
IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 75 | P a g e

THE COCOMO MODEL IN SOFTWARE COST

ESTIMATION: A Review
Nivedita1, Rachna Sharma2

1M. Tech (Scholar), 2Assistant Professor

Department of computer science and Engineering, Baddi University of Emerging Sciences and Technology

Baddi, Solan (India)

Abstract – Cost estimation is set of methods to expect genuine

cost essential for software development. Since many years

software engineers have tried various process for cost
estimation, which helps them to reason schedule implications

of development, investment decisions. In this paper, we have

discussed the importance of cost estimation, software

architecture and architectural goals. In addition, we reviewed

software development life cycle, different phases of SDLC

and different SDLC based models like: waterfall, spiral, agile

model etc. Furthermore, we compared the SDLC models in

terms of their benefits and limitations. Finally, we’ve

discussed COCOMO model and levels of COCOMO and

several issue in COCOMO model. Previous research in this

area was surveyed to get better idea of cost estimation.

Keywords – COCOMO, Software Development life Cycle,

Software architecture and SDLC models.

I. INTRODUCTION

Cost estimation incorporates the strategies that assist in

anticipating the genuine and aggregate cost that will be

required for our product and is considered as one of the

perplexing and testing movement for the product

organizations. They will probably create software, which is

modest and simultaneously convey great quality.

Programming cost estimation [1] is utilized fundamentally by
framework investigators to get a guess of the basic assets

required by a specific programming venture and their

timetables.

1.1 Software Cost Estimation

Recently, Software is costlier product of computer

frameworks projects. Huge part of cost in programming

comprised of human effort and majority of cost estimation

strategies focussed on this aspect and estimated as person

months. Exact programming cost gauges are basic to the two

engineers and clients. They can be utilized for creating
demand for recommendations, contract transactions, booking,

observing and control. Perfect cost estimation is important

because:

 It can order and organize advancement ventures as for a

general strategy for success.

 It can be utilized to figure out what assets to focus on

project and accurate utilization of resources.

 It can be utilized to survey the effect of changes and support
replanting.

 Tasks management is easier and controllable with assets and

genuine requirements.

 Clients anticipate that real development expenses should

match with estimated costs.

1.2 Software Architecture
Software is crucial structure of a software framework,

discipline and documentation of those structures. These

designs are expected reason about software framework.

Figure 1.2 Architecture of Software

Every design includes programming components, relations

between them and properties of two components and relations,

[2] alongside basis for presentation and design of every

component. The design of software framework is a similitude,

practically equivalent to engineering of building. [3]

“The art or science of building: especially designing and

building habital structures" [4]. Software design settles on
basic auxiliary decisions that are expensive to change after

implementation. Software engineering decisions, additionally

named as compositional choices, incorporate particular basic

choices from conceivable outcomes in programming outline.

E.g., space shuttle launch vehicle controlling had prerequisite

Architecture Design Process

1. Understanding Problem

3. Converting the Architecture design

2. Evaluation of Architecture

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 76 | P a g e

of being quick and extremely dependable. Hence, a proper

real-time processing dialect should be picked.

1.2.1 Architectural Goals

Application design seeks to construct an extension between

business prerequisites and specialized necessities by
understanding use cases, and later discovering approaches to

actualize those utilization cases in the product. The objective

of design is to recognize the prerequisites that influence the

structure of application. Great engineering minimizes the

business dangers related with building a specialized

arrangement. A decent plan is adequately adaptable to have

the capacity to deal with common float that will happen after

some time in equipment and programming innovation, and in

client situations and prerequisites. An engineer must think

about general impact of plan choices, the inborn tradeoffs

between quality characteristics, (like, security and execution),

and tradeoffs required to address client, framework, and
business prerequisites. Architecture must:

 Expose the structure of the framework however shroud the

usage points of interest.

 Realize the majority of the utilization cases and situations.

 Try to address the prerequisites of different partners.

 Handle both useful and quality necessities.

1.3 SDLC

SDLC (Software Development Life Cycle), also known as

software development process. Its a system that explains job

execution at each step in software development process. An
international standard for software life cycle process is

ISO/IEC 12207, which aims to create high quality software

that performs all tasks necessary for development and

maintenance of software. The life cycle characterizes a

technique for enhancing the nature of programming and the

general advancement process.

Figure 1.3 a standard SDLC.

1.3.1 Phases of SDLC
Stage 1: Planning and Requirement Analysis: Prerequisite

investigation is principal step in SDLC. It is performed by
senior individuals from the group with contributions from the

client, the business division, advertise reviews and space

specialists in the business. Planning for quality confirmation

necessities and ID of risks related with the task is likewise

done in the arranging stage. The result of specialized

attainability is to characterize the different methodologies that

can be taken after to execute the undertaking effectively with
least dangers [5].

Stage 2: Defining Requirements: After analysing pre-

requisites, next step is to define the requirements at different

levels of software development and approving them from

market analysts or client. This can be done with the help of

SRS document.

Stage 3: Designing product architecture: In between the plan

stage, engineers and specialized draftsmen begin the abnormal

state outline of the product and framework to have the

capacity to convey every prerequisite. The specialized subtle

elements of the plan is talked about with the partners and

different parameters, e.g., advances to be utilized, dangers,
capacity of group, venture imperatives, time and spending

plan are assessed and after that the best outline approach is

chosen for the item.

Stages 4: Developing Product: The programming code is

generated as per DDS during this stage. On the off chance that

planning is performed in a point by point and composed way,

code age can be expert without much issue. Engineers take

after the coding rules characterized by their association and

programming apparatuses like compilers, translators,

debuggers and so on are utilized to create the code. Different

programming dialects, for example, C, C++, Pascal, Java, and
PHP are utilized for coding. The programming language is

chosen w. r. t. type of software.

Stage 4: Testing: Testing is the last period of the Software

Development Life Cycle before the product is conveyed to

clients. In this stage we watch that our product is filling in

according to our desire or not. We likewise check SRS that

product full fill the whole necessity that said by the customer

at the season of understanding.

Stage 5: Deployment and Maintenance: When programming

is finished, the product can be deployed as per customer

utilize and provide a specialized support group that care for

any after generation issues. In the event that an issue is
experienced in the generation the advancement group is

educated and relying upon how serious the issue is, it may

either require a hot-settle which is made and dispatched in a

brief timeframe or if not exceptionally extreme.

1.4 SDLC Models

Several SDLC models are:

1.4.1 Waterfall Model

Waterfall is the conventional model of SDLC. In this model

each stage is finished before going to next stage. There is no

alternative for back-pedalling in the wake of moving to next
stage. Waterfall is simple reasonable and easy to get it.

Planning

Building

Deployment

Testing

Defining

Designing

SDLC

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 77 | P a g e

Figure 1.4.1 Waterfall Model [6]

1.4.2 V Model

V Model is advance waterfall display in which testing

usefulness is included at each phase of the undertaking

improvement rather than the venture fulfilment venture which

prompts better task advancement. In this model likewise we

can't move to following stage until or unless we can't finish
the past advance.

Figure 1.4.2 V Model [5]

1.4.3 Spiral Model
Spiral model is blend of the orderly and organized

improvement which takes traits of emphasis Iterative model

and furthermore joined these preferences with the

effortlessness of the waterfall show with an extra

overwhelming danger examination highlights.

Figure 1.4.3 Spiral Model [5]

Working of the Spiral model is isolated into four stages

(recognizable proof, plan, assemble, assessment and hazard

examination) and these four stages are get rehashed until the

point that we won't get finish venture.

1.4.4 Agile Model

The light-footed model is half and half model it is utilizes

points of interest of the both iterative and incremental model

by separating programming item breaking an item into

mechanical assembly where on each cycle or emphasis, a

working model of a segment is conveyed. This model conveys
refreshed discharges and each discharge contains some

incremental updates and after consummation of every cycle

item is tried to guarantee that the cycle is satisfactory or not

Figure 1.4.4 Agile Model [5]

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 78 | P a g e

Table 1: Comparison among SDLC Models

Model Advantages Disadvantages

Waterfall
Model

 Easy to understand.

 Prevents error

propagation via

verification and
validation.

 Well defined stages.

 Less client

involvement.

 Unable to go

back to pervious

phase.

Prototype

Model

 Users/customers own

requirements.

 Instils customer

confidence that the

“right” product is
being built.

 Lack of

information

about the exact

number of

iterations.

 Premature

prototypes lack

key
consideration

like security,

fault tolerance.

Spiral

Model

 Less chances of

failure.

 Development can be

terminated at any

spiral, still working

system is available.

 High risk

analysis.

 Suitable for

bigger projects.

V – Model

 Easy to understand

and implement

 Quick error removal.

 High success rate as
compared to waterfall

model.

 Not Flexible and

rigid model.

 High risks

associated.

 Goal is not

clear.

Agile

Model

 Adaptable to changes.

 Focussed on client

feedback.



 Not feasible for

complex

projects.

 Agile works

well for small

teams.

II. LITERATURE REVIEW

Shailendra Pratap Singh, et al., (2017) [7] proposed a new

techniques are proposed to enhance the precision of cost

estimation by altering parameters of COCOMO utilizing
Homeostasis transformation based differential development

(HMBDE). The basic concern in the field of programming

advancement is estimation of the cost of programming at its

underlying period of improvement. The cost estimation

generally relies on the measure of the task, which may utilize

lines of code or capacity focuses as measurements. In

COCOMO, for the exactness of the cost estimation, cost

factors should be planned in the individual improvement

condition. The proposed strategy includes one more vector

named as Homeostasis transformation vector in the current

transformation vector to give more transfer speed to choosing

viable mutant arrangements giving a wide pursuit space to
likely arrangement. The proposed approach gives more exact

answers for control the advancement. Execution of proposed

calculation is contrasted and programming cost estimation

models. The outcome checks that our proposed HMBDE

performs superior to anything COCOMO based DE and PSO

calculation and other delicate figuring models.

Alaa F. Sheta, et al., (2006) [8] presented two new model

structures to gauge the exertion required for the advancement

of programming ventures utilizing Genetic Algorithms (GAs).

Characterizing the venture evaluated cost, term and support

exertion ahead of schedule in the advancement life cycle is a

profitable objective to be accomplished for programming
ventures. Numerous model structures developed in the

writing. These model structures consider displaying

programming exertion as a component of the created line of

code (DLOC). Building such a capacity encourages venture

directors to precisely assign the accessible assets for the

undertaking. A changed adaptation of the well-known

COCOMO display gave to investigate the impact of the

product improvement embraced strategy in exertion

calculation. The execution of the created models were tried on

NASA programming venture dataset. The created models

could give a decent estimation capacities.
Wei Lin Du, et al., (2015) [9] proposed a hybrid intelligent

model joining a neural system show coordinated with fluffy

model (neuro-fluffy model) has been utilized to enhance the

exactness of evaluating programming cost. Exact

programming advancement exertion estimation is basic to the

accomplishment of programming ventures. Albeit numerous

strategies and algorithmic models have been created and

actualized by experts, precise programming advancement

exertion forecast is as yet a testing attempt in the field of

programming building, particularly in dealing with

unverifiable and loose information sources and collinear

qualities. The execution of the proposed demonstrate is
surveyed by planning and leading assessment with distributed

task and mechanical information. Results have demonstrated

that the proposed show exhibits the capacity of enhancing the

estimation exactness by 18% in view of the Mean Magnitude

of Relative Error (MMRE) measure.

D. Sivakumar, et al., (2017) [10] analyzed the COCOMO II

show cost drivers and the effect of some predefined cost

drivers in evaluating exertion and cost of programming

ventures. The exact estimation technique for the most part

depends on cost drivers in evaluating exertion and cost of

programming ventures. The cost drivers and the determination
of extents for a specific cost driver won't be same for all

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 79 | P a g e

models and circumstances. The assortment of cost drivers and

its properties in the standard COCOMO II show in perspective

of late situation is accomplished more spotlight on look into

intrigue. This review ranges cost drivers and its esteems are

balanced by the current modern circumstances and necessities.

The quantity of cost drivers is decreased to 13 and the
endeavors are evaluated utilizing this recently adjusted cost

drivers. This model demonstrated its enhanced productivity in

estimation with diminishment in level of MRE and MMR

esteems.

Meiyappan Nagappan, et al., (2016) [11] examined

momentum and future research slants inside the structure of

the different stages in the product improvement life-cycle:

prerequisites (counting non-useful), outline and advancement,

testing, and support. There has been enormous development in

the utilization of cell phones in the course of the most recent

couple of years. This development has energized the

advancement of a great many programming applications for
these cell phones regularly called as 'applications'. Current

appraisals show that there are a huge number of versatile

application engineers. Subsequently, lately, there has been an

expanding measure of programming designing examination

led on portable applications to help such versatile application

engineers. While there are a few non-practical prerequisites,

we center on the subjects of vitality and security in our paper,

since portable applications are not really worked by

substantial organizations that can stand to get specialists for

illuminating these two themes. For a similar reason we

likewise examine the adapting parts of a portable application
toward the finish of the paper. For every theme of intrigue, we

first present the current advances done in these stages and

afterward we introduce the difficulties show in ebb and flow

work, trailed by the future openings and the dangers exhibit in

seeking after such research.

III. COCOMO MODEL

Constructive Cost model was produced by Barry W Boehm in

1981. It is an algorithmic cost display. Algorithmic cost

display is produced considering relating the present task to

past undertakings. It relies upon recorded data. COCOMO

relies upon size of the venture. The measure of the
undertaking may change contingent on the capacity focuses

[12].

COCOMOs are of 3 types:

 Basic COCOMO: Its used for relatively small projects.

Little cost is included. Cost drivers mainly depend on size

of project.

 Intermediate COCOMO: used for medium size project.

Cost drivers are based on database size, execution, product

reliability, etc.

 Advanced COCOMO: beneficial in bigger projects with

large teams. Cost drivers based on analysis, requirement,
design, testing and maintenance.

Table 2. Constant Value of COCOMO

 Constants

Project modes A B C D

Organic project

mode
2.4 1.05 2.5 0.38

Semi-detached

project mode
3.0 1.12 2.5 0.35

Embedded

project mode
3.6 1.20 2.5 0.32

COCOMO has been utilized seriously by programming chiefs

and programming architects to help their product cost and

estimation process because of the capacity to perform

estimations with minimal master learning and experience.

Figure 3.1 COCOMO Model [13]

The model has likewise helped programming supervisors and

programming engineers in settling on basic advancement

choices, for example, transactions on necessity changes,

settling on compositional choices, perform chance

administration choices or process change choices [13].

The major benefit of COCOMO Model is its simple to

estimate cost whereas major drawback is that estimation in

COCOMO Model is done at early stages of software

development, which may lead to estimation failures.

IV. ISSUES IN COCOMO MODEL
COCOMO is cost estimation model of software development.

The model utilize regression equation to estimation cost

utilizing heuristic information with present and future

qualities. COCOMO’s estimation begins from the designing

stage to combination period of cost and schedule of project. A

separate estimation model ought to be required for residual

stage. So COCOMO model isn't precise. A disentangled

function point can be utilized for team and project size

estimation. Such estimation is performed after creating design.

Numerous endeavours and cost models depends on LOC,

function point conversions are necessary. Requirement of

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 80 | P a g e

research data is less in contrast to LOC. Hence, function point

is more accurate than COCOMO.

V. CONCLUSION

Cost estimation is set of techniques to expect bona fide cost

basic for programming improvement. Since numerous years
programming engineers have attempted different process for

cost estimation, which encourages them to reason plan

ramifications of advancement, speculation choices. In this

paper, we have talked about the significance of cost

estimation, programming engineering and compositional

objectives. What's more, we explored programming

advancement life cycle, distinctive periods of SDLC and

diverse SDLC based models like: waterfall, winding, light-

footed model and so forth. Moreover, we thought about the

SDLC models as far as their advantages and impediments. At

last, we've talked about COCOMO model and levels of

COCOMO and a few issue in COCOMO demonstrate. Past
research here was studied to show signs of improvement

thought of cost estimation.

VI. REFERENCES

[1]. Pressman, R. S. (2005). Software engineering: a

practitioner's approach. Palgrave Macmillan.

[2]. Clements, P., Garlan, D., Little, R., Nord, R., & Stafford,

J. (2003, May). Documenting software architectures:

views and beyond. In Proceedings of the 25th

International Conference on Software Engineering (pp.
740-741). IEEE Computer Society.

[3]. Perry, D. E., & Wolf, A. L. (1992). Foundations for the

study of software architecture. ACM SIGSOFT Software

engineering notes, 17(4), 40-52.

[4]. Merriam-Webster, Inc. (1983). Webster's ninth new

collegiate dictionary. Merriam-Webster.

[5]. Rani, S. B. A. S. U. (2017). A detailed study of Software

Development Life Cycle (SDLC) Models. International

Journal Of Engineering And Computer Science, 6(7).

[6]. Bassil, Y. (2012). A simulation model for the waterfall

software development life cycle. arXiv preprint

arXiv:1205.6904.
[7]. Singh, S. P., & Kumar, A. (2017, January). Software cost

estimation using homeostasis mutation based differential

evolution. In Intelligent Systems and Control (ISCO),

2017 11th International Conference on (pp. 173-181).

IEEE.

[8]. Sheta, A. F. (2006). Estimation of the COCOMO model

parameters using genetic algorithms for NASA software

projects. Journal of Computer Science, 2(2), 118-123.

[9]. Du, W. L., Capretz, L. F., Nassif, A. B., & Ho, D.

(2015). A hybrid intelligent model for software cost

estimation. arXiv preprint arXiv:1512.00306.

[10]. Sivakumar, D., & Janaki, K. (2017). Enhancing the

Software Effort Prediction Accuracy Using Reduced

Number of Cost Estimation Factors with Modified

COCOMO II Model.

[11]. Nagappan, M., & Shihab, E. (2016, March). Future

trends in software engineering research for mobile apps.
In Software analysis, evolution, and reengineering

(SANER), 2016 IEEE 23rd International Conference

on (Vol. 5, pp. 21-32). IEEE.

[12]. Li, J., Ruhe, G., Al-Emran, A., & Richter, M. M. (2007).

A flexible method for software effort estimation by

analogy. Empirical Software Engineering, 12(1), 65-106.

[13]. Boehm, B., Valerdi, R., Lane, J., & Brown, A. W.

(2005). COCOMO suite methodology and

evolution. CrossTalk, 18(4), 20-25.

