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Abstract - Deformable models provide a promising and vigorously researched model-based approach to computer-assisted medical 

image analysis. The widely recognized potency of deformable models stems from their ability to segment, match, and track images of 

anatomic structures by exploiting (bottom-up) constraints derived from the image data together with (top-down) a priori knowledge 

about the location, size, and shape of these structures. In this paper, a survey of deformable models and their latest extensions are 

presented. 
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I. INTRODUCTION 
The role of medical imaging has expanded beyond the simple 

visualization and inspection of anatomic structures. It has 

become a tool for surgical planning and simulation, intra-

operative navigation, radiotherapy planning, and for tracking 

theprogress of disease. For example, ascertaining the detailed 

shape and organization of anatomic structures enables a surgeon 

preoperatively to plan an optimal approach to some target 

structure. In radiotherapy, medical imaging allows the delivery 

of a necrotic dose of radiation to a tumor with minimal 

collateral damage to healthy tissue. Although modern imaging 

devices provide exceptional views of internal anatomy, the use 
of computers to quantify and analyze the embedded structures 

with accuracy and efficiency is limited. The shortcomings 

typical of sampled data, such as sampling artifacts, spatial 

aliasing, and noise, may cause the boundaries of structures to be 

indistinct and disconnected. The challenge is to extract 

boundary elements belonging to the same structure and integrate 

these elements into a coherent and consistent model of the 

structure. As a result, these model-free techniques usually 

require considerable amounts of expert intervention. 

Deformable models, a promising and vigorously researched 

model-based approach to computer-assisted medical image 

analysis. The widely recognized potency of deformable models 
stems from their ability to segment, match, and track images of 

anatomic structures by exploiting (bottom-up) constraints 

derived from the image data together with (top-down) a priori 

knowledge about the location, size, and shape of these 

structures[1,63,64]. 

 

1.1 Working Definition and its Functioning 

Deformable models are curves or surfaces defined within an 

image domain that can move under the influence of internal 

forces, which are defined within the curve or surface itself, and 

external forces, which are computed from the image data. The 
internal forces are designed to keep the model smooth during 

the deformation. The external forces are defined to move the 
model toward an object boundary or other desired features 

within an image. By constraining extracted boundaries to be 

smooth and incorporating other priori information about the 

object shape,deformable models offer robustness to both image 

noise and boundary gaps and allow integrating boundary 

elements into a coherent and consistent mathematical 

description. 

The idea of deforming a template for extracting image features 

dates back to the work of Fischler and Elschlager’s spring-

loaded templates [6,63,64,65] and Widrow’s rubber mask 

technique [63,64,7].The popularity of Deformable Models is 
largely due to the influential paper ―Snakes: Active Contours‖ 

by Kass, Witkin and Terzopoulous[3,61].The mathematical 

foundations of deformable models represent the confluence of 

geometry, physics, and approximation theory. Geometry serves 

to represent object shape, physics imposes constraints on how 

the shape may vary over space and time, and optimal 

approximation theory provides the formal underpinnings of 

mechanisms for fitting the models to measured data. The name 

―deformable models‖ stems primarily from the use of elasticity 

theory at the physical level, generally within a Lagrangian 

dynamics setting [63,64,4,71]. The physical interpretation views 

deformable models as elastic bodies which respond naturally to 
applied forces and constraints. 

The energy grows monotonically as the model deforms away 

from a specified natural or ―rest shape‖ and often includes 

terms that constrain the smoothness or symmetry of the model. 

In the 

Lagrangian setting, the deformation energy gives rise to elastic 

forces internal to the model. Taking a physics-based view of 

classical optimal approximation, external potential energy 

functions are defined in terms of the data of interest to which 

the model is to be fitted. These potential energies give rise to 

external forces which deform the model such that it fits the data. 
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1.2 Deformable model Representations Types 

There are basically two types of deformable models: parametric 

deformable models (cf. [3, 8–10]) and geometric deformable 

models (cf. [11–14]). Parametric deformable models represent 

curves and surfaces explicitly in their parametric forms during 

deformation. This representation allows direct interaction with 
the model and can lead to a compact representation for fast 

realtime implementation. Adaptation of the model topology, 

however, such as splitting or merging parts during the 

deformation, can be difficult using parametric models. 

Geometric deformable models, on the other hand, can handle 

topological changes naturally. These models, based on the 

theory of curve evolution [15–18, 63-71] and the level set 

method [19,63,64,65 20], represent curves and surfaces 

implicitly as a level set of a higher dimensional scalar function. 

Their parameterizations are computed only after complete 

deformation, thereby allowing topological adaptivity to be 

easily accommodated. Despite this fundamental difference, the 
underlying principles of both methods are very similar. We first 

describe two different types of formulations for parametric 

deformable models: an energy minimizing formulation and a 

dynamic force formulation. 

Although these two formulations lead to similar results, the first 

formulation has the advantage that its solution satisfies a 

minimum principle whereas the second formulation has the 

flexibility of allowing the use of more general types of external 

forces. We then present several commonly used external forces 

that can effectively attract deformable models toward the 

desired image features. 

 

II. PARAMETRIC DEFORMABLE MODEL 

Different types of formulation are: (a) Energy minimizing 

formulation (b) Dynamic force formulation. Both lead to same 

results, but the first formulation has the advantage that its 

solution satisfies a minimum principle whereas the second 

formulation has the flexibility of allowing the use of more 

general types of external forces. 

 

2.1 Energy minimizing Formulation 

The basic premise of the energy minimizing formulation of 

deformable contours is to find a parameterized curve that 
minimizes the weighted sum of internal energy and potential 

energy. The internal energy specifies the tension or the 

smoothness of the contour. The potential energy is defined over 

the image domain and typically possesses local minima at the 

image intensity edges occurring at object boundaries. 

Minimizing the total energy yields internal forces and potential 

forces. 

Internal forces hold the curve together (elasticity forces) and 

keep it from bending too much (bending forces). External forces 

attract the curve toward the desired object boundaries. To find 

the object boundary, parametric curves are initialized within the 

image domain, and are forced to move toward the potential 

energy minima under the influence of both these forces. 

To gain some insight about the physical behavior of deformable 

contours, we can view Eq. (4) as a force balance equation. 

Geometrically, a snake is a parametric contour embedded in the 

image plane 
2),( yx  The contour is represented as 

Tsysxsv ))(),(()(   where x and y are the coordinate 

functions and ]1,0[s is the parametric domain. The shape of 

the contour subject to an image ),( yxI  is dictated by the 

functional  
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The functional can be viewed as a representation of the energy 

of the contour and the final shape of the contour corresponds to 

the minimum of this energy. The first term of the functional, 
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is the internal deformation energy. It characterizes the 

deformation of a stretchy, flexible contour. Two physical 

parameter functions dictate the simulated physical 

characteristics of the contour: )(1 sw controls the ―tension‖ of 

the contour while )(2 sw controls its ―rigidity‖. The second 

term in (1) couples the snake to the image. Traditionally, 
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where P(x, y) denotes a scalar potential function defined on the 

image plane. To apply snakes to images, external potentials are 

designed whose local minima coincide with intensity extrema, 

edges, and other features of interest [60]. 

The values of the non-negative functions )(1 sw and )(2 sw

determine the extent to which the snake can stretch or bend at 

any point s on the snake. For example, increasing the magnitude 

of )(1 sw increases the ―tension‖ and tends to eliminate 

extraneous loops and ripples by reducing the length of the 

snake. 

Increasing )(2 sw increases the bending ―rigidity‖ of the snake 

and to make the snake smoother and less flexible. Setting the 

value of one or both of these functions to zero at a point s 

permits discontinuities in the contour at s. 
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which is 
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where internal force is 
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and the potential force is 

)()( XPXFpot         (7)  

The internal force Fint discourages stretching and bending 

while the potential force Fpot pulls the contour toward the 

desired object boundaries. To find a solution to Eq. (4), the 

deformable contour is made dynamic by treating X(s) as a 

function of time as well as — i.e X(s, t). The partial derivative 

of X with respect to t is then set equal to the left-hand side of 

Eq. (4) as follows: 
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The coefficient γ is introduced to make the units on the left side 

consistent with the right side. When the solution X(s, t) 

stabilizes, the left side vanishes and we achieve a solution of 

Eq. (4). We note that this approach of making the time 

derivative term vanish is equivalent to applying a gradient 

descent algorithm to find the local minimum of Eq. (1) [21, 

63,64,65]. Thus, the minimization is solved by placing an initial 

contour on the image domain and allowing it to deform 

according to Eq. (8). Figure 1 shows an example of recovering 

the left ventricle wall using Gaussian potential forces. 
 

2.2 Dynamic force Formulation 

In the previous section, the deformable model was modeled as a 

static problem, and an artificial variable t was introduced to 

minimize the energy. It is sometimes more convenient, 

however, to formulate the deformable model directly from a 

dynamic problem using a force formulation. Such a formulation 

permits the use of more general types of external forces that are 

not potential forces, i.e., forces that cannot be written as the 

negative gradient of potential energy functions.  

  
(a) (b) 

Figure 1: An example of recovering the left ventricle wall using 

Gaussian potential forces. (a) Gaussian potential forces and (b) 

the result of applying Gaussian potential forces to a deformable 

contour, with a circular initial contour in gray and the final 

deformed contour in white. 

According to Newton’s second law, the dynamics of a contour 

X(s, t) must satisfy 

)()()( int2

2

XFXFXF
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where μ is a coefficient that has a mass unit and Fdamp is the 
damping (or viscous) force defined as , 

t

X




  with   being the damping coefficient. In image 

segmentation, the mass coefficient μ in front of the inertial term 

is often set to zero since the inertial term may cause the contour 

to pass over the weak edges. The dynamics of the deformable 

contour without the inertial term becomes 

)()(int XFXF
t
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The internal forces are the same as specified in Eq. (6). The 

external forces can be either potential forces or non-potential 

forces. We note, however, non-potential forces cannot be 

derived from the variational energy formulation of the previous 

section. 

An alternate variational principle does exist (see [22]); however, 

it is not physically intuitive. 

External forces are often expressed as the superposition of 

several different forces: 

)(.....)()()( 21 XFXFXFXF Next   (11) 

Where N is the total number of external forces. This 

superposition formulation allows the external forces to be 

broken down into more manageable terms. For example, one 

might define the external forces to be composed of both 

Gaussian potential forces and pressure forces, which are 

described in the next section. 

 

2.3 Classification of  External Forces 

2.3.1 Multiscale Gaussian potential force 

When this force was introduced and used, the force could only 

attract the model toward the boundary when it is initialized 
nearby. Terzopoulous, Witkin and Kass proposed using 

Gaussian potential forces at different scales to broaden its 

attraction range while maintaining the model’s boundary 

localization accuracy. 

The basic idea is to first use a[63,64,65] large value of σ is then 

reduced to create a potential energy function with a broad valley 

around the boundary. When the contour or snake reaches 

equilibrium, the value of σ is then reduced to allow tracking of 

the boundary at a finer scale. This scheme effectively extends 

the attraction range of the Gaussian potential force. Drawback 

of this approach is that there is no established theorem for how 

to schedule changes in σ. 

 

2.3.2 Pressure force 

The pressure force can either inflate or deflate the model. Hence 

it removes the requirement to initialize the model near the 

desired object boundary. Cohen suggested using another force 
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together with Gaussian potential force. Models using pressure 

forces are also known as balloons. Defined as 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 2: An example of pressure forces driven deformable 

contours. (a) Intensity CT image slice of the left ventricle. (b) 

Edge detected image. (c) Initial deformable contour. (d) - (f) 

Deformable contour moving toward the left ventricle boundary, 

driven by inflating pressure force. 

)()( XNwXF pp          (12) 

Where )(XN is the inward unit normal of the model at the 

point X and 
pw is a constant weighting parameter. The sign of 

pw  determines whether to inflate or deflate the model and is 

typically chosen by the user. Recently, region information has 

been used to define with a spatial-varying sign based upon 

whether the model is inside or outside the desired object 

[63,64,65 ,23, 24]. The value wp of determines the strength of 

the pressure force. It must be carefully selected so that the 

pressure force is slightly smaller than the Gaussian potential 

force at significant edges, but large enough to pass through 

weak or spurious edges. 

When the model deforms, the pressure force keeps inflating or 

deflating the model until it is stopped by the Gaussian potential 

force. An example of using deformable contour with an 
inflating pressure force is shown in Figure 2. A disadvantage in 

using pressure forces is that they may cause the deformable 

model to cross itself and form loops (cf. [25][ 63,64,65]). 

2.3.3 Distance Potential Force 

Another approach for extending attraction range is to define the 

potential energy function using a distance map as proposed by 

Cohen and Cohen [26]. The value of the distance map at each 

pixel is obtained by calculating the distance between the pixel 

and the closest boundary point, based either on Euclidean 

distance [27] or Chamfer distance [28]. By defining the 

potential energy function based on the distance map, one can 

obtain a potential force field that has a large attraction range.  

          (a)                              (b)                                 (c) 

Figure 3: An example of distance potential force field. (a) A U-

shaped object, a close-up of its (b) boundary concavity, and (c) 

the distance potential force field within the concavity.[Source-

[63]] 

Given a computed distance map d(x, y), one way of defining a 

corresponding potential energy, introduced in [26], is as 

follows: 
2),(),( yxd

dd ewyxP          (13) 

The corresponding potential force field is given by  

),( yxPd  

2.3.4 Gradient Vector Flow 

The distance potential force is based on the principle that the 

model point should be attracted to the nearest edge points. This 

principle, however, can cause difficulties when deforming a 

contour or surface into boundary concavities [29, 63,64,65]. A 

2-D example is shown in Figure 3, where a U-shaped object and 

a close-up of its distance potential force field within the 
boundary concavity is 

depicted. Notice that at the concavity, distance potential forces 

point horizontally in opposite directions, thus preventing the 

contour from converging into the boundary concavity. To 

address 

this problem, Xu and Prince [2, 29] employed a vector diffusion 

equation that diffuses the gradient of an edge map in regions 

distant from the boundary, yielding a different force field called 

the gradient vector flow (GVF) field. The amount of diffusion 

adapts according to the strength of edges to avoid distorting 

object boundaries. A GVF field is defined as the equilibrium 
solution to the following vector partial differential equation: 

))(()( 2 fvfhvfg
t
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Where tvfyxv  /,)0,,(  denotes the partial derivative 

of v(x, y, t) with respect to t 
2 is the Laplacian operator 

(applied to each spatial component of v separately), and f is an 

edge map that has higher value at the desired object boundary 

and can be derived using any edge detector. The definition of 
the GVF field is valid for any dimension. Two examples of g(r) 

and h(r) are 
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Where k is a scalar and r is a dummy variable, or )(rg  

and 
2)( rrh  where μ is a positive scalar. GVF has been 

shown to have a large attraction range and improved 

convergence for deforming contours into boundary concavities 
[15, 29]. An example of using a GVF force field is shown in 

Figure 4. 

 
Figure 4: An example of gradient vector flow driven 

deformable model contours. (a) A gradient vector flow field and 

(b) the result of applying gradient vector flow force to a 

deformable contour, with the circular initial contour shown in 

gray and the final deformed contour in white. 

2.3.5 Dynamic Distance Force 

An external force that is similar to distance potential force but 

does not possess the boundary concavity problem has been 

proposed [44, 45, 63,64,65,68]. This approach derives an 
external force by computing a signed distance at each point on 

the deformable contour or surface. This signed distance is 

calculated by determining the closest boundary point or other 

image feature along the model’s normal direction. The distance 

values are recomputed each time the model is deformed. Several 

criteria can be used to define the desired boundary point to be 

searched. 

The most common one is to use image pixels that have a high 

image intensity gradient magnitude or edge points generated by 

an edge detector. A threshold is specified for the maximum 

search distance to avoid confusion with outliers and to reduce 

the computation time. The resulting force, which is called as the 
dynamic distance force, can attract deformable models to the 

desired image feature from a fairly long range limited only by 

the threshold. 

Given a point X on the contour or surface, its inward unit 

normal N(X), the computed signed distance D(X), and a 

specified distance threshold maxD a typical definition for the 

dynamic distance force is 

)(
)(

)(
max

XN
D

XD
wXF DD         (15) 

 The weakness of this method is that a relatively time-
consuming one dimensional search along the normal direction 

must be performed each time the model deforms. Setting the 

search distance threshold lower can reduce the run time but has 

the undesirable side effect of decreasing the attraction range of 

the dynamic distance force. 

2.3.6 Interactive Force 

In many clinical situations, it is important to allow an operator 

to interact with the deformable model as it is deforming. This 

interaction improves the accuracy of the segmentation result 

when automated external forces fail to deform the model to the 

desired feature in certain regions. For example, the user may 

want to pull the model toward significant image features, or 
would like to constrain the model so that it must pass through a 

set of landmark points identified by an expert. De-formable 

models allow these kinds of user interactions to be conveniently 

modelled as additional force terms. 

Two kinds of commonly used interactive forces are spring 

forces and volcano forces, proposed by Kass et al. [3]. Spring 

forces are defined to be proportional to the distance between a 

point x on the model and a user-specified point p: 

)( XpwF ss           (16) 

Spring forces act to pull the model toward p. The further away 

the model is from p, the stronger the pulling force. The point x 

is selected by finding the closest point on the model to p using a 

heuristic search around a local neighborhood of p. Volcano 
forces are designed to push the model away from a local region 

around a-volcano‖ point p. For computational efficiency, the 

force is only computed in a neighbourhood N(p) as follows: 
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Where r = X – p. Note that the magnitude of the forces is 

limited near r = 0 to avoid numerical instability. Another 

possible definition for volcano forces is 
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where σv is used to adjust the strength distribution of the 

volcano force. 

2.4 Numerical Implementation 

Various numerical implementations of deformable models have 

been reported in the literature. For examples, the finite 
difference method [3], dynamic programming [8], and greedy 

algorithm [30] have been used to implement deformable 

contours, while finite difference methods [5] and finite element 

methods [10, 21, 31] have been used to implement deformable 

surfaces. The finite difference method requires only local 

operations and is efficient to compute. The finite element 

method, on the other hand, is more costly to compute but has 

the advantage of being well adapted to the irregular mesh 

representations of deformable surfaces. 

So far, we have formulated the deformable model as a 

continuous curve or surface. In practice, however, it is 

sometimes more straightforward to design the deformable 
models from a discrete 
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point of view. Example of work in this area includes [32–37]. 

Parametric deformable models have been applied successfully 

in a wide range of applications; however, they have two main 

limitations. First, in situations where the initial model and the 

desired object boundary differ greatly in size and shape, the 

model must be reparameterized dynamically to faithfully 
recover the object boundary. Methods for reparameterization in 

2D are usually straightforward and require moderate 

computational overhead. Reparameterization in 3D, however, 

requires complicated and computationally expensive methods. 

The second limitation with the parametric approach is that it has 

difficulty dealing with topological adaptation such as splitting 

or merging model parts, a useful property for recovering either 

multiple objects or an object with unknown topology. This 

difficulty is caused by the fact that a new parameterization must 

be constructed whenever the topology change occurs, which 

requires sophisticated schemes [38, 39]. 

 
III. GEOMETRIC DEFORMABLE MODEL 

Geometric deformable models, proposed independently by 

Caselles et al. [11] and Malladi et al. [12], provide an elegant 

solution to address the primary limitations of parametric 

deformable models. These models are based on curve evolution 

theory [15–18] and the level set method [19, 20]. In particular, 

curves and surfaces are evolved using only geometric measures, 

resulting in an evolution that is independent of the 

parameterization. As in parametric deformable models, the 

evolution is coupled with the image data to recover object 

boundaries. Since the evolution is independent of the 
parameterization, the evolving curves and surfaces can be 

represented implicitly as a level set of a higher-dimensional 

function. As a result, topology changes can be handled 

automatically. 

In this section, we first review the fundamental concepts in 

curve evolution theory and the level set method. We next 

present three types of geometric deformable models, and the 

difference being in the design of speed functions. We then show 

a mathematical relationship between a particular class of 

parametric and geometric models. Next, we describe a 

numerical implementation of geometric deformable models 

proposed by Osher and Sethian [19]. Finally, at the end of this 
section we compare geometric deformable models with 

parametric deformable models. We note that although the 

geometric deformable models are presented in 2D, their 

formulation can be directly extended to 3D. A thorough 

treatment on evolving curves and surfaces using the level set 

representation can be found in [20]. 

3.1 Curve Evolution Theory 

The purpose of curve evolution theory is to study the 

deformation of curves using only geometric measures such as 

the unit normal and curvature as opposed to the quantities that 

depend on parameters such as the derivatives of an arbitrary 
parameterized curve. Let us consider a moving curve, X(s, t) = 

[X(s, t), Y(s, t)],where s is any parameterization and t is the time, 

and denote its inward unit normal as N and its curvature as κ, 

respectively. The evolution of the curve along its normal 

direction can be characterized by the following partial 

differential equation: 

NV
t

X
)(




           (18) 

where )(V is called the speed function, since it determines the 

speed of the curve evolution. We note that a curve moving in 

some arbitrary direction can always be reparameterized to have 

the same form as Eq. (18) [40]. The intuition behind this fact is 

that the tangent deformation affects only the curve’s 

parameterization, not its shape and geometry. The most 

extensively studied curve deformations in curve evolution 

theory are curvature deformation and constant deformation. 

Curvature deformation is given by the so-called geometric heat 

equation: 

N
t

X





 

where α is a positive constant. This equation will smooth a 

curve, eventually shrinking it to a circular point [41]. 
The use of the curvature deformation has an effect similar to the 

use of the elastic internal force in parametric deformable 

models. 

Constant deformation is given by NV
t

X
0




 

where 0V  is a coefficient determining the speed and direction 

of deformation. 

Constant deformation plays the same role as the pressure force 

in parametric deformable models. The properties of curvature 

deformation and constant deformation are complementary to 

each other. Curvature deformation removes singularities by 

smoothing the curve, while constant deformation can create 

singularities from an initially smooth curve.  

 
(a)                  (b)                           

(c) 

Figure 5: An example of embedding a curve as a level set. (a) A 

single curve. (b) The level set function where the curve is 

embedded as the zero level set (in black). (c) The height map of 

the level set function with its zero level set depicted in black  

The basic idea of the geometric deformable model is to couple 

the speed of deformation (using curvature and/or constant 

deformation) with the image data, so that the evolution of the 
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curve stops at object boundaries. The evolution is implemented 

using the level set method. Thus, most of the research in 

geometric deformable models has been focused in the design of 

speed functions. 

3.2 Level Set Method 

We now review the level set method for implementing curve 
evolution. The level set method is used to account for automatic 

topology adaptation, and it also provides the basis for a 

numerical scheme that is used by geometric deformable models. 

The level set method for evolving curves is due to Osher and 

Sethian [19, 42, 43,63]. In the level set method, the curve is 

represented implicitly as a level set of a 2D scalar function —

referred to as the level set function — which is usually defined 

on the same domain as the image. The level set is defined as the 

set of points that have the same function value. Figure 5 shows 

an example of embedding a curve as a zero level set. It is worth 

noting that the level set function is different from the level sets 

of images, which are sometimes used for image enhancement 
[44]. The sole purpose of the level set function is to provide an 

implicit representation of the evolving curve. 

Instead of tracking a curve through time, the level set method 

evolves a curve by updating the level set function at fixed 

coordinates through time. This perspective is similar to that of a 

Euclidean formulation of motion as opposed to a Lagrangian 

formulation, which is analogous to the parametric deformable 

model. A useful property of this approach is that the level set 

function remains a valid function while the embedded curve can 

change its topology. This situation is depicted in Figure 6. 

We now derive the level set embedding of the curve evolution 
Eq. (18). Given a level set function ϕ (x, y, t) with the contour 

X(s, t) as its zero level set, we have 

ϕ [X (s. t), t] = 0. 

Differentiating the above equation with respect to t and using 

the  chain rule, we obtain 

0. 









t

X

t



          (19) 

where denotes the gradient of ϕ . We assume that ϕ is negative 

inside the zero level set and positive outside. 

Accordingly, the inward unit normal to the level set curve is 

given by N . 

Three issues need to be considered in order to implement 

geometric deformable contours: 

1. An initial function ϕ (x, y, t) = 0 must be constructed such 

that its zero level set corresponds to the position of the initial 
contour. A common choice is to set ϕ (x, y, 0) =D (x, y), where 

D (x, y), is the signed distance from each grid point to the zero 

level set. The computation of the signed distance for an 

arbitrary initial curve is expensive. Recently, Sethian and 

Malladi developed a method called the fast marching method, 

which can construct the signed distance function in O (N log N), 

N where is the number of pixels. Certain situations may arise, 

however, where the distance may be computed much more 

efficiently. For example, when the zero level set can be 

described by the exterior boundary of the union of a collection 

of disks, the signed distance function can be computed in O (N) 

as 

)(min)(
.....3,2,1

ii
Mi

rcxxD 


 

Where x = (x, y), M is the number of initial disks, ic  and ir are 

the center and radius of each disk. 

2. Since the evolution equation is derived for the zero level set 
only, the speed function V (κ), in general, is not defined on 

other level sets. Hence, we need a method to extend the speed 

function V (κ) to all of the level sets. We note that the 

expressions for the unit normal and the curvature, however, 

hold for all level sets. Many approaches for such extensions 

have been developed (see [20] for a detailed discussion on this 

topic). However, the level set function that evolves using these 

extended speed functions can lose its property of being a signed 

distance function, causing inaccuracy in curvature and normal 

calculations. As a result, reinitialization of the level set function 

to a signed distance function is often required for these 

schemes. Recently, a method that does not suffer from this 
problem was proposed by Adalsteinsson and Sethian 

[45,63,64,65]. This method casts the speed extension problem 

as a boundary value problem, which can then be solved 

efficiently using the fast marching method. 

3. In the application of geometric contours, constant 

deformation is often used to account for large-scale deformation 

and narrow boundary indentation and protrusion recovery. 

Constant deformation, however, can cause the formation of 

sharp corners from an initial smooth zero level 

set. Once the corner is developed, it is not clear how to continue 

the deformation, since the definition of the normal direction 
becomes ambiguous. A natural way to continue the deformation 

is to impose the so-called entropy condition originally proposed 

in the area of interface propagation by Sethian [46]. 

 

IV. ENHANCEMENTS IN DEFORMABLE 

MODELS 

Numerous extensions have been proposed to the deformable 

models described in the previous sections, particularly to extend 

the parametric deformable models. These extensions address 

two 

major areas for improving standard deformable models. The 

first area is the incorporation of additional prior knowledge into 
the models. Use of prior knowledge in a deformable model can 

lead to more robust and accurate results. This is especially true 

in applications where a particular structure that requires 

delineation has similar shape across a large number of subjects. 

Incorporation of prior knowledge requires a training step that 

involves manual interaction to accumulate information on the 

variability of the object shape being delineated. This 

information is then used to constrain the actual deformation of 
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the contour or surface to extract shapes consistent with the 

training data. 

The second area that has been addressed by various extensions 

of deformable models is in modeling global shape properties. 

Traditional parametric and geometric deformable models are 

local models — contours or surfaces are assumed to be locally 
smooth. Global properties such as orientation and size are not 

explicitly modeled. Modeling of global properties can provide 

greater robustness to initialization. Furthermore, global 

properties are important in object recognition and image 

interpretation applications because they can be characterized 

using only a few parameters. Note that although prior 

knowledge and global shape properties are distinct concepts, 

they are often used in conjunction with one another. Global 

properties tend to be much more stable than local properties. 

Therefore, if information about the global properties is known a 

priori, it can be used to greatly improve the performance of the 

deformable model. In this section, we review several extensions 
of deformable models that use prior knowledge and/or global 

shape properties. We focus on revealing the fundamental 

principles of each extension and refer the reader to the cited 

literature for a full treatment of the topic. 

4.1 Deformable Fourier models 

In standard deformable models, a direct parameterization is 

typically utilized for representing curves and surfaces. Staib and 

Duncan [47, 63,64,65] have proposed using a Fourier 

representation for parameterizing deformable contours and 

surfaces. A Fourier representation for a closed contour is 

expressed as 
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where a0, c0, a1, b1, c1, d1, … are Fourier coefficients. The 

Fourier coefficients of X (s) are computed by 
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Coefficients of Y(s) are computed in analogous fashion. The 

advantages of the Fourier representation are that a compact 
representation of smooth shapes can be obtained by truncating 

the series and that a geometric description of the shape can be 

derived to characterize global shape properties. From Eq. (20), 

the coefficients a0 and c0 define the translation of the contour. 

Each subsequent term in the series expansion follows the 

parametric form of an ellipse. It is possible to map the 

coefficients to a parameter set that describes the object shape in 

terms of standard properties of ellipses [47]. Furthermore, like 

the Fourier coefficients, these parameters follow a scale 

ordering, where low index parameters describe global properties 

and higher indexed parameters describe more local 

deformations. 

Staib and Duncan apply a Bayesian approach to incorporating 

prior information into their model. A prior probability function 

is defined by first manually or semi-automatically delineating 

structures of the same class as the structure to be extracted. 
Next, these structures are parameterized using the Fourier 

coefficients, or using the converted parameter set based on 

ellipses. Mean and variance statistics are finally computed for 

each of the parameters. 

Assuming independence between the parameters, the 

multivariate Gaussian prior probability function is given by 
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Figure 7: Segmenting the corpus callosum from an MR 

midbrain sagittal image using a deformable Fourier model. Top 

left: MR image (146X106). Top right: positive magnitude of the 

Laplacian of the Gaussian (σ = 2.2). Bottom left: initial contour 

(six harmonics). Bottom right: final contour on the corpus 

callosum of the brain. [source- Ravindra et.al.2010] 

Where ),.......,,( 321 NPPPPP  is the parameter vector 

derived by truncating the Fourier coefficients, i  is the mean 

of the ith parameter in the training data, and  
2

i  is the variance. A posterior probability function is defined 

that balances the prior probability model and a data model, 

which measures the discrepancy between boundary features in 

the image and the deformable contour. In [47,63,64,65], a 
gradient ascent method was used to maximize the posterior 

probability function. More recently, a genetic algorithm was 

proposed in [48]. Figure 7 shows an example of using the 

deformable Fourier model to recover the corpus callosum of the 

human brain. 

4.2 Deformable models using modal analysis 

Another way to restrict the mostly unstructured motion 

associated with the standard deformable model is to use modal 

analysis (Pentland and Horowitz [49], Nastar and Ayache [53]). 

This approach is similar to the deformable Fourier model except 

that both the basis functions and the nominal values of their 

coefficients are derived from a template object shape. 
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Deformable models based on modal analysis use the theory of 

finite elements [50]. An object is assumed to be represented by 

a finite set of elements whose positions are defined by the 

positions 

of n nodes, which are points in d -dimensional space. The node 

positions can be stacked into a vector X, which has length 
nd,and element interpolation characterizes the complete object 

shape on the continuum. If the object moves or deforms, its new 

position is given by X+U, where U is a vector of length nd 

representing the collection of nodal displacements. 

The equation governing the object’s motion can be written as a 

collection of ordinary differential equations constraining the 

nodal displacements. This is compactly written as 

fKU
dt

dU
C

dt

Ud
M 

2

2

 

where M, C, and K are the mass, damping and stiffness matrices 

of the system and f is a nd-dimensional vector of external forces 

acting on the nodes. Both U and f are assumed to be functions 

of time. 

4.3 Deformable superquadrics 

Another extension of deformable models that has been used for 

incorporating local and global shape features is the deformable 

superquadric, proposed by Terzopoulos and Metaxas [31]. This 

is essentially a hybrid technique where a superquadric surface, 

which can be defined with a relatively small number of 
parameters, is allowed to deform locally for reconstructing the 

shape of an object. Although the fitting of global and local 

deformations is performed simultaneously, the global 

deformation is forced to account for as much of the object shape 

as possible. The estimated superquadric therefore captures the 

global shape characteristics and can readily be used in object 

recognition applications, while the local deformations capture 

the details of the object shape. 

Terzopoulos and Metaxas consider models that are closed 

surfaces, denoted by x (u), where the parametric coordinates 

],[ vu ]. This surface can be expressed as  

0()( uPRcux            (22) 

where c is a translation vector, and R is a rotation matrix. The 

vector function p(u) denotes the model shape irrespective of 

pose and can further be expressed as 

)()()( udusup           (23) 

where s(u) is a reference shape consisting of the low parameter 

global shape model, and d(u) is a displacement function 

consisting of the local deformations. The reference shapes in 
this case are superquadrics, which are an extension of standard 

quadric surfaces. These surfaces have been used in a variety of 

applications for computer graphics and computer vision, 

because of their ability to accommodate a large number of 

shapes with relatively few parameters. The kind of superquadric 

of interest here is the superellipsoid, which can be expressed 

implicitly as in [51]. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9: An example of Active Shape Models. (a) An 

echocardiogram image. (b) The initial position of the heart 

chamber boundary model. The location of the model after (c) 80 

and (d) 200 iterations. 

4.4 Active shape models (ASMs) 

Active shape models (ASMs) proposed by Cootes et al. [52, 53] 

use a different approach to incorporate prior shape information. 

Their prior models are not based on the parameterization, but 

are instead based on a set of points defined at various features in 

the image. In the following, we summarize how the prior model 
is constructed and used to enhance the performance of a 

deformable model and how the ASM paradigm can be extended 

to incorporate prior information on the image intensity rather 

than 

on the shape alone. 

4.4.1  ASM prior model 

The ASM prior model is constructed by first establishing a set 

of labeled point features, or landmarks, within the class of 

images to be processed [see Figs. 8(a) and (b)]. These points are 

manually selected on each of the images in the training set. 

Once selected, the set of points for each image is aligned to one 
another with respect to translation, rotation, and scaling. This is 

accomplished using an iterative algorithm based on the 

Procrustes method [54]. This linear alignment allows studying 

the object shape in a common coordinate frame, which we will 

refer to as the model space of the ASM. After the alignment, 

there is typically still a substantial amount of variability in the 

coordinates of each point. To compactly describe this variability 

as a prior model, Cootes and Taylor developed the Point 

Distribution Model (PDM), which we now describe. Given N 

aligned shapes Y1, Y2, YN in the model space, where Yi = 

(xi0,yi0… xin-1, yin-1)T is a 2n-dimensional vector describing 

the coordinates of the n points from the ith shape, the mean 
shape, 

Ȳ , is defined to be  
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The covariance matrix, S, is computed by 
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The eigenvectors corresponding to the largest eigenvalues of the 

covariance matrix describe the most significant modes of 

variation. Because almost all of the variability in the model can 

be described using these eigenvectors, only m such eigenvectors 

are selected to characterize the entire variability of the training 

set. Note that in general m is significantly smaller than the 

number of points in the model. 

4.4.2 Model fitting procedure 

The key idea of ASMs is to constrain the behavior of 
deformable models using the PDM obtained as described in the 

previous section (cf. [53, 55, 56]). At each iteration, a standard 

deformation of the parametric deformable model is 

approximated by adjusting both the pose (translation, rotation, 

and scale) parameters and the shape parameters of the model 

instance. 

Thus, only deformations that produce shapes similar to those in 

the training set are allowed. The iteration stops when changes in 

both the pose and shape parameters are insignificant. Figure 9 

shows an example of using active shape models to extract the  

heart wall from an ultrasound image. 

Let us denote the position of the model instance at the 
beginning of a deformation step as 

T

nn YXYXX ),........,( 1100   and the required deformation 

computed from both internal and external forces as a 

displacement vector 
T

nn dYdXdYdXdX ),........,( 1100   

Then the position of the model instance, X, can be compactly 
represented by its pose and shape parameters, i.e., 

c

b

XYsMX

andPYY





]).[,( 
       (25) 

where s is the scaling factor, θ is rotational angle, M (s, θ) [Y] is 

a linear transformation that performs scaling and rotation on Y, 

and Xc = (Xc, Yc) is the center of the model instance. First, a 

global fit is performed by adjusting the pose parameters so that 
the generated model instance aligns best with the expected 

model instance X + dX. The proper pose parameter adjustments, 

ds, dθ, and d Xc, can be estimated efficiently using a standard 

least-squares approach (see [53] for details). 

4.5 Other models 

Additional extensions have also been proposed to use global 

shape information or prior shape information. For example, Ip 

and Shen [57] incorporated prior shape information by using an 

affine transformation to align a shape template with the 

deformable model and guide the model’s deformation to 

produce a shape consistent with the template. 

The deformable Fourier model, active shape model, and other 

extensions we discussed so far are all parametric deformable 

models. Guo and Vemuri[58] have proposed a framework for 

incorporating global shape prior information into geometric 

deformable models. Like the deformable superquadric, their 

hybrid geometric deformable model uses a combination of an 
underlying, low parameter, generator shape that is allowed to 

evolve. Their model thus retains the advantages of traditional 

geometric deformable models, such as topological adaptivity. 

External forces for deformable models are typically defined 

from edges in the image.  

 
(a) 

 
(b) 

 
(c) 

Figure 8: An example of constructing Point Distribution 

Models. (a) An MR brain image, transaxial slice, with 114 

landmark points of deep neuroanatomical structures 

superimposed.(b) A 114-point shape model of 10 brain 
structures. (c) Effect of simultaneously varying the model’s 

parameters corresponding to the first two largest eigenvalues 

(on a bidimensional grid). [source- Ravindra et.al.2010] 

Fritsch et al. [59] have developed a technique called deformable 

shape loci, which uses information on the medial loci or cores 

of the shapes to be extracted. The incorporation of cores 

provides greater robustness to image disturbances such as noise 

and blurring than purely edge-based models. This allows their 

model to be fairly robust to initialization as well as imaging 

artefacts. They also employed a probabilistic prior model for 

important shape features as well as for the spatial relationships 
between these features. 

 

V. CONCLUSION 

This paper describes the basic analysis of formulation of 

parametric and geometric deformable models and found that 

they are very effective in recovering shape boundaries. Even in 

literature it is found the derived explicit mathematical 

relationship between these two formulations that allows one to 

share the design of external forces and speed functions. This 
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may lead to new, improved deformable models. Finally, we give 

a brief overview of several important enhancements of de-

formable models that use application specific prior knowledge 

and/or global shape properties to obtain more robust and 

accurate results. 

This analysis and relationship of deformable models will be 
used for further improvements in deformable models will be 

made by the continued research in external force and speed 

function design, model representation, model training and 

learning, and model performance validation. Another 

challenging research direction is to develop deformable models 

that have a greater control on tomographic images and their 

retentions. Finally, integrating deformable models with existing 

medical systems, such as surgical simulation, planning, and 

treatment systems, can further validate the application of 

deformable models in a clinical setting and may in turn 

stimulate the development of better deformable models. 
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