original tree shown in Figure

18.2. One might conclude that the learning algorithm is not doing

a very good job of learning the correct function. This would be the

wrong conclusion to draw, however. The learning algorithm looks

at the examples, not at the correct function, and in fact, its

hypothesis not only is consistent with all the examples, but is

considerably simpler than the original tree! The learning algorithm

has no reason to include tests for Raining and Reservation,

because it can classify all the examples without them. It has also

detected an interesting and previously unsuspected pattern: the

first author will wait for Thai food on weekends. It is also bound

to make some mistakes for cases where it has seen no examples.

For example, it has never seen a case where the wait is 0-10

minutes but the restaurant is full. In that case it says not to wait

when Hungry is false, but I would certainly wait. With more

training examples the learning program could correct this mistake.

31

Decision tree algorithm

32

Decision tree from 12-example

training set

33

Decision tree

• We note there is a danger of over-interpreting the tree

that the algorithm selects. When there are several

variables of similar importance, the choice between

them is somewhat arbitrary: with slightly different

input examples, a different variable would be chosen to

split on first, and the whole tree would look completely

different. The function computed by the tree would still

be similar, but the structure of the tree can vary widely.

34

Learning curves

• We can evaluate the accuracy of a learning algorithm with a

learning curve, as shown in Figure 18.7. We have 100

examples at our disposal, which we split into a training and a

test set. We learn a hypothesis h with the training set and

measure its accuracy with the test set. We do this starting with a

training set of size 1 and increasing one at a time up to size 99.

For each size we actually repeat the process of randomly

splitting 20 times, and average the results of the 20 trials. The

curve shows that as the training size grows, the accuracy

increases. (For this reason, learning curves are also called happy

graphs.) In this graph we reach 95% accuracy, and it looks like

the curve might continue to increase with more data.

35

Learning curve

36

Choosing attribute tests

• The greedy search used in decision tree learning is

designed to approximately minimize the depth of the

final tree. The idea is to pick the attribute that goes as

far as possible toward providing an exact classification

of the examples. A perfect attribute divides the

examples into sets, each of which are all positive or all

negative and thus will be leaves of the tree. The

Patrons attribute is not perfect, but it is fairly good. A

really useless attribute, such as Type, leaves the

example sets with roughly the same proportion of

positive and negative examples as the original set.

37

Choosing attribute tests

• All we need, then, is a formal measure of “fairly good”

and “really useless” and we can implement the

IMPORTANCE function of Figure 18.5. We will use

the notion of information gain, which is defined in

terms of entropy, the fundamental quantity in

information theory.

38

Choosing attribute tests

• Entropy is a measure of the uncertainty of a random variable;

acquisition of information corresponds to a reduction in entropy.

A random variable with only one value—a coin that always

comes up heads—has no uncertainty and thus its entropy is

defined as zero; this, we gain no information by observing its

value. A flip of a fair coin is equally likely to come up heads or

tails, 0 or 1, and we will soon show that this counts as “1 bit” of

entropy. The roll of a fair four-sided die has 2 bits of entropy,

because it takes two bits to describe one of four equally probable

choices. Now consider an unfair coin that comes up heads 99%

of the time. Intuitively, this coin has less uncertainty than the

fair coin—if we guess heads we’ll be wrong only 1% of the

time—so we would like it to have an entropy measure that is

close to zero, but positive.

39

Choosing attribute tests

• In general, the entropy of a random variable V with

values vk, each with probability P(vk), is defined as

Entropy: H(V) = Σk P(vk) log2 (1/ P(vk))

= -Σk P(vk) log2 (P(vk))

• We can check that the entropy of a fair coin flip is

indeed 1 bit: H(Fair) = -(0.5 log(0.5) + 0.5 log(0.5)) = 1.

• If the coin is loaded to give 99% heads, we get

H(Loaded) = -(0.99 log 0.99 + 0.01 log 0.01 ~= 0.08 bits.

40

Choosing attribute tests

• It will help to define B(q) as the entropy of a Boolean random

variable that is true with probability q:

– B(q) = -(q log q + (1-q) log(1-q))

• Thus, H(Loaded) = B(0.99) ~= 0.08. Now let’s get back to

decision tree learning. If a training set contains p positive

examples and n negative examples, then the entropy of the goal

attribute on the whole set is H(Goal) = B(p/(p+n)).

• The restaurant training set in Figure 18.3 has p = n = 6, so the

corresponding entropy is B(0.5) or exactly 1 bit. A test on a

single attribute A might give us only part of this 1 bit. We can

measure exactly how much by looking at the entropy remaining

after the attribute test.

41

Choosing attribute tests

• An attribute A with d distinct values divides the training set E

into subsets E1,…, Ed. Each subset Ek has pk positive examples

and nk negative examples, so if we go along that branch, we will

need an additional B(pk /(pk + nk)) bits of information to answer

the question. A randomly chosen example from the training set

has the kth value for the attribute with probability (pk +

nk)/(p+n), so the expected entropy remaining after testing

attribute A is

– Remainder(A) = Σd
k=1 (pk + nk)/(p+n) B(pk)/(pk + nk)

• The information gain from the attribute test on A is

the expected reduction in entropy:

Gain(A) = B(p/(p+n)) – Remainder(A).

42

Choosing attribute tests

• In fact Gain(A) is just what we need to implement the

IMPORTANCE function. Returning to the attributes

considered in Figure 18.4, we have

– Gains(Patrons) = 1 – [2/12 B(0/2) + 4/12 B(4/4) + 6/12

B(2/6)] ~= 0.541 bits.

– Gain(Type) = 1 – [2/12 B(1/2) + 2/12 B(1/2) + 4/12 B(2/4) +

4/12 B(2/4)] = 0 bits.

• This confirms our intuition that Patrons is a better

attribute to split on. In fact, Patrons has the maximum

gain of any of the attributes and would be chosen by

the decision-tree learning algorithm as the root.

43

Generalization and overfitting

• On some problems, the DECISION-TREE-LEARNING algorithm will

generate a large tree when there is actually no pattern to be found. Consider the

problem of trying to predict whether the roll of a die will come up as 6 or not.

Suppose that experiments are carried out with various dice and that the

attributes describing each training example include the color of the die, its

weight, the time when the roll was done, and whether the experiments had

their fingers crossed. If the dice are fair, the right thing to learn is a tree with a

single node that says “no.” But the DECISION-TREE-LEARNING algorithm

will seizes on any pattern it can find in the input. If it turns out that there are 2

rolls of a 7-gram blue die with fingers crossed and they both come out 6, then

the algorithm may construct a path that predicts 6 in that case. This problem is

called overfitting. A general phenomenon, overfitting occurs with all types of

learners, even when the target function is not at all random. In Figure 18.1(b)

and (c) we saw polynomial functions overfitting the data. Overfitting becomes

more likely as the hypothesis space and the number of input attributes grows,

and less likely as we increase the number of training examples.

44

Generalization and overfitting

• For decision trees, a technique called decision tree pruning

combats overfitting. Pruning works by eliminating nodes that

are not clearly relevant. We start with a full tree, as generated by

DECISION-TREE-LEARNING. We then look at a test node

that has only leaf nodes as descendants. If the test appears to be

irrelevant—detecting only noise in the data—then we eliminate

the test, replacing it with a leaf node. We repeat this process,

considering each test with only leaf descendants, until each one

has either been pruned or accepted as is.

45

Generalization and overfitting

• The question is, how do we detect that a node is testing an

irrelevant attribute? Suppose we are at a node consisting of p

positive and n negative examples. If the attribute is irrelevant,

we would expect that it would split the examples into subsets

that each have roughly the same proportion of positive examples

as the whole set, p/(p+n), and so the information gain will be

close to zero. Thus, the information gain is a good clue to

irrelevance. Now the question is, how large a gain should we

require in order to split on a particular attribute?

46

Generalization and overfitting

• We can answer this question by using a statistical significance

test. Such a test begins by assuming that there is no underlying

pattern (the so-called null hypothesis). Then the actual data are

analyzed to calculate the extent to which they deviate from a

perfect absence of pattern. If the degree of deviation is

statistically unlikely (usually taken to mean a 5% probability or

less), then that is considered to be good evidence for the

presence of a significant pattern in the data. The probabilities are

calculated from standard distributions of the amount of deviation

one would expect to see in random sampling.

– Can use various statistical tests to perform the pruning, such as χ2-test.

47

Generalization and overfitting

• With pruning, noise in the examples can be tolerated.

Errors in the example’s label (e.g., an example (x,Yes)

that should be (x, No)) give a linear increase in

prediction error, whereas errors in the descriptions of

examples (e.g., Price = $ when it was actually Price =

$$) have an asymptotic effect that gets worse as the

tree shrinks down to smaller sets. Pruned trees perform

significantly better than unpruned trees when the data

contain a large amount of noise. Also, the pruned trees

are often much smaller and hence easier to understand.

48

Decision tree extensions

• Decision tree methodology can be extended in many

directions to deal with:

– Missing data

– Multivalued attributes

– Continuous and integer-valued input attributes

– Continuous-valued output attributes (regression tree rather

than classification tree. A regression tree has at each leaf a

linear function of some subset of numerical attributes, rather

than a single value).

49

Broad applicability of decision trees

• A decision-tree learning system for real-world applications must

be able to handle all of these problems. Handling continuous-

valued variables is especially important, because both physical

and financial processes provide numerical data. Several

commercial packages have been built that meet these criteria,

and they have been used to develop thousands of fielded

systems. In many areas of industry and commerce, decision trees

are usually the first method tried when a classification method is

to be extracted from a data set. One important property of

decision trees is that it is possible for a human to understand the

reason for the output of the learning algorithm. (Indeed, this is a

legal requirement for financial decisions that are subject to anti-

discrimination laws.) This is a property not shared by some

other representations, such as neural networks.

50

Evaluating and choosing the best hypothesis

• We want to learn a hypothesis that fits the future data best. To

make that precise we need to define “future data” and “best.”

We make the stationary assumption: that there is a probability

distribution over examples that remains stationary over time.

Each example data point (before we see it) is a random variable

Ej whose observed value ej = (xj,yj) is sampled from that

distribution, and is independent of the previous examples:

– P(Ej| Ej-1,Ej-2,…) = P(Ej)

• And each example has an identical prior probability distribution:

– P(Ej) = P(Ej-1)=P(Ej-2)=…

• Examples that satisfy these assumptions are called independent

and identically distributed or i.i.d. An i.i.d. assumption connects

the past to the future; without some such connection, all bets are

off—the future could be anything.

51

Choosing the best hypothesis
• The next step is to define “best fit.” We define the error rate of a

hypothesis as the proportion of mistakes it makes—the proportion

of times that h(x)!=y for an (x,y) example. Now, just because a

hypothesis h has low error rate on the training set does not mean

that it will generalize well. A professor knows that an exam will

not accurately evaluate students if they have already seen the

exam questions. Similarly, to get an accurate evaluation of a

hypothesis, we need to test it on a set of examples it has not seen

yet. The simplest approach is the learning algorithm produces h

and a test set on which the accuracy of h is evaluated. This

method, sometimes called holdout cross-validation, has the

disadvantage that it fails to use all the available data; if we use

half the data for the test set, then we are only training on half the

data, and we may get a poor hypothesis. On the other hand, if we

reserve only 10% of the data for the test set, then we may, by

statistical chance, get a poor estimate of the actual accuracy.

52

Cross validation

• We can squeeze more out of the data and still get an accurate

estimate using a technique called k-fold-cross-validation. The

idea is that each example serves double duty—as training data

and test data. First we split the data into k equal subsets. We

then perform k rounds of learning; on each round 1/k of the data

is held out as a test set and the remaining examples are used as

training data. The average test set score of the k rounds should

then be a better estimate than a single score. Popular values for k

are 5 and 10—enough to give an estimate that is statistically

likely to be accurate, at a cost of 5 to 10 times longer

computation time. The extreme is k = n, also known as leave-

one-out cross-validation or LOOCV.

53

Cross validation

• Despite the best efforts of statistical methodologists, users

frequently invalidate their results by inadvertently peeking at the

test data. Peeking can happen like this: A learning algorithm has

various “knobs” that can be twiddled to tune its behavior—for

example, various different criteria for choosing the next attribute

in decision tree learning. The researcher generates hypotheses for

various different settings of the knobs, measures their error rates

on the test set, and reports the error rate of the best hypothesis.

Alas, peeking has occurred! The reason is that the hypothesis

was selected on the basis of its test set error rate, so information

about the test set has leaked into the learning algorithm.

54

Evaluating the best hypothesis

• Peeking is a consequence of using test-set performance to both

choose a hypothesis and evaluate it. The way to avoid this is to

really hold the test set out—lock it away until you are completely

done with learning and simply wish to obtain an independent

evaluation of the final hypothesis. (And then, if you don’t like the

results … you have to obtain, and lock away, a completely new

test set if you want to go back and find a better hypothesis.) If the

test set is locked away, but you still want to measure performance

on unseen data as a way of selecting a good hypothesis, then

divide the available data (without the test set) into a training set

and a validation set. This can be used to find a good tradeoff

between hypothesis complexity and goodness of fit.

55

Model selection: Complexity versus

goodness of fit

• Earlier we showed that higher-degree polynomials can fit the

training data better, but when the degree is too high they will

overfit, and perform poorly on validation data. Choosing the

degree of the polynomial is an instance of the problem of model

selection. You can think of the task of finding the best hypothesis

as two tasks: model selection defines the hypothesis space and

then optimization finds the best hypothesis within that space. We

now explain how to select among models that are parameterized

by size. For example, with polynomials we have size = 1 for

linear functions, size = 2 for quadratics, etc. For decision trees,

the size could be the number of nodes in the tree. In all cases we

want to find the value of the size parameter that best balances

underfitting and overfitting to give the bets test set accuracy.

56

Model selection

• An algorithm to perform model selection and optimization is shown in Figure

18.8. It is a wrapper that takes a learning algorithm as an argument

(DECISION-TREE-LEARNING, for example). The wrapper enumerates

models according to a parameter, size. For each size, it uses cross validation

on Learner to compute the average error rate on the training and test sets. We

start with the smallest, simplest models (which probably underfit the data),

and iterate, considering more complex models at each step, until the models

start to overfit. In Figure 18.9 we see typical curves: the training set error

decreases monotonically (although there may in general be slight random

variation), while the validation set error decreases at first, and then increases

when the model begins to overfit. The cross-validation procedure picks the

value of size with the lowest validation set error; the bottom of the U-shaped

curve. We then generate a hypothesis of that size, using all the data (without

holding out any of it). Finally, of course, we should evaluate the returned

hypothesis on a separate test set.

57

Model selection

• This approach requires that the learning algorithm

accept a parameter, size, and deliver a hypothesis of

that size. As we said, for decision tree learning the size

can be the number of nodes (or depth of the tree). We

can modify DECISION-TREE-LEARNER so that it

takes the number of nodes as an input, builds the tree

breadth-first rather than depth-first (but at each level it

still chooses the highest gain attribute first), and stops

when it reaches the desired number of nodes.

58

Algorithm for model selection

59

Error rates on training and validation data

60

Regression and classification with linear models

• Now it is time to move on from decision trees to a

different hypothesis space, one that has been used for

hundreds of years: the class of linear functions of

continuous-valued inputs. We’ll start with the simplest

case: regression with a univariate linear function,

otherwise known as “fitting a straight line.” This can

be extended to the multivariate case as well.

61

Regression

• A univariate linear function (a straight line) with input x and

output y has the form y = w1x + w0, where 20 and 21 are real-

valued coefficients to be learned. We use the letter w because we

think of the coefficients as weights; the value of y is changed by

changing the relative weight of one term or another. We’ll define

w to be the vector [w0,w1] and define hw(x) = w1x + w0. Figure

18.13(a) shows an example of a training set of n points in the x,y

plane, each point representing the size in square feet and the price

of a house offered for sale. The task of finding the hw that best

fits these data is called linear regression. To fit a line to the data,

all we have to do is find the values of the weights [w0,w1] that

minimize the empirical loss. It is traditional to use the squared

loss function, L2, summed over all the training examples.

62

Linear regression

63

Linear regression

64

Linear regression

65

Regularization

• Regularization can be used (essentially adding a

parameter with a penalty term, e.g., for ridge

regression) in order to reduce overfitting.

66

Supervised vs. unsupervised learning

• Supervised learning is the machine learning task of inferring a

function from labeled training data. The training data consist of a

set of training examples. In supervised learning, each example is a

pair consisting of an input object (typically a vector) and a desired

output value (also called the supervisory signal). A supervised

learning algorithm analyzes the training data and produces an

inferred function, which can be used for mapping new examples.

An optimal scenario will allow for the algorithm to correctly

determine the class labels for unseen instances. This requires the

learning algorithm to generalize from the training data to unseen

situations in a "reasonable" way (see inductive bias).

– Includes classification (e.g., for decision trees) and regression.

67

Bias-variance tradeoff for supervised learning

• A first issue is the tradeoff between bias and variance. Imagine that we have

available several different, but equally good, training data sets. A learning

algorithm is biased for a particular input x if, when trained on each of these

data sets, it is systematically incorrect when predicting the correct output for

x. A learning algorithm has high variance for a particular input x if it predicts

different output values when trained on different training sets. The prediction

error of a learned classifier is related to the sum of the bias and the variance

of the learning algorithm. Generally, there is a tradeoff between bias and

variance. A learning algorithm with low bias must be "flexible" so that it can

fit the data well. But if the learning algorithm is too flexible, it will fit each

training data set differently, and hence have high variance. A key aspect of

many supervised learning methods is that they are able to adjust this tradeoff

between bias and variance (either automatically or by providing a

bias/variance parameter that the user can adjust).

68

Bias-variance tradeoff

69

Supervised learning approaches

• We covered decision trees and regression

• Boosting

• Naïve Bayes classifier (e.g., for natural language

processing)

• Nearest neighbor algorithm (“k-nn”)

• Maximum entropy classifier

• Support vector machines

• Random forests

• Many others. Python has built-in libraries and

packages for the main ones.

70

Unsupervised learning

• Unsupervised machine learning is the machine learning task of

inferring a function to describe hidden structure from

"unlabeled" data (a classification or categorization is not

included in the observations). Since the examples given to the

learner are unlabeled, there is no evaluation of the accuracy of

the structure that is output by the relevant algorithm—which is

one way of distinguishing unsupervised learning from

supervised learning and reinforcement learning.

• Approaches to unsupervised learning include:

– Clustering

– Anomaly detection

– Neural networks

– Approaches for latent variable modeling (e.g., expectation-maximization

(EM) algorithm)

71

Clustering for hurricane classification

72

Hurricane AI
• The Saffir–Simpson hurricane wind scale (SSHWS), formerly the Saffir–

Simpson hurricane scale (SSHS), classifies hurricanes – Western Hemisphere

tropical cyclones that exceed the intensities of tropical depressions and

tropical storms – into five categories distinguished by the intensities of their

sustained winds. To be classified as a hurricane, a tropical cyclone must have

maximum sustained winds of at least 74 mph (33 m/s; 64 kn; 119 km/h)

(Category 1). The highest classification in the scale, Category 5, consists of

storms with sustained winds exceeding 156 mph (70 m/s; 136 kn; 251 km/h).

• The classifications can provide some indication of the potential damage and

flooding a hurricane will cause upon landfall.

• Officially, the Saffir–Simpson hurricane wind scale is used only to describe

hurricanes forming in the Atlantic Ocean and northern Pacific Ocean east of

the International Date Line. Other areas use different scales to label these

storms, which are called "cyclones" or "typhoons", depending on the area.

• There is some criticism of the SSHS for not taking rain, storm surge, and

other important factors into consideration, but SSHS defenders say that part

of the goal of SSHS is to be straightforward and simple to understand.

73

Hurricane AI

• The scale was developed in 1971 by civil engineer Herbert

Saffir and meteorologist Robert Simpson, who at the time was

director of the U.S. National Hurricane Center (NHC).[1] The

scale was introduced to the general public in 1973,[2] and saw

widespread use after Neil Frank replaced Simpson at the helm of

the NHC in 1974.[3]

• The initial scale was developed by Saffir, a structural engineer,

who in 1969 went on commission for the United Nations to

study low-cost housing in hurricane-prone areas.[4] While

performing the study, Saffir realized there was no simple scale

for describing the likely effects of a hurricane. Mirroring the

utility of the Richter magnitude scale in describing earthquakes,

he devised a 1–5 scale based on wind speed that showed

expected damage to structures. Saffir gave the scale to the NHC,

and Simpson added the effects of storm surge and flooding.

74

AI clustering

• Cluster analysis or clustering is the task of grouping a

set of objects in such a way that objects in the same

group (called a cluster) are more similar (in some sense

or another) to each other than to those in other groups

(clusters). It is a main task of exploratory data mining,

and a common technique for statistical data analysis,

used in many fields, including machine learning,

pattern recognition, image analysis, information

retrieval, bioinformatics, data compression, and

computer graphics.

75

Clustering
• Cluster analysis itself is not one specific algorithm, but the general

task to be solved. It can be achieved by various algorithms that

differ significantly in their notion of what constitutes a cluster and

how to efficiently find them. Popular notions of clusters include

groups with small distances among the cluster members, dense

areas of the data space, intervals or particular statistical

distributions. Clustering can therefore be formulated as a multi-

objective optimization problem. The appropriate clustering

algorithm and parameter settings (including values such as the

distance function to use, a density threshold or the number of

expected clusters) depend on the individual data set and intended

use of the results. Cluster analysis as such is not an automatic task,

but an iterative process of knowledge discovery or interactive

multi-objective optimization that involves trial and failure. It is

often necessary to modify data preprocessing and model

parameters until the result achieves the desired properties.

76

K-means clustering algorithm

77

Other clustering approaches

• K-medoids

• K-medians

• Different initialization methods, e.g., kmeans++

– Typically initial cluster means are chosen at random

78

Homework for next class

• Finish final project

• Next lecture: Wrap up machine learning (neural

networks (deep learning))

• Project presentations

– 2-3 minutes each

