
Estimating Descriptors for Large Graphs

Zohair Raza Hassan1, Mudassir Shabbir1, Imdadullah Khan2(B),
and Waseem Abbas3

1 Information Technology University of the Punjab, Lahore, Pakistan
{zohair.raza,mudassir.shabbir}@itu.edu.pk

2 Lahore University of Management Sciences, Lahore, Pakistan
imdad.khan@lums.edu.pk

3 Vanderbilt University, Nashville, USA
waseem.abbas@vanderbilt.edu

Abstract. Embedding networks into a fixed dimensional feature space,
while preserving its essential structural properties is a fundamental task
in graph analytics. These feature vectors (graph descriptors) are used
to measure the pairwise similarity between graphs. This enables apply-
ing data mining algorithms (e.g classification, clustering, or anomaly
detection) on graph-structured data which have numerous applications in
multiple domains. State-of-the-art algorithms for computing descriptors
require the entire graph to be in memory, entailing a huge memory foot-
print, and thus do not scale well to increasing sizes of real-world networks.
In this work, we propose streaming algorithms to efficiently approxi-
mate descriptors by estimating counts of sub-graphs of order k ≤ 4, and
thereby devise extensions of two existing graph comparison paradigms:
the Graphlet Kernel and NetSimile. Our algorithms require a single scan
over the edge stream, have space complexity that is a fraction of the
input size, and approximate embeddings via a simple sampling scheme.
Our design exploits the trade-off between available memory and estima-
tion accuracy to provide a method that works well for limited memory
requirements. We perform extensive experiments on real-world networks
and demonstrate that our algorithms scale well to massive graphs.

Keywords: Graph descriptor · Edge stream · Graph classification

1 Introduction

Evaluating similarity or distance between a pair of graphs is a building block
of many fundamental data analysis tasks on graphs such as classification and
clustering. These tasks have numerous applications in social network analysis,

The first two authors have been supported by the grant received to establish CIPL
and the third author has been supported the grant received to establish SEIL, both
associated with the National Center in Big Data and Cloud Computing, funded by the
Planning Commission of Pakistan.

c© Springer Nature Switzerland AG 2020
H. W. Lauw et al. (Eds.): PAKDD 2020, LNAI 12084, pp. 779–791, 2020.
https://doi.org/10.1007/978-3-030-47426-3_60

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47426-3_60&domain=pdf
https://doi.org/10.1007/978-3-030-47426-3_60

780 Z. R. Hassan et al.

bioinformatics, computational chemistry, and graph theory in general. Unfortu-
nately, large orders (number of vertices) and massive sizes (number of edges)
prove to be challenging when applying general-purpose data mining techniques
on graphs. Moreover, in many real-world scenarios, graphs in a dataset have
varying orders and sizes, hindering the application of data mining algorithms
devised for vector spaces. Thus, devising a framework to compare graphs with
different orders and sizes would allow for rich analysis and knowledge discovery
in many practical domains.

However, graph comparison is a difficult task; the best-known solution
for determining whether two graphs are structurally the same takes quasi-
polynomial time [1], and determining the minimum number of steps to convert
one graph to another is NP-Hard [16]. In a more practical approach, graphs
are first mapped into fixed dimensional feature vectors, where vector space-based
algorithms are then employed. In a supervised setting, these feature vectors are
learned through neural networks [14,25,26]. In unsupervised settings, the fea-
ture vectors are descriptive statistics of the graph such as average degree, the
eigenspectrum, or spectra of sub-graphs of order at most k contained in the
graph [7,11,17,18,22,23].

The runtimes and memory costs of these methods depend directly on the
magnitude (order and size) of the graphs and the dimensionality (dependent on
the number of statistics) of the feature-space. While computing a larger number
of statistics would result in richer representations, these algorithms do not scale
well to the increasing magnitudes of a real-world graphs [9].

A promising approach is to process graphs as streams - one edge at a time,
without storing the whole graph in memory. In this setting, the graph descriptors
are approximated from a representative sample achieving practical time and
space complexity [6,15,19–21].

In this work we propose gabe (Graphlet Amounts via Budgeted Estimates),
and maeve (Moments of Attributes Estimated on Vertices Efficiently), stream-
based extensions of the Graphlet Kernel [17], and NetSimile [3], respectively.
Our contributions can be summarised as follows:

– We propose two simple and intuitive descriptors for graph comparisons that
run in the streaming setting.

– We provide analytical bounds on the time and space complexity of our feature
vectors generation; for a fixed budget, the runtime and space cost of our
algorithms are linear.

– We perform extensive empirical analysis on benchmark graph classification
datasets of varying magnitudes. We demonstrate that gabe and maeve are
comparable to the state-of-the-art in terms of classification accuracy, and
scale to networks with millions of nodes and edges.

The rest of the paper is organized as follows. We discuss the related work in
Sect. 2. Section 3 discusses all preliminaries required to read the text. We present
gabe and maeve in Sect. 4. We report our experimental findings in Sect. 5 and
finally conclude the paper in Sect. 6.

Estimating Descriptors for Large Graphs 781

2 Related Work

Methods for comparing a pair of graphs can broadly be categorized into direct
approaches, kernel methods, descriptors, and neural models. Direct approaches
for evaluating the similarity/distance between a pair of graphs preserve the entire
structure of both graphs. The most prominent method under this approach is the
Graph Edit Distance (ged), which counts the number of edit operations (inser-
tion/deletion of vertices/edges) required to convert a given graph to another [16].
Although intuitive, ged is stymied by its computational intractability. Comput-
ing distance based on the vertex permutation that minimizes the “error” between
the adjacency representations of two graphs is a difficult task [1], and proposed
relaxations of these distances are not robust to permutation [2]. An efficient
algorithm for large network comparison DeltaCon, is proposed in [9] but it is
only feasible when there is a valid one-to-one correspondence between vertices
of the two graphs.

In the kernel-based approach, graphs are mapped to a fixed dimensional
vector space based on various substructures in the graphs. A kernel function is
then defined, which serves as a pairwise similarity measure that takes as input
a pair of graphs and outputs a non-negative real number. Typically, the kernel
value is the inner-product between two feature vectors corresponding to the
two graphs. This so-called kernel trick has been used successfully to evaluate
pairwise of other structures such as images and sequences [4,10,12]. Several
graph kernels based on sub-structural patterns have been proposed, such as the
Shortest-Path [5] and Graphlet [17] kernels. More recently, a hierarchical kernel
based on propagating spectral information within the graph [11] was introduced.
The WL-Kernel [18] that is based on the Weisfeller-Lehman isomorphism test
has been shown to provide excellent results for classification and is used as
a benchmark in the graph representation learning literature. Kernels require
expensive computation and typically necessitate storing the adjacency matrices,
making them infeasible for massive graphs.

Graph Neural Networks (gnns) learn graph level embeddings by aggregating
node representations learned via convolving neighborhood information through-
out the neural network’s layers. This idea has been the basis of many popular
neural networks and is as powerful as WL-Kernels for classification [14,26]. We
refer interested readers to a comprehensive survey of these models [25]. Unfortu-
nately, these models also require expensive computation and storing large matri-
ces, hindering scalability to real-world graphs.

Graph descriptors, like the above two paradigms, attempt to map graphs to
a vector space such that similar graphs are mapped to closely in the Euclidean
space. Generally, the dimensionality of these vectors is small, allowing efficient
algorithms for graph embeddings. NetSimile [3] describes graphs by computing
moments of vertex features, while SGE [7] uses random walks and hashing to
capture the presence of different sub-structures in a graph. State of the art
descriptors are based on spectral information; [23] proposed a family of graph
spectral distances and embedding the information as histograms on the multiset
of distances in a graph, and NetLSD [22] computes the heat (or wave) trace over
the eigenvalues of a graph’s normalized Laplacian to construct embeddings.

782 Z. R. Hassan et al.

The fundamental limitation of all the above approaches is the requirement
that the entire graph is available in memory. This limits the applicability of the
methods to a graph of small magnitude. To the best of our knowledge, this work
is the first graph comparison method that does not assume this.

Streaming algorithms assume an online setting; the input is streamed one
element at a time, and the amount of space we are allowed is limited. This
allows one to design scalable approximation algorithms to solve the underlying
problems. There has been extensive work on estimating triangles (cycles of length
three) in graphs [19,21], butterflies (cycles of length four) in bipartite graphs [15],
and anomaly detection [8] when the graph is input as a stream of edges. A
framework for estimating the number of connected induced sub-graphs on three
and four vertices is presented in [6].

3 Preliminaries and Problem Definition

3.1 Notation and Terminology

Let G = (VG, EG) be an undirected, unweighted, simple graph, where VG is the
set of vertices and EG is the set of edges.

For v ∈ VG, let NG (v) = {u : (u, v) ∈ EG} be the set of neighbors of v, and
dvG := |NG (v) | the degree of v. A graph is connected if and only if there exists
a path between all pairs in VG.

A sub-graph of G is a graph, G′ = (VG′ , EG′), such that VG′ ⊆ VG and EG′

is a subset of edges in EG that are incident only on the vertices present in VG′ ,
i.e. EG′ ⊆ {(u, v) : (u, v) ∈ EG ∧ u, v ∈ VG′}. If equality holds (EG′ contains all
edges from the original graph), then G′ is called an induced sub-graph of G.

Two graphs, G1 and G2, are isomorphic if and only if there exists a per-
mutation π : VG2 → VG1 such that EG1 = {(π(u), π(v)) : (u, v) ∈ EG2}. For a
graph F = (VF , EF), let HF

G (resp. ̂HF
G) be the set of sub-graphs (resp. induced

sub-graphs) of G that are isomorphic to F .
We assume vertices in VG are denoted by integers in the range [0, |VG| − 1].

Let S = e1, e2, . . . , e|EG| be a sequence of edges in an arbitrary but fixed order,
i.e. et = (ut, vt) is the tth edge. Let b be the maximum number of edges (budget)
one can store in our sample, referred to as ˜EG.

3.2 Problem Definition

We now formally define the graph descriptor problem:

Problem 1 (Constructing Graph Descriptors). Let G be the set of all possible
undirected, unweighted, simple graphs. We wish to find a function, ϕ : G → R

d,
that can map any given graph to a d-dimensional vector.

Existing work [3,22] on graph descriptors asserts that the underlying algo-
rithms should be able to run on any graph, regardless of order or size, and should
output the same representation for different vertex permutations. Moreover,
the descriptors should capture features that can be compared across graphs of

Estimating Descriptors for Large Graphs 783

varying orders; directly comparing sub-graph counts is illogical as bigger graphs
will naturally have more sub-graphs. The descriptors we propose are based on
graph comparison methods that meet these requirements due to their graph-
theoretic nature and feature scaling based on the graph’s magnitude. We con-
sider an online setting and model the input graph as a stream of edges. We
impose the following constraints on our algorithms:

C1: Single Pass: The algorithm is only allowed to receive the stream once.
C2: Limited Space: The algorithm can store a maximum of b edges at once.
C3: Linear Complexity: Space and time complexity of the algorithms should

be linear (for fixed b) with respect to the order and size of the graph.

3.3 Estimating Connected Sub-graph Counts on Streams

Problem 2 (Connected Sub-graph Estimation on Streams). Let S be a stream
of edges, e1, e2, . . . , e|EG| for some graph G = (VG, EG). Let F = (VF , EF) be
a small connected graph such that |VF | � |VG|. Produce an estimate, NF

G , of
|HF

G | while storing a maximum of b edges at any given instant.

Based on previous works on sub-graph estimation [6,19–21] the underlying recipe
for algorithms that solve Problem 2 consists of the following steps:

– For each edge et ∈ S, counting the instances of F incident on et. For example,
if F is a triangle, then it amounts to counting the number of triangles an edge
et is part of.

– A sampling scheme through which we can compute the probability of detect-
ing F in our sample, denoted by pFt , at the arrival of the tth edge.

At the arrival of et, we increment our estimate of |HF
G | by 1/pFt for all

instances of F in our sample ˜EG that et belongs to. The pseudocode is pro-
vided in Algorithm 1. This simple methodology allows one to compute estimates
whose expected values are equal to |HF

G |:
Theorem 1. Algorithm 1 provides unbiased estimates: E[NF

G] = |HF
G |.

Proof. For a sub-graph h ∈ HG
F , let Xh be a random variable such that Xh =

1/pFt if h is detected at the arrival of its last edge in the stream et, and 0
otherwise. Clearly, NF

G =
∑

h∈HF
G

Xh, and E[Xh] = (1/pFt) × pFt = 1. Therefore,

E
[

NF
G

]

= E

⎡

⎣

∑

h∈HF
G

Xh

⎤

⎦ =
∑

h∈HF
G

E [Xh] =
∑

h∈HF
G

1 =
∣

∣HF
G

∣

∣ .

At the arrival of et, counting only the sub-graphs that et belongs to ensures
that we do count the same sub-graph twice. In this work, we employ reservoir
sampling [24], which has been shown to be effective for sub-graph estimation [6,
20,21]. Using reservoir sampling, the probability of detecting an F that et belongs

784 Z. R. Hassan et al.

Algorithm 1: Sub-graph Estimation on Streams
Input : Stream of edges S = e1, e2, . . . , e|EG|, budget b, and a graph F
Output: NF

G (estimate of |HF
G |)

˜EG ← ∅, NF
G ← 0 /* Initialize sample of edges, and estimate */

for et ∈ S do

Find all instances of F that et belongs to in ˜EG ∪ {et}
Increment NF

G by 1/pFt for each F detected

Sample et in ˜EG, based on b
end

to at the arrival of et is equivalent to the probability that |EF |−1 particular edges
are present in the sample after t − 1 time-steps: pFt = min

(

1,
∏|EF |−2

i=0
b−i

t−1−i

)

.
We now derive an upper bound for the variance. Note that while the bound

is loose, it is sufficient to show that we obtain better results with greater b, and
applies to any connected graph, F .

Theorem 2. When using reservoir sampling, the variance of NF
G in Algorithm 1

is bounded as follows: Var[NF
G] ≤ |HF

G |2 ∏|EF |−2
i=0

|EG|−i
b−i .

Proof. The theorem is trivially true when b ≥ |EG| − 1. We now explore the
case when b < |EG| − 1. Let Xh be a random variable as defined in the proof for
Theorem 1. Note that pFt ≥ pF|EG|, and Var[Xh] = E[X2

h] −E[Xh]2 = 1/pFt − 1 ≤
1/pF|EG|. We bound the total variance using the Cauchy-Schwarz inequality:

Var[NF
G] =

∑

h∈HF
G

∑

h′∈HF
G

Cov[Xh,Xh′] ≤
∑

h∈HF
G

∑

h′∈HF
G

√

Var[Xh]Var[Xh′]

≤
∑

h∈HF
G

∑

h′∈HF
G

1
pF|EG|

= |HF
G |2

|EF |−2
∏

i=0

|EG| − 1 − i

b − i
.

Note that this methodology is also applicable for estimating the number of sub-
graphs that each vertex is incident in, and simple modifications to the proofs for
Theorems 1 and 2 will prove the same results for estimations on vertex counts.

4 GABE and MAEVE

In this section discuss our two proposed descriptors: Graphlet Amounts via Bud-
geted Estimates (gabe), which is based on the Graphlet Kernel, and Moments
of Attributes Estimated on Vertices Efficiently (maeve), based on NetSimile.

4.1 Graphlet Amounts via Budgeted Estimates

Let Fk be the set of graphs with order k. For two given graphs, G1 and G2,
Shervashidze et al. [17] propose counting all graphlets (induced sub-graphs) of

Estimating Descriptors for Large Graphs 785

Fig. 1. The graphs counted by gabe, and their corresponding overlap matrix O (best
viewed when zoomed in). Zeros have been omitted for readability.

order k in both graphs, and computing similarity based on the inner product
〈φk(G1), φk(G2)〉, where, for a given k, and graphs Fi ∈ Fk:

φk(G) :=
1

(|VG|
k

)

[∣

∣

∣

̂HF1
G

∣

∣

∣

∣

∣

∣

̂HF2
G

∣

∣

∣

∣

∣

∣

̂HF3
G

∣

∣

∣ · · ·
∣

∣

∣

̂H
F|Fk|−1

G

∣

∣

∣

∣

∣

∣

̂H
F|Fk|
G

∣

∣

∣

]ᵀ

Their algorithm runs in O(|VG|dk−1) (d = maxv∈VG
dvG) for k ∈ {3, 4, 5}, and

uses adjacency matrices. We use the methodology of [6], to estimate the sub-
graph counts as in Sect. 3.3, then compute induced sub-graph counts based on the
overlap of graphs of the same order. We follow this procedure for estimating sub-
graph counts of order k ∈ {2, 3, 4}, then concatenate the resultant φk(G)’s into
a vector. The 17 graphs we enumerate are shown in Fig. 1. Note that unlike [6],
we also estimate the counts of disconnected induced sub-graphs.

Induced Sub-graph Counts. Let F = {F1, F2, . . . , F17} be the set of graphs
we enumerate. Let HF

G (resp. ̂HF
G) be a vector such that ith entry corresponds to

|HFi

G | (resp. | ̂HFi

G |). Let O be a |F| × |F| matrix such that O(i, j) is the number
of sub-graphs of Fj , isomorphic to Fi, when |VFi

| = |VFj
|, and 0 otherwise.

One can clearly see that HF
G = O ̂HF

G, as we account for the sub-graph counts
that are disregarded when only considering induced sub-graphs. Since O is an
upper triangular matrix, it is invertible. Thereby, given HF

G, one can retrieve the
induced sub-graph counts by computing O−1HF

G. By linearity of expectation,
Theorem 1 implies that the induced sub-graph counts are unbiased as well.

While processing the stream, we store the degree of each vertex, by incre-
menting the degree for ut, vt when et = (ut, vt) arrives. We use edge-centric algo-
rithms (as described in Sect. 3.3) to compute estimates for F6, F13, . . . , F17, and
use intuitive combinatorial formulas, listed in Table 1, to compute the remaining
11 sub-graphs. We can compute |EG| and |VG| by keeping track of how many
edges have been received, and the maximum vertex label received, respectively.

Time and Space Complexity. An array of size |VG| is used to store degrees,
which can be accessed in O(1) time, and hence the counts for F5 and F12 can
be incremented each time an edge arrives in O(1). Let G′ denote the graph
represented by ˜EG, stored as an adjacency list. Determining if two vertices are
adjacent takes O(log b) time when using a tree data-structure within the stored

786 Z. R. Hassan et al.

Table 1. Graphs and their corresponding sub-graph count formulas.

Graph Formula Graph Formula Graph Formula
|VG|
2

) |VG|
3

) |VG|
4

)

|EG| |EG|(|VG| − 2) |EG| |VG|−2
2

)

|EG|
2

) − |HF5
G | ∑

v∈VG

dvG
2

) ∑
v∈VG

dvG
3

)

|HF5
G |(|VG| − 3) |HF6

G |(|VG| − 3) - -

Table 2. Features extracted for each vertex, v ∈ VG for maeve, their formulae, and a
figure highlighting the relevant edges. The filled in vertex depicts v.

Degree Clustering
Coefficient

Avg. Degree of
NG(v)

Edges in IG(v) Edges leaving IG(v)

dvG |TG(v)|/ dvG
2

)
1 + |PG(v)|/dvG dvG + |TG(v)| |PG(v)| − 2|TG(v)|

adjacency list. At the arrival of et = (ut, vt), we need to visit only the vertices
two hops away from ut (resp. vt), then perform at most three adjacency checks.
Thereby, we perform 2

(

∑

w∈NG′ (ut)
dwG′ +

∑

w∈NG′ (vt)
dwG′

)

×3 log b = O(b log b)
operations for one edge, and O(b log b|EG|) in total. Storing an adjacency list
with b edges, and an array for degrees takes O(b + |VG|) space.

4.2 Moments of Attributes Estimated on Vertices Efficiently

NetSimile [3] propose extracting features for each vertex and aggregating them
by taking moments over their distribution. Similarly, we propose extracting a
subset of those features, listed in Table 2, and computing four moments for each
feature: mean, standard deviation, skewness, and kurtosis.

Extracting Vertex Features. For a graph G, and a vertex v ∈ VG, we use
IG(v) to denote the induced sub-graph of G formed by v and its neighbors.
Let TG(v) be the set of triangles that v belongs to, and PG(v) be the set of
three-paths (paths on three vertices) where v is an end-point. We compute the
features in Table 2 by using their formulas on estimates of |TG(v)|, |PG(v)|, and
dvG computed for each v ∈ V as in Sects. 3.3 and 4.1.

Theorem 3. For a vertex v ∈ VG, all vertex features used in maeve can be
expressed in terms of dvG, |TG(v)|, and |PG(v)|.
Proof. The first two are already expressed in terms of dvG and |TG(v)|.
Average Degree of Neighbors: For each u ∈ NG(v), there is exactly one edge
connected to v, accounting for dvG edges. The remaining edges are part of three-
paths on which v is an end-point. Therefore,

∑

u∈NG(v) duG = dvG + |PG(v)|.

Estimating Descriptors for Large Graphs 787

Edges in IG(v): There are two types of edges in EIG(v): (1) edges incident on v,
of which there are dvG, and (2) edges not incident on v. The latter must belong
to a pair of vertices which form a triangle with v. For each such edge, there is
exactly one triangle. Therefore,

∣

∣EIG(v)

∣

∣ = dvG + |TG(v)|.
Edges leaving IG(v): Consider a sub-graph h ∈ PG(v). Let u be the other end-
point of h, and w be the center vertex. When u �∈ NG(v), it belongs to a three-
path that is not in NG(v), and is thereby an edge leaving the induced sub-graph
of v. Now, consider u ∈ NG(v). Clearly, the edge (u,w) forms a triangle, and is
incident in exactly two three-paths: {(v, u), (u,w)} and {(v, w), (u,w)}. There-
fore, if we account for the three-paths that lie within NG(v), we can formulate
the number of edges leaving IG(v) as |PG(v)| − 2|TG(v)|.
Time and Space Complexity. As in Sect. 4.1, we assume an adjacency list
with an underlying tree structure and refer to the sampled graph as G′. At the
arrival of an edge et = (ut, vt), one can traverse the neighborhoods to obtain the
triangle and three-path count in (NG′(ut)+NG′(vt))+NG′(ut)+NG′(vt) = O(b)
time. We store three arrays of size |VG| to store degrees, triangle counts, and
three-path counts. We can compute the moments in at most two passes over
these arrays, giving us a total of O(b|EG|+ |VG|) time. Storing an adjacency list
of size b and arrays of size |VG| gives us O(b + |VG|) space.

Improving Estimation Quality with Multiple Workers. Multiple worker
machines can be used in parallel to independently estimate triangle counts before
aggregating them [20]. Using W worker machines decreases the variances by a
factor of 1/W . Their methodology can be adopted mutatis mutandis in our
algorithms to improve the estimation quality.

5 Experimental Evaluation

In this section, we perform experiments to show how the approximation quality
changes with respect to b, explore how the descriptors perform on classification
tasks, and showcase the scalability of the algorithms. As in [3], from extensive
experiments, we found that Canberra distance

(

d(x,y) :=
∑d

i=1
|xi−y i|
|xi|+|y i|

)

per-
forms best when comparing the descriptors. We refer to the approximation error
as the distance between the true vectors and their approximations.

Implementation. All experiments were performed on a machine with 48 Intel
Xeon E5-2680 v3 @ 2.50GHz Processors, and 125 GB RAM. The algorithms
are implemented1 in C++ using MPICH 3.2 on the base code provided by the
authors of Tri-Fly [20]. We use 25 processes to simulate 1 Master and 24 workers.
Each descriptor is computed exactly once under this setting.

Datasets. We evaluate our models on randomly sampled REDDIT graphs2, five
benchmark classification datasets with large graphs: D&D, COLLAB, REDDIT-
BINARY, REDDIT-MULTI-5K, and REDDIT-MULTI-12K [27] (Table 3), and
1 Code: https://github.com/zohair-raza/estimating-graph-descriptors/.
2 https://dynamics.cs.washington.edu/data.html.

https://github.com/zohair-raza/estimating-graph-descriptors/
https://dynamics.cs.washington.edu/data.html

788 Z. R. Hassan et al.

Table 3. Details of classification datasets. The number of graphs, classes, and mini-
mum/maximum number of vertices/edges in a graph have been provided.

Dataset |G| Classes max |VG| max |EG|
D&D 1,178 2 5,748 14,267

COLLAB 5,000 3 492 40,120

REDDIT-BINARY 2,000 2 3,782 4,071

REDDIT-MULTI-5K 4,999 5 3,648 4,783

REDDIT-MULTI-12K 11,929 11 3,782 5,171

Table 4. Massive networks with their order, size, and what they represent.

Graph |VG| |EG| Network type

Patent 3,774,768 16,518,937 Citation

Flickr 2,302,925 22,838,276 Friendship

Full USA 23,947,347 28,854,312 Road

UK Domain 2002 18,483,186 261,787,258 Hyperlink

Table 5. Classification accuracy on the datasets described in Table 3. Results within
1% of the best have been boldfaced.

Descriptor DD COLLAB RDT-2 RDT-5 RDT-12

NetLSD [22] 70.36% 74.27% 82.85% 41.23% 30.9%

gabe (b = 1/4|EG|) 65.23% 63.62% 84.65% 41.1% 32.18%

gabe (b = 1/2|EG|) 69.08% 65.23% 85.35% 40.63% 32.96%

maeve (b = 1/4|EG|) 59.44% 68.42% 85.04% 41.15% 32.57%

maeve (b = 1/2|EG|) 61.26% 70.95% 86.15% 41.53% 33.69%

massive networks from KONECT [13] (Table 4). For each graph, we remove
duplicated edges and self-loops, convert to edge-list format with vertex labels in
the range [0, |VG| − 1], and randomly shuffle the list.

5.1 Approximation Quality

We uniformly sampled 1000 graphs of size 10,000 to 50,000 from REDDIT,
representing interactions in various “sub-reddits”. In Fig. 2(a) we show how the
average approximation error taken over all the sampled graphs decreases as b (a
fraction of the number of edges) increases.

Estimating Descriptors for Large Graphs 789

10 20 30 40 50

0

15

30

Budget [% of |EG|]

A
vg

.D
is
ta
nc
e
[1
×

10
−1
]

gabe
maeve

(a) Error vs. b

0 2 4 6 8 10
2

4

6

8

10

12

PT

FL

US

UD

PT FL

US

UD

Wall-clock time [minutes]

D
is
ta
nc
e

gabe
maeve

(b) b = 100, 000

0 20 40 60 80 100
2

4

6

8

10

PT FL

US

UD
PT

FL

US

UD

Wall-clock time [minutes]

D
is
ta
nc
e

gabe
maeve

(c) b = 500, 000

Fig. 2. Approximation error and runtime of gabe and maeve (best viewed in color).

5.2 Graph Classification

We computed descriptors for graphs in Table 3 from samples of 25% and 50% of
all the edges and examined their classification accuracy. We used the state-of-
the-art descriptor, NetLSD [22], as a benchmark, despite the fact that our models
have no direct competitors. As in [22], we used a simple 1-Nearest Neighbour
classifier. We performed 10-fold cross-validation for 10 different random splits
of the dataset (i.e. 100 different folds are tested on), and report the average
accuracy in Table 5. Note that despite using only a fraction of edges, gabe and
maeve give results competitive to the state of the art.

5.3 Scaling to Large Real-World Networks

We run our algorithms on massive networks (Table 4) and estimated descriptors
by setting b to 100, 000 and 500, 000. In Figs. 2(b) and (c), we show the scatter
plots for wall-clock time taken vs. the distance between the real vectors and their
approximations (values nearer to the origin are better). We are able to process
a graph with ≈260 million edges under 20 min, with relatively low error. Note
that when b = 500, 000, gabe takes 102 min to compute the descriptor for Flickr,
implying that we must take the density of the graph into account for efficient
computation when setting the value of b.

6 Conclusion

In this work, we present single-pass streaming algorithms to construct graph
descriptors using a fixed amount of memory. We show that these descriptors
provide better approximations with increasing b, are comparable with the state-
of-the-art known descriptors in terms of classification accuracy, and scale well
to networks with millions of vertices and edges.

790 Z. R. Hassan et al.

References

1. Babai, L.: Graph isomorphism in quasipolynomial time. In: STOC, pp. 684–697
(2016)

2. Bento, J., Ioannidis, S.: A family of tractable graph distances. In: SDM, pp. 333–
341 (2018)

3. Berlingerio, M., Koutra, D., Eliassi-Rad, T., Faloutsos, C.: Network similarity via
multiple social theories. In: ASONAM, pp. 1439–1440 (2013)

4. Bo, L., Ren, X., Fox, D.: Kernel descriptors for visual recognition. In: NIPS, pp.
244–252 (2010)

5. Borgwardt, K., Kriegel, H.: Shortest-path kernels on graphs. In: ICDM, pp. 74–81
(2005)

6. Chen, X., Lui, J.: A unified framework to estimate global and local graphlet counts
for streaming graphs. In: ASONAM, pp. 131–138 (2017)

7. Dutta, A., Sahbi, H.: Stochastic graphlet embedding. IEEE Trans. Neural Netw.
Learn. Syst. 30(8), 2369–2382 (2019)

8. Eswaran, D., Faloutsos, C.: SedanSpot: detecting anomalies in edge streams. In:
ICDM, pp. 953–958 (2018)

9. Faloutsos, C., Koutra, D., Vogelstein, J.: DeltaCon: a principled massive-graph
similarity function. In: SDM, pp. 162–170 (2013)

10. Farhan, M., Tariq, J., Zaman, A., Shabbir, M., Khan, I.: Efficient approximation
algorithms for strings kernel based sequence classification. In: NIPS, pp. 6935–6945
(2017)

11. Kondor, R., Pan, H.: The multiscale laplacian graph kernel. In: NeurIPS, pp. 2982–
2990 (2016)

12. Kuksa, P., Khan, I., Pavlovic, V.: Generalized similarity kernels for efficient
sequence classification. In: SDM, pp. 873–882 (2012)

13. Kunegis, J.: KONECT: the Koblenz network collection. In: WWW, pp. 1343–1350
(2013)

14. Morris, C., et al.: Weisfeiler and Leman go neural: higher-order graph neural net-
works. In: AAAI, pp. 4602–4609 (2019)

15. Sanei-Mehri, S., Zhang, Y., Sariyüce, A.E., Tirthapura, S.: FLEET: butterfly esti-
mation from a bipartite graph stream. In: CIKM, pp. 1201–1210 (2019)

16. Sanfeliu, A., Fu, K.: A distance measure between attributed relational graphs for
pattern recognition. IEEE Trans. Syst. Man Cybern. 13(3), 353–362 (1983)

17. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Effi-
cient graphlet kernels for large graph comparison. In: AISTATS, pp. 488–495 (2009)

18. Shervashidze, N., et al.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12,
2539–2561 (2011)

19. Shin, K.: WRS: waiting room sampling for accurate triangle counting in real graph
streams. In: ICDM, pp. 1087–1092 (2017)

20. Shin, K., et al.: Tri-fly: distributed estimation of global and local triangle counts
in graph streams. In: PAKDD, pp. 651–663 (2018)

21. Stefani, L.D., et al.: TRIÈST: counting local and global triangles in fully dynamic
streams with fixed memory size. TKDD 11(4), 43:1–43:50 (2017)

22. Tsitsulin, A., Mottin, D., Karras, P., Bronstein, A.M., Müller, E.: NetLSD: hearing
the shape of a graph. In: KDD, pp. 2347–2356 (2018)

23. Verma, S., Zhang, Z.: Hunt for the unique, stable, sparse and fast feature learning
on graphs. In: NeurIPS, pp. 88–98 (2017)

Estimating Descriptors for Large Graphs 791

24. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. 11(1),
37–57 (1985)

25. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey
on graph neural networks. CoRR abs/1901.00596 (2019)

26. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
In: ICLR (2019)

27. Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: KDD, pp. 1365–1374
(2015)

	Estimating Descriptors for Large Graphs
	1 Introduction
	2 Related Work
	3 Preliminaries and Problem Definition
	3.1 Notation and Terminology
	3.2 Problem Definition
	3.3 Estimating Connected Sub-graph Counts on Streams

	4 GABE and MAEVE
	4.1 Graphlet Amounts via Budgeted Estimates
	4.2 Moments of Attributes Estimated on Vertices Efficiently

	5 Experimental Evaluation
	5.1 Approximation Quality
	5.2 Graph Classification
	5.3 Scaling to Large Real-World Networks

	6 Conclusion
	References

