
IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2111 | P a g e

An Efficient Auditing System for the Cloud
Ab Waheed Lone1, Sheikh Riyaz-ul-Haq2 , Syed Sarver Hussain3,

12Department of Information Technology, Central University of Kashmir, J&K, India
3Jammu and Kashmir Bank, Jammu and Kashmir, India

Abstract- A number of organizations are nowadays migrating

their critical information technology services, from healthcare

to business intelligence, into public cloud computing
environments. Cloud computing has been emerged as a

solution to the elevating storage costs of IT industry.

However, even if cloud technologies are continuously

evolving, they still have not reached a level that allows them

to provide users with high data integrity, consistency, and

security of their data beyond existent service level agreements.

Cloud storage moves the user’s data to immensely colossal

remotely located data centers, on which user does not have

any control. Hence to overcome this issue, we are going to

propose approach of service that is Consistency as a Service

known as CaaS. The Consistency as a Service (CaaS) model
concentrates on; in this we have large data cloud and small

multiple audit clouds. In the CaaS model, a CSP maintains the

data cloud, audit cloud can verify whether the data cloud

provides the promised level of consistency or not. We propose

a two-level auditing architecture, which only requires a

loosely synchronized clock in the audit cloud. Then, we

design algorithms to quantify the severity of violations with

two metrics.The data owner can also audit the data integrity in

the corresponding cloud for verifying whether the data is safe

or not. At last we devise a heuristic auditing strategy (HAS) to

reveal as many violations as possible.

Keywords- CSP, CaaS, Audit

I. INTRODUCTION

The popularity of cloud services has attained immense heights

with the world moving towards a data centric paradigm.

Availability is the biggest factor contributing towards the

growth of cloud computing. The cloud service provider (CSP)

has to ensure round the clock availability of data. Cloud

computing is driving the momentum towards making the

database available as a service on the cloud.Database services

take care of scalability and high availability of the database.
The CSP stores the different copies of data to immensely

colossal remote centers in a distributed manner Data needs to

be updated in several locations and a problem thus arises

when one or more of these locations are temporarily not

accessible. Sharing data and computations over a scalable

network of nodes, which will be end users, data centers and

web services is the main objective to be achieved.

The public cloud storage services like Amazon S3, Google

Cloud Storage and Windows Azure Storage replicate the data

to ensure high availability. On the other hand, with data being
replicated, the storage services exhibits certain data

consistency models. Different cloud service providers employ

different data consistency models nowadays. The physical

database administration tasks, such as backup, recovery,

managing the logs, etc., are managed by the cloud provider.

The responsibility for logical administration of the database,

including table tuning and query optimisation, rests on the

developer. These cloud offerings of database services still use

traditional SQL-based database technology, as underlying

platform not specifically reinvented for the cloud..

A consistency of type called as eventual consistency is
provided by many cloud service providers. Here a user can

read the data for particular time. Now-a-days stronger

consistency assurance is getting importance. Consider the

following figure. [1]

 Fig.1: Example to show casual consistency

Here data is stored in multiple copies on five cloud servers

(CS1, CS2…, CS5), users specified in the figure share data

through a cloud storage service. The cloud should be a

provider of casual consistency service. Alice uploads a data on

the cloud server CS4. This update should be reflected in all

servers. If only eventual consistency is maintained then the

receiver is going to receive only the old version of data. Such

integrated design based on traditional version may not satisfy

customer requirements thus strong consistency is needed

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2112 | P a g e

II. DATA CONSISTENCY AND INTEGRITY ON

THE CLOUD

Data consistency and integrity are two important aspects that

need to be ensured in all types of databases including the

cloud database.

Data consistency implies that all instances of an application
are presented with the same set of data values all of the time.

This is sometimes referred to as strong data consistency.Cloud

applications typically use data that is dispersed across

different data stores. Managing and maintaining data

consistency in such an environment is a critical aspect.

Concurrency and availability are the issues faced during this.

Strong consistency needs to be traded for availability. This

leads to the need of designing solutions around the notion of

eventual consistency and accept that the data might not be

completely consistent all of the time.

Maintaining data consistency across distributed data stores

which may be geographically at different locations is a
difficult task. Strategies such as serialization and locking only

work well if all application instances share the same data

store, and the application is designed to ensure that the locks

are very short-lived. If the data is partitioned or replicated

across different data stores, locking and serializing data access

to maintain consistency can become an expensive overhead

that impacts the throughput, response time, and scalability of a

system. Therefore, most modern distributed applications do

not lock the data that they modify, and they take a rather more

relaxed approach to consistency, known as eventual

consistency.

A. Strong Consistency

All the changes are atomic. If a transaction updates multiple

data items, the transaction is not allowed to complete until

either all of the changes have been made successfully or have

all been undone. The aim of the strong consistency model is to

minimize the chance that an application instance might be

presented with an inconsistent view of the data. In a

distributed environment, if the data stores holding the data

affected by a transaction are geographically remote from each

other, network latency could adversely impact the

performance of such transactions and result in concurrent

access to data being blocked for an extended period. If a
network failure renders one or more of the data stores

inaccessible during a transaction, an application updating data

in a system that implements strong consistency may be

blocked until every data store becomes accessible again.

In a distributed environment such as the cloud, implementing

strong consistency is not tolerant of the types of failure that

may occur. For example, it may not be possible to roll back a

transaction and release the resources that it holds if a

component participating in the transaction has stopped

responding due to a long-lasting network outage. In this case,

it will be necessary to resolve the situation through other
means, such as manually reconciling the data.

B. Eventual Consistency
In many cases, strong consistency is not actually required as

long all the work performed by a transaction is completed or

rolled back at some point, and no updates are lost. In the

eventual consistency model, data update operations that span

multiple sites can ripple through the various data stores in
their own time, without blocking concurrent application

instances that access the same data. One of the drives for

eventual consistency is that distributed data stores are subject

to the CAP Theorem. This theorem states that a distributed

system can implement only two of the three features

(Consistency, Availability, and Partition Tolerance) at any one

time. integrity ensures data is recorded exactly as

intended.data is the same as it was when it was originally

recorded. In short, data integrity aims to prevent unintentional

changes to information.

(I) Data consistency models of providers

A. Amazon S3 Data Consistency Model

Amazon S3 provides read-after-write consistency for PUTS of

new objects in your S3 bucket in all regions with one caveat.

The caveat is that if you make a HEAD or GET request to the

key name (to find if the object exists) before creating the

object, Amazon S3 provides eventual consistency for read-

after-write.

Amazon S3 offers eventual consistency for overwrite PUTS

and DELETES in all regions.

Updates to a single key are atomic. For example, if you PUT

to an existing key, a subsequent read might return the old data
or the updated data, but it will never write corrupted or partial

data.

Amazon S3 achieves high availability by replicating data

across multiple servers within Amazon's data centers. If a

PUT request is successful, your data is safely stored.

However, information about the changes must replicate across

Amazon S3, which can take some time, and so you might

observe the following behaviors:

1. A process writes a new object to Amazon S3 and

immediately lists keys within its bucket. Until the change is

fully propagated, the object might not appear in the list.

2. A process replaces an existing object and immediately
attempts to read it. Until the change is fully propagated,

Amazon S3 might return the prior data.

3. A process deletes an existing object and immediately

attempts to read it. Until the deletion is fully propagated,

Amazon S3 might return the deleted data.

4. A process deletes an existing object and immediately lists

keys within its bucket. Until the deletion is fully propagated,

Amazon S3 might list the deleted object.

B. Google cloud consistency

Strongly consistent operations Cloud Storage provides strong

global consistency for the following operations, including
both data and metadata:

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2113 | P a g e

 Read-after-write

 Read-after-metadata-update

 Read-after-delete

 Bucket listing

Object listing

Granting access to resources
When you upload an object to Cloud Storage, and you receive

a success response, the object is immediately available for

download and metadata operations from any location where

Google offers service. This is true whether you create a new

object or overwrite an existing object. Because uploads are

strongly consistent, you will never receive a 404 Not Found

response or stale data for a read-after-write or read-after-

metadata-update operation.In addition, when an upload

request succeeds, it means your data is replicated in multiple

data centers. The latency for writing to Cloud Storage's

globally consistent, replicated store may be slightly higher

than for a non-replicated or non-committed store. This is
because a success response is returned only when multiple

writes complete, not just one. Strong global consistency also

extends to deletion operations on objects. If a deletion request

succeeds, an immediate attempt to download the object or its

metadata will result in a 404 Not Found status code. You get

the 404 error because the object no longer exists after the

delete operation succeeds.Bucket listing is strongly consistent.

For example, if you create a bucket, then immediately perform

a list buckets operation, the new bucket appears in the

returned list of buckets. Object listing is also strongly

consistent. For example, if you upload an object to a bucket
and then immediately perform a list objects operation, the new

object appears in the returned list of objects.

C. Windows Azure consistency model

In WAS, data is stored durably using both local and

geographic replication to facilitate disaster recovery.

Currently, WAS storage comes in the form of Blobs

(files), Tables (structured storage), and Queues

(message delivery). In this paper, we describe the WAS

architecture, global namespace, and data model, as well as

its resource provisioning,load balancing, and replication

systems

III. LITERATURE REVIEW

Integrity of data is quit important the main aim of the existing

system is to provide verification for integrity of different data

storage systems, the problem of supporting both public audit

ability and data dynamics has still not been solved or

addressed. The existing system follows eventual consistency

that is there is no dynamic updating of data, the customers can

access data stored in a cloud anytime and anywhere, without

actually caring about a substantial amount of capital

investment when deploying the underlying hardware

infrastructures. The updates done to a name will not be visible
immediately in the system. The user won’t be able to see

them, but the system where the clients are working with the

system, have to make sure they are going to see them

eventually.[2]

Major disadvantages of the existing system [3] :-

(a).The infrastructure under the cloud are still facing the broad

range of internal and external threats for security and data
integrity although being more powerful and reliable than

computing devices.

(b). It is not a practical solution to simply download all the

data for testing integrity of data the reason being the

Expensiveness in transmission (I/o).

(c). User cannot see the latest updates. [4]

IV. PROPOSED SYSTEM

We have proposed a standard model called as a consistency

technique defined as CaaSmodel. Here the proposed model

follows a two-level efficient auditing structure. This aids the

users in checking whether the cloud service provider (CSP)
guarantees consistency service. It also enables one to express

the severity of the violations, present if any. Further with the

CaaS model, the system users can take the decision to choose

a right CSP in the various candidates present and will be able

to assess the quality work of cloud services. Example the

cloud service which provides less expensive one operation but

able to provide strong consistency for the applications of

users.

Our key contributions are as follows:

1) A novel consistency as a service (CaaS) model has been

presented
2) A two-level auditing structure proposes

3) Algorithms to quantify the severity of violations with

different metrics have been designed

4) A heuristic auditing strategy (HAS) to reveal as many

violations as possible.

The advantages offered include, cloud consistency and an

efficient auditing item set result based on the CaaS obtained.

Cloud consistency has become an inevitable part as it is

playing an increasingly important role in the decision support

activity of every walk of life.

Fig.2: System architecture

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2114 | P a g e

A. Data owner

The owner has privileges to upload the data on cloud server.

For the security purpose the data is encrypted the data file is

then stored in the cloud. The Data owner thus can manipulate

the encrypted data file which is being uploaded to the cloud.

As shown in level 0 The data is send to audit cloud the audit
cloud can check data integrity and can create end users and set

permissions (read and write) to user.

Fig.3: Level 0 diagram

B. Data Consumer

The end user sends a request and gets file contents response

from the corresponding cloud servers. The audit cloud checks

the file name and secret key, access permission if its correct

then the end is getting the file response from the cloud if there

is no match he will be considered as an attacker and also can

be blocked in corresponding cloud. The end user request for

the required file by using file name and secret key to the audit

cloud. The audit cloud verifies the user details such as file

name and secret key. If the given filename and secret key is
correct it would allow the user to access & authorize the file

.If there is no match of file name and secret key then the user

cannot access the file.

The audit cloud performs auditing i.e local auditing and

global auditing. UOT or the user operation table has

operations of each user records. This is also referred to as a

local trace of operations in this paper. Each user can perform

local auditing independently with his own UOT; periodically,

an auditor is elected from the audit cloud. In this case, once

UOTs are updated all other users will send their UOTs to the

auditor, which will perform global auditing .We, simply let
each user become an auditor in turn, that will provide a more

comprehensive solution.

Fig.4: Level 1diagram

C. User Operation Table (UOT)

For recording local operations each user maintains UOT.

there are mainly three elements: operation whether read or

write, logical vector (event timestamp), and physical

vector(physical clock).[5] When an operation is issued, a user

will record this operation, as well as his current logical vector
and physical vector, in his UOT.

Fig.5: user records this operation, as well as his current logical

 vector and physical vector, in his UOT

Algorithm 1

Local consistency auditing

Initial UOT with ∅
While issue an operation op does

If op = W (a) then

Record W (a) in UOT

If op = r (a) then

W (b) ∈ UOT is the last write

If W (a) → W (b) then

Read-your-write consistency is violated

R(c) ∈ UOT is the last read

If W (a) → W(c) then

Monotonic-read consistency is violated

Record r (a) in UOT

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2115 | P a g e

The UOT after performing the local auditing and global

 auditing for various operations looks like

Global auditing algorithms will contain the strategy described

in the figure

 Fig.6: strategy of algorithms

A. Heuristic auditing strategy

Observing from the auditing process we conclude only reads
can reveal violations by their values. [7] Therefore, to reveal

maximum violations as possible our heuristic auditing strategy

(HAS) issued is to add these additional reads are called as

auditing reads.[8] The idea behind heuristic auditing strategy

(HAS) aims to add appropriate reads for revealing as many

violations as possible. [6]

V. RESULTS AND CONCLUSION

The Cloud platform not only enables users to store their data

but also provides services for hosting and running their

applications, infrastructure and other services. It is an

economical platform for users following pay-per-use model.
In the corporate and real use world, large number of clients

accessing and modify data on the cloud on a daily basis. The

real world use leads to the need of maintaining data integrity

and consistency. Thus there is a need of a third party auditor

(TPA) to achieve this. This paper provided consistency as a

service model. The technique proposed uses local auditing and

global auditing to check wheather the CSP is going to provide

a valid consistency and integrity of data or not. The heuristic

auditing strategy is performed to know whether the files are

safe or not the main aim is to provide the security of data that

is stored on cloud through encrption. The work done is better
than the existing systems as it improves security by enabling

encryption and leads to improved consistency services. This

work can be further expanded in future by conducting an

exhaustive theoretical study of consistency models in cloud

computing.

VI. REFERENCES
[1]. Blokland, K., Mengerink, J. and Pol, M., 2013. Testing cloud

services: how to test SaaS, PaaS & IaaS. Rocky Nook, Inc..
[2]. Liu, Q., Wang, G. and Wu, J., 2014. Consistency as a service:

Auditing cloud consistency. IEEE Transactions on Network and
Service Management, 11(1), pp.25-35.

[3]. Shrinivas, D., 2011. Privacy-preserving public auditing in cloud
storage security. International Journal of computer science nad
Information Technologies, 2(6), pp.2691-2693.

[4]. Halpert, B., 2011. Auditing cloud computing: A security and
privacy guide (Vol. 21). John Wiley & Sons.

[5]. Ko, R.K., Jagadpramana, P., Mowbray, M., Pearson, S.,
Kirchberg, M., Liang, Q. and Lee, B.S., 2011, July. TrustCloud:
A framework for accountability and trust in cloud computing.
In Services (SERVICES), 2011 IEEE World Congress on (pp.
584-588). IEEE.

[6]. Wang, C., Ren, K., Lou, W. and Li, J., 2010. Toward publicly

auditable secure cloud data storage services. IEEE
network, 24(4).

[7]. Li, J., Tan, X., Chen, X. and Wong, D.S., 2013, September. An
efficient proof of retrievability with public auditing in cloud
computing. In Intelligent Networking and Collaborative Systems
(INCoS), 2013 5th International Conference on (pp. 93-98).
IEEE.

[8]. Sookhak, M., Talebian, H., Ahmed, E., Gani, A. and Khan,

M.K., 2014. A review on remote data auditing in single cloud
server: Taxonomy and open issues. Journal of Network and
Computer Applications, 43, pp.121-141.

[9]. Bessani, A., Correia, M., Quaresma, B., André, F. and Sousa, P.,
2013. DepSky: dependable and secure storage in a cloud-of-
clouds. ACM Transactions on Storage (TOS), 9(4), p.12.

[10]. Mohta, A., Sahu, R.K. and Awasthi, L.K., 2012. Robust data
security for cloud while using third party auditor. International

journal of advanced research in computer science and software
engineering, 2(2).

[11]. Mohta, A. and Awasti, L.K., 2012. Cloud data security while
using third party auditor. International Journal of Scientific &
Engineering Research, 3(6), p.1.

[12]. Houlihan, R. and Du, X., 2012, December. An effective auditing
scheme for cloud computing. In Global Communications
Conference (GLOBECOM), 2012 IEEE (pp. 1599-1604). IEEE.

[13]. Yang, G., Yu, J., Shen, W., Su, Q., Fu, Z. and Hao, R., 2016.
Enabling public auditing for shared data in cloud storage
supporting identity privacy and traceability. Journal of Systems
and Software, 113, pp.130-139.

[14]. Bhardwaj, R. and Maral, V., 2013. Dynamic Data Storage
Auditing Services in Cloud Computing. International Journal of
Engineering and Advanced Technology (IJEAT) ISSN, 2249,
p.8958.

[15]. Duan, Y., Fu, G., Zhou, N., Sun, X., Narendra, N.C. and Hu, B.,

2015, June. Everything as a service (XaaS) on the cloud:
origins, current and future trends. In Cloud Computing
(CLOUD), 2015 IEEE 8th International Conference on (pp.
621-628). IEEE.

