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Motivation

An adversary attacks a water
distribution network

by introducing contaminants.

by disabling sensing devices.

A network can be made resilient
against attacks by

by adding more sensors,

by introducing different types of
sensing devices,

by increasing protection &
security of devices.
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Motivation

What is the most effective
strategy to make the network
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Contributions

Cyber-physical attacks in smart water-distribution network.

To improve resilience against attacks, an optimal defense
strategy that combines

redundancy, diversity, and hardening approaches.

Models

System model, security investment model, and cyber-physical
attack model.

Problem formulation

Preliminary results and numerical evaluation
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Cyber-Physical Attack in Smart Water-Distribution
Network

Physical attack

Contaminating drinking water

Example: during the 2016
Olympic games, a terrorist
group planned a biochemical
attack on a water-reservoir.

Even without attacks, providing
clean drinking water is critical for
public health and safety.

Cyber attack

Disabling network monitoring
system

Example: disabling sensor
devices.
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Redundancy, Diversity, and Hardening

Redundancy

example: deploying additional sensor devices.

adversary has to compromise more devices.

Diversity

example: using multiple software/hardware platforms.

single, common vulnerability cannot be exploited to compromise all
devices.

Hardening

example: penetration testing, vulnerability discovery for platforms and
tamper resistant hardware for devices.

devices are harder to compromise for adversary.
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Optimal Strategy to Resilience

Each of these approaches
has been extensively
studied in isolation.

Example: sensor
placement, investment
into software security
etc.

Optimal Strategy

How to combine canonical approaches optimally to
improve network resilience against attacks?
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Model
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System Model

Water network G (V ,E )

links E model pipes

nodes V model junctions of
pipes, reservoirs, tanks,
consumers, etc.

every consumer node v has a
water-consumption value Uv

Sensor devices S

each sensor s ∈ S is deployed at node ls ∈ V ,

every sensor continuously monitors the water at its node, and raises
an alarm when the concentration of a contaminant reaches a
threshold level τ .
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Security Investment Model – Redundancy

Minimum number of sensors (for adequate monitoring without
attacks) = Smin

Level of redundancy: R = |S | − Smin

Redundancy investment = CR · R
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Security Investment Model – Diversity

Set of implementation types of sensors = T

Implementation type of sensor s is ts ∈ T .

Level of diversity: D = |T | − 1

Diversity investment = CD · D
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Security Investment Model – Diversity
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Security Investment Model – Hardening

Investment into hardening implementation type t is ht .

Investment into hardening sensor s is hs .

Hardening investment: H =
∑
t∈T

ht +
∑
s∈S

hs
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Physical-Attack Model

Water-supply contamination
adversary can introduce a
contaminant at one of the
introduction points P
discrete-time spread model:
from introduction point p ∈ P, after
n time steps, the concentration at
node v is Cp(n, v)

Detection time Lp

Lp(S) = min {n ∈ N | ∃s ∈ S : Cp(n, ls) ≥ τ}
detection threshold

Physical impact Ip

Ip(S) =
Lp(S)∑
n=1

∑
v∈V

Uv · Cp(n, v) concentration

water consumption
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Cyber-Attack Model

Adversary finds a common vulnerability in implementation type t ∈ T

Pr [finding a vulnerability in type t] = Vt · e−ht/CT

H

all devices of this type are disabled by the adversary

Adversary compromises each sensor device s ∈ S with probability

Pr [compromising sensor s] = Vs · e−hs/CS

H

each compromised device is disabled by the adversary

SA is the set of sensors that have not been disabled, then

Expected impact of cyber-physical attack = E
SA

[Ip(SA)]
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Problem Statement

Worse-case attack

adversary mounts worst-case attack

argmax
p∈P

E
SA

[Ip(SA)] .
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Problem Statement

Decision variables:

Set of sensors: S

Set of implementation types: T

For each sensor s ∈ S

location ls
implementation type ts
hardening investment hs

For implementation type t ∈ T

hardening investment ht .
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Problem Statement

Decision variables:

Set of sensors: S

Set of implementation types: T

For each sensor s ∈ S

location ls
implementation type ts
hardening investment hs

For implementation type t ∈ T

hardening investment ht .

Resulting investments:

Redundancy: R = |S | − Smin

Diversity: D = |T | − 1

Hardening: H =
∑
t∈T

ht +
∑
s∈S

hs

Constraint:

Investment budget: C

CR · R + CD · D + H ≤ C
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Problem Statement

Decision variables:

Set of sensors: S

Set of implementation types: T

For each sensor s ∈ S

location ls
implementation type ts
hardening investment hs

For implementation type t ∈ T

hardening investment ht .

Resulting investments:

Redundancy: R = |S | − Smin

Diversity: D = |T | − 1

Hardening: H =
∑
t∈T

ht +
∑
s∈S

hs

Constraint:

Investment budget: C

CR · R + CD · D + H ≤ C

Optimal defense

min
S,T ,〈ls ,ts ,hs〉s∈S ,〈ht〉t∈T

max
p∈P

E
SA

[Ip(SA)]

subject to, CR · R + CD · D + H ≤ C
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Preliminary Results

Finding an optimal defense is computationally hard.

Problem complexity

Given a fixed amount of security investment C and a threshold expected
impact K , determining if there exists a defense that results in expected
impact less than or equal to K is an NP-hard problem.

Most variants and subproblems are also computationally challenging.

We use a greedy heuristic to find placements, type assignments, and
distributions of hardening expenditure
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Numerical Illustration

Based on a real-world water-distribution network from Kentucky

obtained from the Water Distribution System Research Database at
uky.edu
contains topology and water-demand values

Simulating physical attacks

contaminant may be
introduced at one of six nodes
P (3 tanks and 3 reservoirs);
for each node p ∈ P, we
simulated the spread of a
contaminant using EPANET
(epa.gov/water-
research/epanet)
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Simulation Example
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Numerical Setup

Physical system parameters

topology G : from real-world data,
contaminant concentrations Cp(n, v): from simulations,
impact Ip: from concentrations Cp(n, v) and real-world data.

Cyber system parameters

to study various combinations of R, D, and H, we let
minimum number of sensors: Smin = 1
cost of hardening types: CT

H = 100
cost of hardening devices: CD

H = 1.
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Numerical Results

Comparison of security investment strategies
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Numerical Results
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Numerical Results contd.
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Conclusions

Theoretical foundations for studying redundancy, diversity, and
hardening in an integrated framework.

Numerical results show that the three approaches can be significantly
more effective when combined.

Finding optimal defense is computationally challenging.

Future work
consider a wider range of CPS (e.g., smart grids, transportation
networks).
provide efficient algorithms for finding optimal defense.
establish general principles for secure and resilient CPS design.
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