Class-XI

Mathematics

Introduction to Three Dimensional Geometry

1. A point is on the x-axis. What are its y-coordinates and z-coordinates?

Ans. If a point is on the x-axis, then its y-coordinates and z-coordinates are zero.
2. A point is in the XZ-plane. What can you say about its y-coordinate?

Ans. If a point is in the XZ-plane, then its y-coordinate is zero.
3. Name the octants in which the following points lie:
i. $(1,2,3)$
ii. $(4,-2,-5)$
iii. $(-4,2,5)$

Ans.
i. The x-coordinate, y-coordinate and z-coordinate of point $(1,2,3)$ are all positive.

Therefore, this point lies in octant I.
ii. The x-coordinate, y-coordinate and z-coordinate of point ($4,-2,-5$) are positive, negative and negative respectively.

Therefore, this point lies in octant VIII.
iii. The x-coordinate, y-coordinate and z-coordinate of point $(-4,2,5)$ are negative, positive and positive respectively.

Therefore, this point lies in octant II.
4. Fill in the blanks:

Ans.
i. The x-axis and y-axis taken together determine a plane known as $\mathbf{X Y}$-plane.
ii. The coordinates of point in the XY-plane are of the form $(\mathbf{x}, \mathbf{y}, \mathbf{0})$.
iii. Coordinate planes divide the space into eight octants.
5. Find the distance between the pair of points $(-1,3,-4)$ and $(1,-3,4)$.

Ans. The distance between points $\mathrm{P}\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}, z_{2}\right)$ is given by
$\mathrm{PQ}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$
\therefore The distance between points $(-1,3,-4)$ and (1,-3,4)
$=\sqrt{(1+1)^{2}(-3-3)^{2}(4+4)^{2}}$
$=\sqrt{(2)^{2}+(-6)^{2}+(8)^{2}}$
$=\sqrt{4+36+64}$
$=\sqrt{104}$
$=2 \sqrt{26}$
6. Show that the points $(-2,3,5),(1,2,3)$ and $(7,0,-1)$ are collinear.

Ans. let points $(-2,3,5),(1,2,3)$ and $(7,0,-1)$ be denoted by P, Q and R respectively.
Points P, Q and R are collinear if they lie on a line.

$$
\begin{aligned}
\mathrm{PQ} & =\sqrt{(1+2)^{2}+(2-3)^{2}+(3-5)^{2}} \\
& =\sqrt{(3)^{2}+(-1)^{2}+(-2)^{2}} \\
& =\sqrt{9+1+4} \\
& =\sqrt{14}
\end{aligned}
$$

$$
\mathrm{QR}=\sqrt{(7-1)^{2}+(0-2)^{2}+(-1-3)^{2}}
$$

$$
=\sqrt{(6)^{2}+(-2)^{2}+(-4)^{2}}
$$

$$
=\sqrt{36+4+16}
$$

$$
=\sqrt{56}
$$

$$
=2 \sqrt{14}
$$

$$
\mathrm{PR}=\sqrt{(7+2)^{2}+(0-3)^{2}+(-1-5)^{2}}
$$

$$
=\sqrt{(9)^{2}+(-3)^{2}+(-6)^{2}}
$$

$$
=\sqrt{81+9+36}
$$

$$
=\sqrt{126}
$$

$$
=3 \sqrt{14}
$$

Here, $P Q+Q R=\sqrt{14}+2 \sqrt{14}=3 \sqrt{14}=P R$

Hence, points $P(-2,3,5), Q(1,2,3)$ and $R(7,0,-1)$ are collinear.
7. Verify the following:
i. $(0,7,-10),(1,6,-6)$ and $(4,9,-6)$ are the vertices of an isosceles triangle.

Ans. Let points $(0,7,-10),(1,6,-6)$ and $(4,9,-6)$ be denoted by A, B and C respectively.

$$
\begin{aligned}
A B & =\sqrt{(1-0)^{2}+(6-7)^{2}+(-6+10)^{2}} \\
& =\sqrt{(1)^{2}+(-1)^{2}+(4)^{2}} \\
& =\sqrt{1+1+16}
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{18} \\
& =3 \sqrt{2} \\
B C & =\sqrt{(4-1)^{2}+(9-6)^{2}+(-6+6)^{2}} \\
& =\sqrt{(3)^{2}+(3)^{2}} \\
& =\sqrt{9+9} \\
& =\sqrt{18} \\
& =3 \sqrt{2} \\
C A & =\sqrt{(0-4)^{2}+(7-9)^{2}+(-10+6)^{2}} \\
& =\sqrt{(-4)^{2}+(-2)^{2}+(-4)^{2}} \\
& =\sqrt{16+4+16} \\
& =\sqrt{36} \\
& =6
\end{aligned}
$$

Here, $A B=B C \neq C A$

Thus, the given points are the vertices of an isosceles triangle.
8. Find the equation of the set of points which are equidistant from the points $(1,2,3)$ and $(3,2,-1)$.

Ans. Let $P(x, y, z)$ be the point that is equidistant from points $A(1,2,3)$ and $B(3,2,-1)$.
Accordingly, $\mathrm{PA}=\mathrm{PB}$
$\Rightarrow P A^{2}=P B^{2}$
$\Rightarrow(x-1)^{2}+(y-2)^{2}+(z-3)^{2}=(x-3)^{2}+(y-2)^{2}+(z+1)^{2}$
$\Rightarrow x^{2}-2 \mathrm{x}+1+y^{2}-4 \mathrm{y}+4+z^{2}-6 \mathrm{z}+9=x^{2}-6 \mathrm{x}+9+y^{2}-4 \mathrm{y}+4+z^{2}+2 \mathrm{z}+1$
$\Rightarrow-2 x-4 y-6 z+14=-6 x-4 y+2 z+14$
$\Rightarrow-2 \mathrm{x}-6 \mathrm{z}+6 \mathrm{x}-2 \mathrm{z}=0$
$\Rightarrow 4 \mathrm{x}-8 \mathrm{z}=0$
$\Rightarrow \mathrm{x}-2 \mathrm{z}=0$

Thus, the required equation is $\mathrm{x}-2 \mathrm{z}=0$.
9. Find the coordinates of the point which divides the line segment joining the points ($2,3,5$) and ($1,-4,6$) in the ratio
i. $\quad 2: 3$ internally
ii. $\quad 2: 3$ externally

Ans.
i) Let $P(x, y, z)$ be any point which divides the line segment joining the points $A(-2,3,5)$ and $B(1,-4,6)$ in the ratio $2: 3$ internally.

$$
\text { Then } x=\frac{2 \times 1+3 \times(-2)}{2+3}=\frac{2-6}{5}=\frac{-4}{5}
$$

$$
\begin{aligned}
& y=\frac{2 \times(-4)+3 \times 3}{2+3}=\frac{-8+9}{5}=\frac{1}{5} \\
& z=\frac{2 \times 6+3 \times 5}{2+3}=\frac{12+15}{5}=\frac{27}{5}
\end{aligned}
$$

$\therefore \quad$ Coordinates of P are $\left(\frac{-4}{5}, \frac{1}{5}, \frac{27}{5}\right)$
(ii) Let $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ be any point which divides the line segment joining the points $71(-2,3,5)$ and $\mathrm{B}(1,-4,6)$ in the ratio $2: 3$ externally. Then

$$
\begin{aligned}
& x=\frac{2 \times 1-3 \times(-2)}{2-3}=\frac{2+6}{-1}=-8 \\
& y=\frac{2 \times(-4)-3 \times 3}{2-3}=\frac{-8-9}{-1}=17 \\
& z=\frac{2 \times 6-3 \times 5}{2-3}=\frac{12-15}{-1}=3
\end{aligned}
$$

$\therefore \quad$ Coordinates of P are $(-8,17,3)$
10. Given that $P(3,2,-4), Q(5,4,-6)$ and $R(9,8,-10)$ are collinear. Find the ratio in which Q divides PR.

Ans: Let $Q(5,4,-6)$ divides the line segment joining the points $P(3,2,-4)$ and $R(9,8,-10)$ in the ratio $k: 1$ internally.
$\therefore \quad$ Then coordinates of Q are

$$
\left(\frac{9 k+3}{k+1}, \frac{8 k+2}{k+1}, \frac{-10 k-4}{k+1}\right)
$$

But it is given that coordinates of Q are $(5,4,-6)$

$$
\begin{aligned}
& \therefore \quad \frac{9 k+3}{k+1}=5 \Rightarrow 9 k+3=5 k+5 \\
& \Rightarrow 4 k=2 \Rightarrow k=\frac{1}{2}
\end{aligned}
$$

Thus Q divides the line segment joining the
points P and R in the ratio $\frac{1}{2}: 1$ i.e., $1: 2$.
11. Using section formula, show that the points $A(2,-3,4), B(-1,2,1)$ and $C(0,13,2)$ are collinear.

Ans: Let the points $A(2,-3,4), B(-I, 2,1)$ and $C(0,13,2)$ be the given points. Let the point P divides $A B$ in the ratio $k: 1$. Then coordinates of P are $(-k+2 k+1,2 k-3 k+1, k+4 k+1)$
Let us examine whether for some value of k, the point P coincides with point C.

On putting $\frac{-k+2}{k+1}=0$, we get $k=2$
When $k=2$, then $\frac{2 k-3}{k+1}=\frac{4-3}{3}=\frac{1}{3}$ and

$$
\frac{k+4}{k+1}=\frac{2+4}{2+1}=2
$$

Therefore, $C\left(0, \frac{1}{3}, 2\right)$ is a point which divides
$A B$ internally in the ratio $2: 1$.
Hence A, B, C are collinear.
12. Find the coordinates of the points which trisect the line segment joining the points $P(4,2,-6)$ and $Q(10,-16,6)$.
Ans: Let R and S be two points which trisect the line segment $P Q$.

$\because P R=R S=S Q$
\therefore Point R divides the join of $P Q$ in the ratio 1:2
\therefore Coordinates of R are

$$
\begin{gathered}
\left(\frac{1 \times 10+2 \times 4}{1+2}, \frac{1 \times(-16)+2 \times 2}{1+2}, \frac{1 \times 6+2 \times(-6)}{1+2}\right) \\
=(6,-4,-2)
\end{gathered}
$$

Also, point S divides the join of $P Q$ in the ratio 2: 1
$\therefore \quad$ Coordinates of S are

$$
\begin{gathered}
\left(\frac{2 \times 10+1 \times 4}{2+1}, \frac{2 \times(-16)+1 \times 2}{2+1}, \frac{2 \times 6+1 \times(-6)}{2+1}\right) \\
=(8,-10,2)
\end{gathered}
$$

HOME WORK: NCERT:EX-12.1-3.
EX-12.2-1(i,ii,iv), 3(ii,iii), 5.

