Our health is directly influenced by our immune system. A balanced and healthy immune system is central to the body’s ability to defend against infections. “It is our ability to create a healthy immune system that represents the greatest potential for gains in human health.”

Today, however, many factors contribute to the general weakening of the body’s defenses. Antibiotics have begun to fail as the resistance of many infectious strains multiplies. Disease now spreads more easily than ever before due to the failure of government control of health codes, deterioration of water quality, and frequent international travel.

Fortunately, recent research has uncovered a natural agent that can increase our ability to fight disease and improve the quality of life for many people. Transfer Factor is the name given to this relatively new agent. It is found in colostrum and other sources and is a natural way of strengthening our immune systems against disease.

What is Transfer Factor?

Transfer Factor is the most exciting health discovery in recent decades. Transfer Factors are small immune messenger molecules that are produced by higher organisms. They have two roles. One role is to condition the cells of the immune system so that they are response-able; that is that they are sufficiently trained to be able to respond to an immune system challenge, such as an infection or malignancy. The second role is to transfer recognition signals between immune cells and thereby assist in educating naive immune cells about a present or potential danger.

Transfer factors are an ancient part of the immune system. They represent “An Archaic Dialect in the Language of Cells”. These Transfer Factors are very small molecules which contain the essence of the immunological message. Because transfer factors are so small they are non-allergenic.

In the harsh and hostile environment in which a baby suddenly finds itself, invading microorganisms could rapidly overcome and destroy the new life. Nature has provided a procedure to rapidly educate the infant’s naive immune system. Prior to delivering a baby, the expectant mother prepares a natural immunizing cocktail that she includes in the first milk (colostrum) she provides her new baby. Transfer Factor is a key part of this process.

Transfer Factors do not elicit an allergic response and are not species-specific. What this means is that Transfer Factors produced by a cow are just as effective in humans as they would be in another cow. This exciting ability could spark a revolution in medicine and has prompted the following statement: “Transfer Factor [has] an important role to play in modern medicine which, from AIDS to Ebola, faces the emergence of new viruses or the resurfacing of old pathologies such as tuberculosis.”

Transfer Factor has been successfully used to assist in the treatment of the following conditions:

<table>
<thead>
<tr>
<th>viral</th>
<th>fungal</th>
<th>neurological</th>
</tr>
</thead>
</table>
Overview of the Immune System

The immune system is a multifaceted system comprised of more than a trillion cells with a collective weight of about 1 kg (2.2 pounds). There are three essential properties of the immune system: first, it has the ability to recognize alien substances such as bacteria, viruses, and parasites; second, it specifically reacts to each invading pathogen; and third, the immune system remembers the alien invader and quickly destroys future invasions.

Many infectious agents mutate readily, thereby presenting a different appearance to the immune system. This is the reason that we are repeatedly susceptible to viral infections such as colds and flues. Some parasites also rapidly mutate to evade our immune defenses. This is the reason for the cyclical flare-ups experienced by malaria victims. Each mutation that alters the appearance of the virus or parasite must be dealt with by a separate immune response.

Transfer Factor and Immune Function

To communicate between cells, the immune system employs hormone-like signal substances. Transfer Factors are one class of immune communication substances that have been recently discovered.

An immature immune response may take 10-14 days to fully develop. This is what is called delayed hypersensitivity. Such a delay is not always healthy, as can be attested to by anyone who has fought a cold or flu for two weeks or more. Transfer Factors can help because they include both inducer/helper functions (Inducer Factors) and a suppressor function (Suppressor Factor). The Inducer Factor is the Transfer Factor component that translates an apparently mature immune response from the donor to the recipient. Transfer Factors have been shown to induce an immune response in less than 24 hours. Nevertheless, an overactive immune response to innocuous agents such as pollens or even our own body cells is not healthy. Suppression of such overreactions helps to control allergies and to prevent autoimmune diseases. Thus, both Inducer Factor and Suppressor Factor are conditioning agents that are part of an immunoregulatory network that keeps our immune system balanced.

Colostrum, the first milk produced by mammals, is a rich source of Transfer Factors. The role of the Transfer Factors in colostrum is to imprint on the infant immune system the recognition codes it needs to identify pathogens as hostile invaders. In an infant, initial immunity is established rapidly if the baby is allowed to nurse. Infants who are not breast-fed consistently show a greater susceptibility to infections and allergies.

The immunoglobulins found in colostrum can (and do) cause allergic reactions in other species. They are the source of most cow-milk allergies in humans. Transfer Factors, on the other hand, are not allergenic. In addition, as would be expected from the discovery of Transfer Factors in colostrum, it has been shown that Transfer Factors are equally effective whether administered by injection or taken orally. It has also been shown that a long-term oral administration of Transfer Factor preparations is safe. Infants and the elderly are the two groups especially at risk for infections. Oral administration of Transfer Factor is convenient and easily accepted by these age groups.

The History of Transfer Factor

Dr. H. Sherwood Lawrence discovered that an immune response could be transferred from a donor.

| parasitic | malignancies | autoimmune |
to a recipient by injecting an extract of leucocytes. The extract was postulated to contain a factor capable of transferring the donor’s immunity to the recipient. Lawrence called this substance “Transfer Factor”, the term now used by scientists. Thousands of papers have been published on the use of Transfer Factors.

Transfer Factor extracts are complex mixtures containing over two hundred individual Transfer Factors; not a single chemical entity like a standard pharmaceutical drug. Just as in nature, synergy between parts is the key. Separating natural products into their individual components often diminishes either efficacy or safety. This may also be true for Transfer Factors.

The idea of Transfer Factors simply flies in the face of conventional immunology. We could draw a parallel between medieval biases and those of today. In the 14th century the Black Plague killed a quarter of the European population. Attempts to deal with the Plague were blocked by superstitious adherence to conventional beliefs. Similarly, the progress of Transfer Factor research has been inhibited by the conventional dogmas of immunology. Even now this bias stifles progress that could be made in critical areas. In a recent international symposium on Transfer Factors, Dr. D. Viza stated,

At the end of the 20th century, the triumph of biology is indisputable. However, the triumph of biological science is far from being complete. The toll of several diseases, such as cancer, continues to rise and the pathogenesis of AIDS remains elusive. In the realm of inductive science, the dominant paradigm can seldom be challenged in a frontal attack, especially when it is apparently successful, and only what Kuhn calls ‘scientific revolutions’ can overthrow it. Thus, it is hardly surprising that the concept of Transfer Factor is considered with contempt. [since] its putative mode of action contravenes dogmas of both immunology and molecular biology. And when facts challenge established dogmas, be [it] in religion, philosophy or science, they must be suppressed because they challenge the prevalent paradigm. However, when observations pertain to lethal disorders, their suppression in the name of dogmas may become criminal. Because of the failure of medical science to manage the AIDS pandemic, Transfer Factor, which has been successfully used for treating or preventing viral infections, may today overcome a priori prejudice and rejection more swiftly.

Emerging strains of new, antibiotic-resistant “super-bugs” are a global problem. Over a dozen new food borne pathogens have been identified in the last twenty years. The American Society for Microbiology lamented that the spirit of cooperation and trust needed to deal with these problems appears to be lacking.

Just as clear evidence suggested a solution in dealing with the Black Plague, so too clear evidence indicates a potential solution to our modern plagues. We must take individual responsibility for our own health by strengthening our immune systems. This is the most critical health issue we face and Transfer Factor can play a major role in maintaining our immediate and long-term health.

Endnotes

i Personal communication with Richard Bennet, Ph.D. (11/17/97).

ii Immunology, Immunopathology and Immunity. Sell S. Appleton and Lange: Stamford CT 1996.

vi Immunology, Immunopathology and Immunity. Sell S. Appleton and Lange: Stamford CT 1996.
