
IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 742 | P a g e

Efficient Software Fault Prediction and Classification

using Evolutionary Cost-Sensitive Deep Belief Network
HM Premalatha1, CV Srikrishna2

1PES University, India

2PES Institute of Technology, India

 (E-mail: premalathaphd2017@gmail.com)

Abstract—In software engineering, Software Fault

Prediction (SFP) is a vital approach, especially in software

development for improving the software product quality. In

software systems, faulty modules are in minority class while

the majority class of the modules are non-faulty modules. This

scenario affects the performance and efficiency of prediction

models. Hence, faulty module’s misclassification costs have

more impacts on software quality. In this research paper, an

efficient software fault detection method is proposed, namely

Evolutionary Cost-Sensitive Deep Belief Network (ECS-

DBN) algorithm. The proposed ECS-DBN method helps to

avoid the misclassification of software faults and improves

performance of classification. An experimental analysis was

conducted on reputed database, namely NASA for fault

prediction. The performance was measured using evaluation

metrics such as precision, recall, f-measure, accuracy and error

rate. Compared to the traditional CBA-SVM method, the

ECS-DBN method achieved approximately 4.4% of

improvement with respect to software defect prediction.

Keywords—Defect Prediction; Deep Belief Network;

Imbalance Data; Misclassification Rate; Software

classification.

I. INTRODUCTION

A software defect is a fault, error, or failure in a software. It
produces either an incorrect, or unexpected result randomly,
which considers as a deficiency in a software product [1]. The
SFP is a significant process in system deployment because it
helps to decrease the errors and improve the software quality.
Earlier fault detection technique requires more time for fault
identification and software product delivery. In software
development life cycle, software metrics and efficient SFD
methods help to construct the models to detect the faulty
classes as well as non-faulty classes [2-5]. In software
development phase, developers should collect the needful
resources, then start the development process [6-8]. For,
example if only 30% of testing resources are available, the
knowledge of the weaker areas will help the testers in focusing
the available resources on fixing the classes/modules that are
more vulnerable to faults. Hence, a low cost, high quality and
maintainable software can be produced in the given time and
budget [9-11].

Numerous researchers introduced various SFP techniques
with respect to imbalance data classification. For example,

Nearest Neighbor (NN) algorithm identifies the defects in same
class label, but it has the difficulty to handle the class
imbalance learning issue [12]. In SFP, another challenging
issue is the sample subset optimization problem [13]. The
software faults are identified in the dataset, but class imbalance
issue maximize the complexities of software defect predictions.
Also, the misclassification prediction increases the costs of
training instances [14 -15]. In this research work, an efficient
SFP strategy ECS-DBN algorithm has been proposed. The
proposed ECS-DBN algorithm identify the software defects
and classify the imbalanced data. The significant contribution
of the proposed SFP method is addressed below.

 The proposed ECS-DBN method significantly
decreases the misclassification cost and error
rates of software defect classification.

 In order to handle the imbalanced data problems,
CSL method is applied to the DBN and improve
the performance in training dataset.

 The Differential evolution operators are adopted
in ECS-DBN method to solve the optimization
problem by iteratively searching for a solution
given in an evaluation metric.

This paper is organized as follows: Section 2 surveys
several existing techniques of SFP. The proposed ECS-DBN
algorithm is explained in section 3. Section 4 illustrates the
SFP performance of the proposed method and existing
methods. Finally, the conclusion of the research work is
explained in section 5.

II. LITERATURE REVIEW

Numerous methods have been proposed by researchers on
software testing. In this section, a brief review of some
important contributions to the existing methodologies [16-21]
of SFP is presented below.

R. Gao, W. E. Wong, Z. Chen, and Y. Wang, [16]
presented Hamming Distance and K-Means Clustering
algorithm (HM-KM) for predicting the success and failure of
the execution result. The HM-KM algorithm avoid the output
verification step and directly identifies the bugs in the software.
Moreover, the HM-KM algorithm not only detects the single
bugs, but also detects the multiple bugs by the coverage of each
test sample. This framework was robust because it able to
detect the noisy sample misidentification of success and failed
test cases. The small number of executions shows the expected

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 743 | P a g e

output but for the complex applications it not able to detect the
faults.

Z. W. Zhang, X. Y. Jing, and T. J. Wang, [17] implemented
a novel Non-Negative Sparse Graph based Label Propagation
approach (NSGLP) for semi-supervised learning in software
defect prediction, which uses not only few labeled data but also
abundant unlabeled ones to improve the generalization
capability. The paper constructed a class-balance labeled
training dataset and learn a sparse graph for characteristics of
defect data by Laplacian score sampling and sparse
representation. The NSGLP method used the constructed graph
to predict the labels of the unlabeled software modules through
label propagation approach. As compared with several existing
semi-supervised software defect prediction methods, the
experiments on ten NASA datasets showed that the NSGLP
approach provided better performance for the software defect
prediction task, but this method leads poor performance in
defect prediction due to insufficient labeled data.

K.N. Rao, and C.S. Reddy, [18] presented Improved
Correlation over Sampling (ICOS) approach for SFP in
imbalanced classes. The existing decision tree approaches
failed to extract the relevant information because of issues in
model construction. The proposed ICOS method was applied to
the oversampling data to create a new object to extract the
relevant information from the corpus. The experimental results
confirmed that the proposed ICOS approach efficiently
identified the modules which were error-prone using simple
and less number of rules. The software engineering challenges
like consistency, cost estimation, scalability were not
considered in proposed ICOS method.

X. Rong, F. Li, and Z. Cui, [19] presented Support Vector
Machine with Capacity of Bat Algorithm (SVM-CBA) for
identifying the software faults. The major benefit of SVM-
CBA algorithm is that it enclosed with the non-linear
computing ability of SVM model and optimization capacity
from CBA algorithm. The SVM-CBA strategy rectified the
problem of redundant dataset and improved the prediction
accuracy. Moreover, an experimental analysis of the SFP
performance of the SVM-CBA method showed better results
than the traditional methods. The SVM-CBA method not able
to handle the all training data samples at a time, hence
considers the limited number of training samples for fault
prediction.

E. Erturk, and E. A. Sezer, [20] developed Mamdani kind
of Fuzzy Inference System (MFIS) for SFP. At first, FIS model
was used for predicting the software faults and not required the
training process. The MFIS method generates the output in
significant two steps, those are fuzzification, and rule
evaluation. Aggregation of the rule output and de-fuzzification.
The proposed models used for class-level metric for SFP to
select the most valid and useful design alternatives. The MFIS
model efficiently predicts the faults in the small scale dataset,
but misclassification problem occurred in large scale dataset.

C. Manjula, and Lilly Florence, [21] introduced a hybrid
approach (i.e. Improved Genetic algorithm (IGA) with Deep
Neural Network (DNN)) by combining GA for feature
optimization with DNN for classification. An IGA approach
was the enhanced version of GA, it modified the chromosome

designing and fitness function computation steps to find the
optimal solution. The DNN classifier used the adaptive auto-
encoder for better indication of selected software features. The
method provides poor performance when the dataset is
imbalance.

To overcome the above issues addressed by the existing
methods, the proposed ECS-DBN method helps to estimate the
misclassification costs automatically to improve the
performance of CSDBN.

III. PROPOSED METHODOLOGY

The SFP has become a vital task in the software
development process because the software products are
growing rapidly. SFP is very important for minimizing fault
effects in software modules and improving the effectiveness of
the software development process. The existing SFP techniques
suffers from class imbalance problem and it generates false
predictions of software executions, hence the misclassification
cost of each class increase. In this paper, the ECS-DBN
algorithm is proposed to reduce the misclassification rates in
SFP. The proposed SFP architecture includes several steps
such as input data collection, preprocessing, SFP process, and
prediction of outcome. The proposed block diagram is shown
in the Fig. 1.

Fig. 1 Block diagram of proposed software fault prediction

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 744 | P a g e

A. Preprocessing

The data preprocessing step converts the raw data into a
clean data set. An input data collected from the various sources
and those data are not in a structured format, so it’s difficult to
use in further process. In this step, the normalization
preprocessing method is applied for the data preprocessing.
Normalization is a scaling technique; it rescales the size of the
dataset. Normalization method helps to modify the
unstructured dataset in structured one and provide the ranges
between 0 to 1.

B. Software Fault Prediction process

In this research work, the ECS-DBN algorithm used for
SFP. According to proposed algorithm, at first a population of

misclassification cost is randomly initialized. Next, train the
DBN algorithm with respect training dataset, then
misclassification costs are applied to the DBN output. In order
to change the misclassification costs, the mutation and
crossover operators are used. Finally, during the runtime,
evaluate the result of ECS-DBN algorithm with a training set to
report the performance.

1) Cost-sensitive Deep Belief Network
The pre-processed software defect and non-defected data

are forwarded to the SFP step to detect the defects by the ECS-
DBN method. The ECS-DBN method use the Cost Sensitive
Learning (CSL) model to reduce the overall cost in training
sets. The graphical representation of different layers of
CSDBN method is shown in the Fig. 2.

Fig. 2. Architecture of CSDBN

Consider, the overall classes are indicated as K , input data
is represented as x , misclassification cost is represented

as , j 0,1iC . Moreover, , j 0iC , when i j , represents the

correct classification cost is 0 . The , jiC is defined as

misclassification cost of prediction class i and true class j .

With the help of decision rule, it decrease the expectation cost

 |R i x and mathematical expression is shown in Eq. (1).

 ,

1, 1

| |
n

i j

j j

R i x P j x C

 (1)

Where, |P j x is the posterior probability estimation of

classifying the data sample into class j . Based on the Bayes

decision theory, classifier determines the classification risks
and predict the risks of every class. However, in real-world
applications the misclassification costs are essentially unknown
and non-identical among various classes. The previous studies
usually attempt to determine misclassification costs through
trail-and-error, which does not lead to optimal misclassification
costs. Some studies have designed some mechanisms to update
misclassification costs based on the number of samples in

different classes. To avoid hand tuning of misclassification
costs and achieve optimal solution, Adaptive Differential
Evolution (ADE) algorithm has been implemented in this
paper. ADE algorithm is a simple yet effective evolutionary
algorithm which could obtain the optimal solution by evolving
and updating a population of individuals during several
generations. It can adaptively self-updating control parameters
without prior knowledge.

Consider, the probability of sample data is indicated
as x S , particular class j and y is represented as stochastic

variable and it’s expressed in Eq. (2).

 | max jP y j x soft b Wx (2)

The threshold value of misclassification helps to detect the
posterior probabilities in each class and reduce the
misclassification costs. The threshold value is indicated as C

and attained posterior probability is signified as |P y j x ,

the updated probabilities are indicated as P and calculated in

Eq. (3).

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 745 | P a g e

 | | .P y j x P y j x C (3)

Normally, compare to the majority classes the minority
class misclassification threshold value is maximum. The

hypothesized prediction ()f of the sample is the

member of the maximum probability among classes, can be
obtained by using the following Eq. (4):

 arg max() |jf P y j x (4)

The proposed CSL method only concerns the output layer
of a DBN. For the pre-training and fine-tuning phase, the
greedy layer based ECS-DBN method implemented.

2) Procedure for Training ECS-DBN
First, the cost sensitive learning method randomly

initializes a population of misclassification costs. Second, use
the training set to train a DBN. Third, according to the
evaluation performance on the training set, select proper
misclassification costs to generate the population of the next
generation. Fourth, in the next generation, use mutation and
crossover operator to evolve a new population of
misclassification costs. ADE algorithm will proceed to the next
generation and continue the mutation process to select the
optimal solution from the search space. The training process of
ECS-DBN is shown below.

 Pre-training phase:

1. Let tS be the training set.

2. Pre-train DBN using greedy layer-wise training

algorithm with
tS .

Fine-tuning phase:

1. Misclassification costs are randomly initialized.

2. The DE operators of mutation and crossover helps to
generate new population of misclassification costs.

3. Corresponding misclassification costs are multiplied
to the training output and evaluate the errors in
training data.

4. Based on the performance evaluation, select the
misclassification costs and ignore the inappropriate
attribute, move for the next generation.

5. Continuously repeat the mutation and selection
process to reach the maximum number of generation.

Eventually, the method obtains the best misclassification
costs and apply it on the output layer of DBN to form ECS-
DBN. At run-time, test the resulting CSDBN with test dataset
to report the performance. The misclassification costs help to
encode the chromosome as numerical type with range [0, 1]. A
maximum number of generation are set as the termination
condition of the algorithm. The algorithm is terminated to
converge upon the optimal solution. At the end of the
optimization process, the best individual is used as
misclassification costs to form an ECSDBN. Then test the
performance of the generated ECS-DBN on test dataset.

IV. EXPERIMENTAL RESULT

The proposed ECS-DBN algorithm has been implemented
in Java NetBeans 8.2 version and 32 bit operating system, and
8GB RAM.

A. Dataset Description

The CM1 dataset (NASA,
http://promise.site.uottawa.ca/SERepository/datasets/cm1.arff)
is used for the performance analysis of the proposed work.
CM1 is a NASA spacecraft instrument written in “C” language.
It includes 497 modules with 9% fault-prone modules and
overall 22 attributes were considered in this paper. Data were
obtained from McCabe and Halstead feature code extractors.
These features are already defined to objectively characterize
the code features associated with software quality [22].

B. Performance Analysis

In this section, the performance of the proposed ECS-DBN
technique is analyzed and compared with the existing
techniques. Classification techniques play a significant role in
identifying the fault-prone modules. The classification
algorithm learns from the training set and creates a model to
classify new objects. Here, approximately 497 samples are
available in that 350 samples are training and 148 samples are
testing. The ECS-DBN performs efficient and accurate
prediction of the faulty module. According to the experimental
studies, it is observed that the majority of software modules
does not cause faults in software systems, only 20% of all
software modules is found to be the faulty modules. The
metrics used for the performance analysis are Accuracy,
Overall error rate, Detection probability, FPR, False alarm
probability, FNR, Precision, Recall and F1-measure.

1) Confusion Matrix
False Negative (FN) is the condition of predicting the faulty

module as non-faulty module. False positive (FP) is labeling of
the non-faulty module as faulty module. True positive (TP) is
the correct classification of the faulty module, and true
negative (TN) is the prediction of the faulty module as non-
faulty module. Table 1 shows the confusion matrix values.

TABLE I. CONFUSION MATRIX FOR FAULT AND NON-FAULT MODULES

Actual Labels Predicted Labels

Non-faulty Faulty

Non-faulty TN FP

Faulty FN TP

2) Accuracy
The classification technique is used rapidly for the effective

prediction of the software modules. Accuracy measures the
probability of correctly classified fault-prone modules. The Eq.
(5) explains the accuracy as:

TN TP
accuracy

TN TP FN FP

 (5)

3) Precision

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 746 | P a g e

This parameter calculates the accurate faulty modules from
the total number of software modules. If the precision value is
high, the time and effort required for testing and inspecting the
software modules reduce, which is represented in Eq. (6).

TP

Precision
FN TP

 (6)

4) Recall
Recall is defined as the number of modules that are

correctly predicted as faulty to the total number of software
modules. It is also called as sensitivity expressed in Eq. (7).

TP
Recall

TP FN

 (7)

5) F-Measure
F-measure is the harmonic mean of both precision and

recall values. It is defined in Eq. (8)

2 recall precision
F measure

recall precision

 (8)

6) False Positive Rate and False Negative Rate
The False Positive Rate (FPR) calculates the non-fault

modules which are forecasted as faulty modules. The False
Negative Rate (FNR) calculates the faulty modules which are
predicted as non-faulty. The Eq. (9-10) explained the FPR and
FNR.

FP
FPR

FP TN

 (9)

FN
FNR

TP FN

 (10)

7) Overall Error Rate
In the software defect prediction process, the overall error

rate is defined as the ratio of the fault prediction to the total
number of predictions. Misclassification of the fault-prone
modules generally incurs much higher rate than the
misclassification rate of the non-fault-prone modules. The
overall error rate is the ratio of the sum of FN and FP values to
the sum of TP, TN, FP and FN values. The overall error rate is
mathematically shown in Eq. (11).

FN FP
overall error rate

TP FP TN FN

 (11)

8) Probability of False Alarm

Probability of false alarm (PF) is defined as the ratio of
incorrect prediction of the faulty modules as non-faulty
modules. It is defined as in Eq. (12).

FN
PF

TN FN

 (12)

C. Performance analysis of software fault prediction

In this section, SFP performance was measured with
respect to different parameters such as accuracy, precision,
recall and f-measure. The SFP performance was compared to
the existing algorithms, namely Capacity of Bat Algorithm-
SVM (CBA-SVM) [19], SVM, and Back Propagation Neural
Network (BPNN). The existing CBA-SVM method handles
large number of software modules, but data were redundant,
hence the prediction performance was degraded. The
traditional SVM algorithm helps to classify the software
defects, but limited parameters are available. The proposed
ECS-DBN algorithm shows better results than the existing
methods.

TABLE II. PERFORMANCE OF SOFTWARE FAULT PREDICTION

Methodologies Parameters (%)

Accuracy Precision Recall F-Measure

BPNN [19] 90.5 94.2 88.2 85.4

SVM [19] 90.5 97.0 92.1 94.5

CBA-SVM [19] 94.0 98.0 94.0 96.0

ECS-DBN 98.4 98.0 98.4 98.0

Table 2 shows the performance analysis of ECS-DBN
algorithm with respect to CM1 dataset. The CBA-SVM
algorithm achieved approximately 94.0% of accuracy, 98.0%,
94.0% and 96.0% of precision, recall, and f-measure
respectively. The proposed ECS-DBN algorithm achieved
approximately 97.4%, 98.0%, 98.4%, and 98.0% in terms of
accuracy, precision, recall, and f-measure respectively. The
proposed ECS-DBN method able to handle the large scale
dataset and avoids the redundant data samples. Moreover,
mutation and crossover operators help to select the optimized
solution and it’s easy to classify the faulty and non-faulty
samples. The graphical representation of performance analysis
is shown in the Fig. 3.

Fig. 3. Performance of software fault prediction

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 747 | P a g e

The Fig. 3 represents the performance analysis of the SFP.
According to the graph, the BPNN and SVM method shows
90.0% of prediction accuracy. The traditional CBA-SVM
method achieved 94.0% of accuracy. The proposed ECS-DBN
method achieved approximately 98% of prediction accuracy.
The table 3 depicts the performance of the ECS-DBN method.

TABLE III. PERFORMANCE OF ECS-DBN

Techniques PF FNR FPR Overall Error Rate

ANN [23] 0.097 1.0 0.00 0.098

HySOM [24] 0.071 0.62 0.05 0.08

Proposed ECS-DBN 0.013 0.49 0.004 0.02

The proposed technique shows less error rate compare to
the existing technique and reduces the misclassification rate of
software modules. So, overall performance of the proposed
technique is better than the existing approaches. It is also
observed that the classification and prediction performance of
the proposed technique achieves high accuracy and minimum
error rate.

D. Comparative Analysis

In this section, the existing SFP technique’s fault detection
performance was compared to the proposed ECS-DBN method
and the result is tabulated in table 4. Rong, X., Li, F. and Cui,
Z., [19] presented CBA-SVM method for fault prediction in
software modules. This algorithm achieved approximately
94.0% of prediction accuracy. Finally, hybrid approach (i.e.
Genetic algorithm with Deep Neural Network (GA+DNN)) in
[23]. However, the performance of ANN-ABC was degraded
when applying the same approach to other software defect
prediction datasets.

TABLE IV. COMPARISON ANALYSIS OF ECS-DBN WITH EXISTING

METHODS IN CM1 DATASET

Authors Methodologies Fault Prediction

Accuracy (%)

Rong, X., Li, F. and Cui, Z., [19] CBA-SVM 94.0

C. Manjula, and Lilly Florence, [23] GA+ DNN 97.5

O. F. Arar, and K. Ayan, [25] ANN+ABC 68

Proposed ECS-DBN 98.0

The O.F. Arar, and K. Ayan, [25] presented ANN+ABC
method for SFP. The parametric cost-sensitivity feature was
added to ANN by introducing a new error function. The
misclassification cost of positive and negative classes was set
with related coefficients. The GA+DNN method provides poor
performance when the CM1 dataset is imbalance. The
ANN+ABC achieved approximately 97.5% of accuracy.
Finally, the proposed ECS-DBN method achieved
approximately 98.0% of accuracy.

V. CONCLUSION

Early detection and prediction of software defects plays an
important role in the software industry in terms of quality
measurement. To solve the issues in software bugs, various
techniques have been developed by researchers in the past. In
this research paper, to predict defect in the software module an

efficient algorithm is proposed namely ECS-DBN. The ECS-
DBN method used the CSL strategy to identify the unknown
misclassification costs in the classes. In this experimental
analysis, the input data were considered from the reputed
dataset namely CM1 dataset. The performance of ECS-DBN
model is measured using evaluation metrics such as Accuracy,
Sensitivity, Specificity, Precision, false alarm, PD, FNR, FPR,
the overall error rate and F-Measure. The proposed ECS-DBN
method achieved 97.42% accuracy with 0.02 error rate, in
addition, the precision is 98% and recall is 98.4%. Compared
to the traditional CBA-SVM method, the proposed ECS-DBN
method achieved approximately 4.4% of improvement with
respect to software defect prediction. In future, the research can
be extended for real time software development model using an
effective flow model with a deep learning methodology which
is capable of handling imbalance software module information.

ACKNOWLEDGMENTS

The authors would like to thank PES university for
allowing to do research and would like to thank Dr. K N B
Murthy, vice chancellor, PES university for his encouragement
to do research.

REFERENCES

[1] R.S. Wahono, “A systematic literature review of software defect
prediction: research trends, datasets, methods and frameworks,”
Journal of Software Engineering, vol. 1, pp. 1-162015.

[2] L. Chen, B. Fang, Z. Shang, and Y. Tang, “Tackling class
overlap and imbalance problems in software defect prediction,”
Software Quality Journal, vol. 26, no. 1, pp. 97-125, 2018.

[3] W. Rhmann, “Cross project defect prediction using hybrid
search based algorithms,” International Journal of Information
Technology, pp. 1-8., 2018.

[4] S.S. Rathore, and S. Kumar, “A decision tree logic based
recommendation system to select software fault prediction
techniques,” Computing, vol. 99, pp. 255-285, 2017.

[5] H.B. Yadav, and D.K. Yadav, “A fuzzy logic based approach for
phase-wise software defects prediction using software metrics,”
Information and Software Technology, vol. 63, pp. 44-57, 2015.

[6] D. Sharma, and P. Chandra, “A comparative analysis of soft
computing techniques in software fault prediction model
development,” International Journal of Information Technology,
pp. 1-10, 2018.

[7] S.S. Rathore, and S. Kumar, “Towards an ensemble based
system for predicting the number of software faults,” Expert
Systems with Applications, vol. 82, pp. 357-382, 2017.

[8] M. Böhme, and S. Paul, “A probabilistic analysis of the
efficiency of automated software testing,” IEEE Transactions on
Software Engineering, vol. 42, pp. 345-360, 2016.

[9] M.J. Siers, and M. Z. Islam, “Novel algorithms for cost-sensitive
classification and knowledge discovery in class imbalanced
datasets with an application to NASA software defects,”
Information Sciences, vol. 459, pp. 53-70, 2018.

[10] Y. Shao, B. Liu, S. Wang, G. Li, “A novel software defect
prediction based on atomic class-association rule mining,”
Expert Systems with Applications, vol. 114, pp. 237-254.

[11] T.T. Khuat, and M.H. Le, “Binary teaching–learning-based
optimization algorithm with a new update mechanism for
sample subset optimization in software defect prediction,” Soft
Computing, pp. 1-17, 2018.

[12] D. Ryu, J. I. Jang, and J. Baik, “A hybrid instance selection
using nearest-neighbor for cross-project defect
prediction,” Journal of Computer Science and Technology, vol.
30, pp. 969-980, 2015.

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 748 | P a g e

[13] T. T. Khuat, and M.H. Le, “Binary teaching–learning-based
optimization algorithm with a new update mechanism for
sample subset optimization in software defect prediction,” Soft
Computing, pp. 1-17, 2018.

[14] D. Ryu, O. Choi, and J. Baik, “Value-cognitive boosting with a
support vector machine for cross-project defect
prediction”, Empirical Software Engineering, vol. 21, pp. 43-71,
2016.

[15] R. Moussa, and D. Azar, “A PSO-GA approach targeting fault-
prone software modules”, Journal of Systems and Software, vol.
132, pp. 41-49, 2017.

[16] R. Gao, W.E. Wong, Z. Chen, and Y. Wang, Effective software
fault localization using predicted execution results,” Software
Quality Journal, vol. 25, pp. 131-169, 2017.

[17] Z. W. Zhang, X. Y. Jing, and T. J. Wang, “Label propagation
based semi-supervised learning for software defect prediction,”
Automated Software Engineering vol. 24, pp. 47-69, 2017.

[18] K. N. Rao, and C. S. Reddy, “An Efficient Software Defect
Analysis Using Correlation-Based Oversampling,” Arabian
Journal for Science and Engineering, pp. 1-21, 2018.

[19] X. Rong, F. Li, and Z. Cui, “A model for software defect
prediction using support vector machine based on
CBA,” International Journal of Intelligent Systems Technologies
and Applications, vol. 15, pp. 19-34, 2016.

[20] E. Erturk, and E. A. Sezer, “Software fault prediction using
Mamdani type fuzzy inference system,” International Journal of
Data Analysis Techniques and Strategies, vol. 8, pp. 14-28,
2016.

[21] C. Manjula, and L. Florence, “Deep neural network based
hybrid approach for software defect prediction using software
metrics,” Cluster Computing pp. 1-17, 2018.

[22] H. Najadat, and I. Alsmadi, “Enhance rule based detection for
software fault prone modules. International Journal of Software
Engineering and Its Applications, vol. 6, pp. 75-86, 2012.

[23] G. Abaei, and A. Selamat, “Increasing the accuracy of software
fault prediction using majority ranking fuzzy clustering,”
Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing. Springer, Cham, pp. 179-193,
2015.

[24] G. Abaei, A. Selamat, and H. Fujita, “An empirical study based
on semi-supervised hybrid self-organizing map for oftware fault
prediction,” Knowledge-Based Systems, vol.74, pp. 28-39,
2015.

[25] Ö.F. Arar, and K. Ayan, “Software defect prediction using cost-
sensitive neural network,” Applied Soft Computing, vol. 33, pp.
263-277, 2015.

