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Abstract— In this project the first module, problem of peak-

to-average power ratio (PAPR) reduction in orthogonal frequency-
division multiplexing (OFDM) based massive multiple-input 
multiple-output (MIMO) downlink systems. Mainly, a set of 
symbol vectors to be transmitted to K users, the problem is 

identified an OFDM-modulated signal that has a low PAPR and 
meanwhile enables multiuser interference (MUI) cancelation. In 
previous works that is Partial transmit sequence (PTS) technique 
requires “V” number of IFFT operations for each data block and 
bits of side information (SI). The PTS technique suffers from more 
PAPR problem and the complexity of searching for the optimum 
set of phase vector. The draw backs of PTS method one will be 
corrected by a new peak-to-average power ratio (PAPR) reduction 
approach for MIMO-OFDM is developed based on EM-GAMP 

algorithm. The sought-after signal is treated as a random vector 
with a Gaussian noise mixture, which has the potential to 
encourage a low PAPR signal with most of its samples 
concentrated on the boundaries. A variational expectation-
maximization (EM) strategy is developed to obtain estimates of the 
hyper parameters associated with the prior model, along with the 
signal. In addition, the generalized approximate message passing 
(GAMP) is embedded into the variational EM framework, which 

results in a significant reduction in computational complexity of 
the proposed algorithm. Simulation results show our proposed 
algorithm provides a performance improvement over existing 
(PTS) methods in terms of both the PAPR reduction and 
computational complexity. 

Index Terms — Massive MIMO, OFDM, PAPR reduction, 
MUI, SER, PTS, EM-GAMP. 

I. INTRODUCTION  

In wireless communication systems, the orthogonal 

frequency division multiplexing (OFDM) [1] [2] technique 

is a widely popular and attractive method for high-data-rate 

transmission because it can cope with frequency-selective 

fading channel. The modulators and demodulators of OFDM 

systems can be simply implemented by employing inverse 

fast Fourier transform (IFFT) and FFT to make the overall 

system efficient and effective. One of the main challenges of 

OFDM-based systems is the high peak-to-average power 

ratio (PAPR) of transmitted signals, resulting in signal 
distortion. The combination of multi-input multi-output 

(MIMO) and orthogonal frequency division multiplexing 

(OFDM) could exploit the spatial dimension capability to 

improve the system capacity by employing spatially 

separated antennas. In MIMO-OFDM systems, independent 

OFDM signals are transmitted from multiple transmit 

antennas. Therefore, MIMO-OFDM systems still suffer an 

inherent drawback of high PAPR. This phenomenon results 

from that in the time domain, an OFDM signal is the 

superposition of many narrowband subcarriers. At certain 

time instances, the peak amplitude of the signal is large and 

at the other times is small, that is, the peak power of the 
signal is substantially larger than the average power of the 

signal. 

Massive multiple-input multiple-output (MIMO) 

antenna systems are regarded as one of the key technologies 

for next- generation (i.e., 5G) wireless communications 

systems due to their potential to improve data rate and link 

reliability, as well as to simplify the required signal 

processing. Massive multiple-input multiple-output 

(MIMO), also known as large-scale or very-large MIMO, is 

a promising technology to meet the ever growing demands 

for higher throughput and better quality-of-service of next-

generation wireless communication systems [3]. Massive 
MIMO systems are those that are equipped with a large 

number of antennas at the base station (BS) simultaneously 

serving a much smaller number of single-antenna users 

sharing the same time-frequency bandwidth. In addition to 

higher throughput, massive MIMO systems also have the 

potential to improve the energy efficiency and enable the 

use of inexpensive, low- power components. Hence, it is 

expected that massive MIMO will bring radical changes to 

future wireless communication systems. In practice, 

broadband wireless communications may suffer from 

frequency-selective fading. 
 The multiple carrier frequency method is one of 

well-known PAPR reduction techniques to deal with 

frequency selective fading for OFDM systems. It has been 

described in [4]–[8] However, a major problem associated 

with the OFDM is a high peak-to-average power ratio 

(PAPR) owing to the independent phases of the sub-carriers 

[5]. To avoid out- of-band radiation and signal distortion, 

handling this high PAPR requires a high-resolution digital-

to-analog converter (DAC) and a linear power amplifier 

(PA) at the transmitter, which is not only expensive but also 

power inefficient [4]. 

Many techniques have been developed for PAPR 
reduction in single-input single-output (SISO) OFDM 
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wireless systems. The most methods are clipping method 

[11] [12], the clipping scheme is the simplest method to 

reduce the PAPR. However, the quality of its output signal 
is degraded by out-of band radiation and in-band distortion, 

Active constellation extension (ACE) [9] [10], Companding 

Transform and Filtering [13], selected mapping (SLM) [14], 

and others. Although these PAPR-reduction schemes can be 

extended to point-to- point MIMO systems easily, extension 

to the multi- user (MU) MIMO downlink is not 

straightforward, mainly because joint receiver-side signal 

processing is almost impossible in practice as the users are 

distributed. Recently, a new PAPR reduction method was 

developed for massive MIMO- OFDM systems i.e., partial 

transmission sequence (PTS) [1] the disadvantage of this 

scheme is the complexity, especially with an increase in V 
and W [16] [17].  Also, a large amount of memory is 

required to store the alternative transmit signals (if check 

performed in parallel) in order to compare them to find the 

one with the lowest peak value [18]. Alternatively the 

optimization can be performed in an iterative fashion where 

the current best transit signal is stored until a better one is 

found, at the cost of increased latency.  

In this paper, we develop a novel Bayesian 

approach to address the joint PAPR reduction and MUI 

cancelation problem for downlink multi-user massive 

MIMO-OFDM systems. Specifically, MUI cancelation can 
be formulated as an underdetermined linear inverse problem 

which admits numerous solutions. This hierarchical prior 

has the potential to encourage a quasi-constant magnitude 

solution with as many entries as possible lying on the 

truncated boundaries, thus resulting in a low PAPR. A 

variational expectation-maximization (EM) algorithm is 

developed to obtain estimates of the hyperparameters 

associated with the prior model, along with the signal. In 

addition, the generalized approximate message passing 

(GAMP) technique [24] is employed to facilitate the 

algorithm development in the expectation step. This GAMP 
technique also helps significantly reduce the computational 

complexity of the pro- posed algorithm. Simulation results 

show that the proposed method presents a substantial 

improvement over the FITRA algorithm in terms of both 

PAPR reduction and computational complexity. 

II. SYSTEM MODEL 

We first introduce the system model of OFDM 

based massive MIMO systems. Then we discuss some 

recent research on PAPR reduction for multi-user massive 

MIMO-OFDM systems. 

A. System Model:  

The Block Diagram of OFDM is shown in below 
figure.1. A brife description of yhe model is provided 

below. 

 

 
 

Fig. 1.The block diagram of OFDM based massive MIMO 

system 
The system model of the OFDM-based massive MIMO 

downlink scenario is shown in Fig. 1, where the BS is 

assumed to have M transmit antennas and serve K 

independent single-antenna users (K ≪ M), and the total 

number of OFDM tones is N. In practice, the set of tones 

available are divided into two sets 𝜏 and𝜏𝑐, where the tones 

in set 𝜏 are used for data transmission and the tones in its 

complementary set 𝑇𝑐 are used for guard band (unused tones 

at both ends of the spectrum). Hence, for each tone n ∈ 𝜏, 

the corresponding K ×1 vector 𝑠𝑛  comprises the symbols for 

K users. We normalize the data vector to satisfy 

E{‖𝑠𝑛‖ }2
2 =1. For each tone n ∈ 𝜏𝑐, we set 𝑠𝑛=0𝑘∗1 that 

means no signal is transmitted in the guard band.  

Precoding must be performed at the BS to remove multi-
user interference (MUI). Usually, the signal vector on the 

𝑛𝑡ℎ tone is linearly precoded as  

𝑤𝑛 = 𝑝𝑛𝑠𝑛                                   (1) 

Where 𝑤𝑛∈ 𝐶𝑀∗1 is the precoded vector that contains 
symbols to be transmitted on the nth sub-carrier through the 

M antennas respectively and 𝑝𝑛  ∈ 𝐶𝑀∗𝐾 represents the 

precoding matrix for the 𝑛𝑡ℎ OFDM tone. 
Zero-forcing (ZF) precoding and minimum-mean 

square-error (MMSE) precoding are two classical precoding 

schemes. The former aims at removing MUI completely, 

while the latter tries to achieve balance between the MUI 

cancellation and the noise enhancement. 

In this paper, we consider the ZF precoding 

scheme. Note that since K ≪ M, the ZF precoding matrix 

has an infinite number of forms, among which the most 
widely used is  

𝑝𝑛
𝑧𝑓

 = 𝐻𝑛
𝐻 (𝐻𝑛 𝐻𝑛

𝐻)−1                    (2)  

Where 𝐻𝑛 ∈ 𝐶𝑀∗𝐾 denotes the MIMO channel matrix 
associated with the nth tone. 

After precoding, all precoded vectors 𝑤𝑛 are 
reordered to M antennas for OFDM modulation,  

[𝑎1……𝑎𝑀] = [𝑤1 … … 𝑤𝑁 ]𝑇          (3) 

where 𝑎𝑚 ∈ 𝐶𝑁∗1 represents the frequency domain signal to 

be transmitted from the 𝑚𝑡ℎ antenna. The inverse Fast 
Fourier transform (IFFT), is used to convert frequency 

domain signal to time domain signal i.e., 𝑎�̂� = 𝐹𝑁
𝐻 𝑎𝑚 , ∀m. 

Then, a cyclic prefix (CP) is added to the time-domain 

samples of each antenna to eliminate inter symbol 

interference (ISI). And we don’t know delay spread exactly; 

the hardware doesn’t allow block spaces because it needs to 

send out signals continuously. To avoid the block spaces, 

coping the tail part of the symbol and past at blocked spaces. 

Finally, these time samples are converted to analog signals 
and transmitted through the frequency- selective channel.  
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At the receivers, after removing the CPs of the 

received signals, the FFT is reconstructing the frequency-

domain signals. The receive vector consisting of K users’ 
signals can be described as 

𝑟𝑛 = 𝐻𝑛 𝑤𝑛+𝑒𝑛, ∀n                            (4) 

 Where 𝑟𝑛∈𝐶𝑘∗1 denotes the receive vector associated with 

the nth tone, and 𝑒𝑛∈𝐶𝑘∗1 is the receiver noise. 

B. Peak-to-Average Power Ratio (PAPR) Reduction: 

The main challenges of OFDM-based systems are 

the high peak-to-average power ratio (PAPR) of transmitted 

signals, resulting in signal distortion. OFDM modulation 

typically a large dynamic range because the phases of the 
sub-carriers are independent of each other. To avoid out-of-

band radiation and signal distortion by using high-resolution 

DACs and linear power amplifier at the transmitter to 

accommodate the large peaks of OFDM signals, which leads 

to more expensive and power-inefficient. 

PAPR is defined as the ratio of the peak power of 

the signal to its average power. Specifically, the PAPR at the 

𝑚𝑡ℎ transmit antenna is defined as 

PAPR=
𝑚𝑎𝑋𝑡|𝑥(𝑡)|2

𝐸𝑡[|𝑥(𝑡)|2]
                            (5) 

Let E[x(t)] ⋅ denote the mathematical expectation 

and the amplitude, ||x||2denote the second norm of a vector. 

When the number of transmit antennas is larger 

than the number of users, numerous ZF precoding matrices 

are available. By using this ZF precoding process, the MUI 

is removed and reduce the PAPR also. 

 In this paper, instead of designing the precoding 

matrix we directly search ‘w’ signal for reducing the PAPR 

and MUI cancelation. 

III. EXISTING METHOD 

Partial transmit sequence (PTS): 

The partial transmit sequence (PTS) technique 
partitions an input data block of N symbols into V disjoint 

sub blocks as follows: 

X =[ X0; X1; X2; ... ; XV—1]                       (6) 

Where 𝑋𝑖 are the sub blocks that are consecutively 

located and also are of equal size. Unlike the SLM technique 

in which scrambling is applied to all subcarriers, scrambling 

(rotating its phase independently) is applied to each sub 

block in the PTS technique (see Figure 2). Then each 

partitioned sub block is multiplied by a corresponding 

complex phase factor 𝑏𝑣=𝑒𝑗∅𝑣, v=1, 2 …V, subsequently 
taking its IFFT to yield. 

(7) 

 
Fig. 2 partial transmit sequence (PTS) technique for PAPR 

reduction. 

Where {𝑋𝑣} is referred to as a partial transmit sequence 

(PTS). The phase vector is chosen so that the PAPR can be 

minimized, which is shown as 

[�̃�1, … . . �̃�𝑉] =arg  𝑚𝑖𝑛 [𝑏1, … , 𝑏𝑉](∑ |∑ 𝑏𝑣𝑥𝑣𝑉
𝑣=1 [𝑛]|𝑁−1

𝑛=0 )      

(8) 
Then, the corresponding time-domain signal with 

the lowest PAPR vector can be expressed as 

𝑥 = ∑ �̃�𝑣𝑥𝑣𝑉
𝑣=1                                 (9) 

 In general, the selection of the phase factors {∑ 𝑏𝑣𝑉
𝑣=1 } is 

limited to a set of elements to reduce the search complexity. 

As the set of allowed phase factors is 

b =  {𝑒
𝑗2𝜋

𝑊 },    i=0,1,2,……W-1             (10) 

 𝑊𝑣−1 Sets of phase factors should be searched to 

find the optimum set of phase vectors.   Therefore, the 

search complexity increases exponentially with the number 

of subblocks.  

The PTS technique requires V IFFT operations for 

each data block and 𝑙𝑜𝑔2𝑊𝑉 bits of side information. The 
PAPR performance of the PTS technique is affected by not 

only the number of subblocks, V, and the number of the 

allowed phase factors, W, but also the subblock partitioning.  

In fact, there are three different kinds of the 

subblock partitioning schemes: adjacent, interleaved, and 

pseudo-random. Among these, the pseudo-random one has 

been known to provide the best performance.  
As discussed above, the PTS technique suffers 

from the complexity of searching for the optimum set of 

phase vector, especially when the number of sub blocks 

increases. In the literature various schemes have been 

proposed to reduce this complexity. One particular example 

is a suboptimal combination algorithm, which uses the 

binary phase factors of {1, -1}.  

 

Algorithm 1: Partial transmit sequence 

The Algorithm steps for PTS method is explain below. 

1. Partition the input data block into V sub blocks 

X =[ X0; X1; X2; .. . ; XV—1] 

2. Set all the complex phase factors 𝑏𝑣= 𝑒𝑗∅𝑣, multiplied 
with each sub block. 

 𝑏𝑣 = 1 for v = 1: V, find PAPR of equation (7) and 

set it as PAPR_min.   

 
3.  Find PAPR with 𝑏−1 = (-1).  
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4.  If PAPR> PAPR_min, switch  𝑏𝑣 back to 1. Otherwise, 

update PAPR_min = PAPR. 

5. If v=V, increment v by one and go back to step 3. 

Otherwise, exit this process with the set of optimal phase 

factors. 

 

The number of computations for Equation (7) in 

this suboptimal combination algorithm is V, which is much 
fewer than that required by the original PTS technique (i.e. 

<<𝑊𝑣). 

PTS requires side information to be sent to the 

receiver to inform it of the phase rotation used so the data 

can be decoded.  Reference [1], [16] noted that the number 

of angles should be kept low to keep the side information to 

a minimum.   

If each phase rotation is chosen from a set of W 

admissible angles then the required number of bits for side 

information. In order to reduce complexity phase angles 
should be restricted to {±1, ±j}, i.e. W=4, this allows 

multiplications to be performed with sign changes. That 

increasing the number of allowed phase angles has a 

minimum impact of PAPR reduction.  Reference [1] noted 

that explicit side information can be avoided if differential 

encoding is used for the modulation across the subcarriers 

within each subblock.   

In this case only the block partitioning need to be 

known at the receiver and one subcarrier in each subblock 

must be left unmodulated as a reference carrier. 

PTS is flexible as the number of blocks and phase 

rotations can be increased providing more alternative 
transmit signals to choose from.   

The disadvantage of this scheme is the complexity, 

especially with an increase in V and W.  Also, a large 

amount of memory is required to store the alternative 

transmit signals (if check performed in parallel) in order to 

compare them to find the one with the lowest peak value.  

Alternatively the optimization can be performed in an 

iterative fashion where the current best transit signal is 

stored until a better one is found, at the cost of increased 

latency.  

 

 

IV. PROPOSED METHOD  

A. EM-GAMP Introduction: 

In this project the first module, problem of peak-to-

average power ratio (PAPR) reduction in orthogonal 

frequency-division multiplexing (OFDM) based massive 
multiple-input multiple-output (MIMO) downlink systems. 

Mainly, a set of symbol vectors to be transmitted to K users, 

the problem is identified an OFDM-modulated signal that 

has a low PAPR and meanwhile enables multiuser 

interference (MUI) cancelation. The EM-GAMP algorithm 

is one of the best solutions to overcome this PAPR problem 

in OFDM signal. The sought-after signal is treated as a 

random vector with a Gaussian noise mixture, which has the 

potential to encourage a low PAPR signal with most of its 

samples concentrated on the boundaries. A variational 

expectation-maximization (EM) strategy is developed to 
obtain estimates of the hyper parameters associated with the 

prior model, along with the signal. In addition, the 

generalized approximate message passing (GAMP) is 

embedded into the variational EM framework, which results 
in a significant reduction in computational complexity of the 

proposed algorithm.  

To facilitate our algorithm development, we 

introduce a noise term to model the mismatch between y and 

Ax, i.e. 

y = Ax + ϵ                                       (11) 

Where ϵ denotes the noise vector and its entries are 

assumed to be i.i.d. Gaussian random variables with zero-

mean and unknown variance β−1. Here we treat β as an 

unknown parameter because the Bayesian framework allows 

an automatic determination of its model parameters and 

usually provides a reasonable balance between the data 
fitting error and the desired characteristics of the solution. In 

case that there is a pre-specified tolerance value for the 

MUI, we can also set an appropriate value for β instead of 

treating it as unknown.  

To reduce the PAPR associated with each transmit 

antenna, we aim to find a quasi-constant magnitude solution 

to the above underdetermined linear system. Note that a 

constant magnitude signal achieves a minimum PAPR. 

Ideally we hope to find a solution with all of its entries 

having a constant magnitude. Nevertheless, it is highly 

unlikely that there exists such a solution to satisfy (or 
approximately satisfy with a tolerable error) the MUI 

cancelation equality, i.e. (8). Therefore we, alternatively, 

seek a quasi-constant magnitude solution with as many 

entries as possible located on the boundary points of an 

interval [−v, v], whereas the rest entries bounded within [−v, 

v] but not restricted to lie on the boundary points in order to 

meet the MUI cancelation constraint. 

To encourage a quasi-constant magnitude solution, 

we propose a hierarchical truncated Gaussian mixture prior 

for the signal x. In the first layer, coefficients of x are 

assumed independent of each other and each entry 𝑥𝑖 is 
assigned a truncated Gaussian mixture distribution: 

P (𝑥𝑖) =∫ .
𝜋

𝑁(𝑥𝑖 ;𝑣,α𝑖1
−1)

η𝑖1
+(1−𝜋) 𝜋

𝑁(𝑥𝑖 ; −𝑣,α𝑖2
−1)

η𝑖2
          𝑖𝑓 𝑥𝑖 ∈[−𝑣,𝑣],

0                                                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      (12) 

Where the first component of (12) is characterized 

by a truncated Gaussian distribution with its mean and 

variance given by v and 𝛼𝑖1
−1 , respectively; the second 

component is characterized by a truncated Gaussian 

distribution with its mean and variance given by −v and 𝛼𝑖2
−1 

, respectively; 

 The prior distributions with different model hyper 

parameters𝛼𝑖1, 𝛼𝑖2 are illustrated in Fig.7.1, where π and v 

are both set to 0.5. We can see that the prior distribution 

defined in (22) resembles the shape of a bowl. Thus the prior 
has the potential to push the entries of the solution toward its 

boundaries. In addition, the use of the Gamma hyper prior 

allows the posterior mean of the precision to become 

arbitrarily large.  

As a result, the associated entries 𝑥𝑖 will eventually 

lie on one of the two boundary points, leading to a quasi-

constant magnitude solution. 

The graphical model of the proposed hierarchical is 

presented in Fig. 3(a). In general, Bayesian inference 

requires computing the logarithm of the prior. In this regard, 

(24) is a inconvenient form for inference.  
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Fig.3. Graphical models for low-PAPR signal priors.          

(a) Original prior, (b) Modified prior 

 

Here circles denoting hidden variables, double 

circles denoting observed variables and squares representing 

model parameters. 

To address this issue, we turn the prior into an 

exponential form by introducing a binary latent variable 𝑘𝑖 

indicating which component is selected for 𝑥𝑖, i.e., 𝑘𝑖 = 1 

indicates the first component is selected while 𝑘𝑖 = 0 

corresponds to the second component.  

B. EM-GAMP Algorithm:  

To search for a low PAPR solution, a hierarchical 

truncated Gaussian mixture prior model is proposed and 
assigned to the unknown signal (i.e. solution). This 

hierarchical prior has the potential to encourage a quasi-

constant magnitude solution with as many entries as 

possible lying on the truncated boundaries, thus resulting in 

a low PAPR. A variational expectation-maximization (EM) 

algorithm is developed to obtain estimates of the hyper 

parameters associated with the prior model, along with the 

signal. In addition, the generalized approximate message 

passing (GAMP) technique [22] is employed to facilitate the 

algorithm development in the expectation step. This GAMP 

technique also helps significantly reduce the computational 
complexity of the proposed algorithm. Simulation results 

show that the proposed method presents a substantial 

improvement over the PTS algorithm in terms of both PAPR 

reduction and computational complexity. 

i) Variational Bayesian Methodology:  

We now proceed to perform Bayesian inference for 

the proposed hierarchical model. A variational expectation 

maximization (EM) strategy is employed for the Bayesian 

inference. In our model, z ≜ {x, α1, α2, κ} are treated as 

hidden variables. The noise variance β and the boundary 

parameter v are unknown deterministic parameters, i.e. θ ≜ 
{β, v}. Before proceeding, we provide a brief review of the 

variational EM algorithm. 

Consider a probabilistic model with observed data 

y, hidden variables z and unknown deterministic parameters 

θ. It is straightforward to show that the marginal probability 

of the observed data can be decomposed into two terms 

ln(p(y;θ)) = F(q,θ) + KL(q∥p)                    (13) 

Where 

F(q,θ) =∫ q(z) ln (
(p(y,z;θ)

q(z)
)dz                  (14) 

and 

KL(q∥p) = −∫ q(z)ln(
(p(z|y;θ)

q(z)
) dz                    (15) 

Where q(z) is any probability density function, 

KL(q∥p) is the Kullback-Leibler divergence between 

p(z|y;θ) and q(z). Since KL (q∥p) ≥ 0, it follows that F (q, θ) 

is a lower bound of ln (p(y; θ)), with the equality holds only 

when KL (q∥p) = 0, which implies p(z|y;θ) = q(z). The EM 

algorithm can be viewed as an iterative algorithm which 

iteratively maximizes the lower bound F (q, θ) with respect 

to the distribution q (z) and the parameters θ. 

Assume that the current estimate of the parameters 

is 𝜃𝑂𝐿𝐷. The EM algorithm evaluates 𝑞𝑁𝐸𝑊(z) by 

maximizing F(q,𝜃𝑂𝐿𝐷) with respect to q(z) in the E-step, and 

then find new parameter estimate 𝜃𝑁𝐸𝑊 by maximizing 

F(𝑞𝑁𝐸𝑊, θ) with respect to θ in the M-step. It is easy to see 

that when 𝑞𝑁𝐸𝑊(z)=p(z|y;𝜃𝑂𝐿𝐷), the lower bound F(q, 𝜃𝑂𝐿𝐷) 

is maximized. Nevertheless, in practice, the posterior 

distribution p(z|y; 𝜃𝑂𝐿𝐷) is usually computationally 
intractable. To address this difficulty, we could assume q (z) 

has some specific parameterized functional form. 

 Then in the M-step, a new estimate of θ is obtained 

by maximizing the Q-function  

Q (θ, 𝜃𝑂𝐿𝐷)  =  ⟨ ln (p(y, z; θ) ) ⟩𝑞(𝑍)              (16) 

ii) Likelihood Function Approximation via GAMP: 

Let z = {x, α1, α2, κ} denote all hidden variables 

appearing in our hierarchical model, and θ ≜{β, v} denote 
the unknown deterministic parameters. As discussed in the 

previous subsection, the posterior of z can be approximated 

by a factorized form as follows 

p(x,α1,α2,κ|y;β,v)≈q(x,α1,α2,κ)=q(x)q(α1)q(α2)q(κ)      (17) 

The approximate posteriors can be obtained as 

lnq(x)=⟨ln p (y, x, , α1 , α2, κ; β, v)⟩q(α1)q(α2)q(κ)+const,… 

………(18.A) 

lnq(α1)=⟨ln p (y, x, α1, , α2, κ; β, v)⟩q(x)q(α2)q(κ)+const, 

……….(18.B) 

ln(α2)=⟨ln p (y, x, α1, , α2, κ; β, v)⟩q(x)q(α1)q(κ)+const 

……..(18.C) 

 lnq(κ)=⟨ln p (y, x, α1, , α2, κ; β, v)⟩q(x)q(α1)q(,α2)+const 

……(18.D) 

iii) Generalized approximate message passing (GAMP): 

 A variational expectation-maximization (EM) 

algorithm is developed to obtain estimates of the hyper 
parameters associated with the prior model, along with the 

signal. In addition, the generalized approximate message 

passing (GAMP) technique [22] is employed to facilitate the 

algorithm development in the expectation step. This GAMP 

technique also helps significantly reduce the computational 

complexity of the pro- posed algorithm. 

 GAMP is a very-low-complexity Bayesian iterative 

technique recently developed in [23] for obtaining 

approximate marginal posteriors and likelihoods. It therefore 

can be naturally embedded within the EM framework to 

provide an approximate posterior distribution of x and 
reduce the computational complexity, as shown in [20]. 

Specifically, the EM-GAMP framework of [25] proceeds in 

a double-loop manner: the outer loop (EM) computes the Q-

function using the approximate posterior distribution of x, 

and maximizes the Q-function to update the model 

parameters (e.g. α1, α2, κ); the inner loop (GAMP) utilizes 

the newly estimated parameters to obtain a new 

approximation of the posterior distribution of x.  
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However, this procedure is not suitable for our 

variational EM framework, because from the GAMP’s point 

of view, the hyper parameters {α1,α2,κ} need to be known 
and fixed in order to compute an approximate posterior 

distribution of x, while the variational EM treats the model 

parameters (e.g. α1,α2,κ) as latent variables.  

Therefore, instead of computing the approximate 

posterior distribution of x, in our variational EM framework, 

the GAMP is simply used to obtain an amiable 

approximation of the likelihood function p(y|x;β), and this 

approximation involves no latent variables {α1,α2,κ}. 

Besides, unlike the EM-GAMP framework where 

the inner loop (GAMP) is implemented in an iterative way, 

in our proposed variational EM-GAMP framework, as 

detailed in Algorithm 1, the GAMP only needs to go 
through one iteration to obtain an approximation of the 

likelihood function. In fact, the GAMP algorithm described 

here is a simplified version of the original GAMP algorithm 

by retaining only its first three steps and skipping its 

iterative procedure. Note that the original GAMP algorithm 

involves a four-step iterative process, in which the fourth 

step computes the posterior of x by using the approximate 

likelihood function obtained from the first three steps. 

GAMP is known to work well for A with i.i.d zero-

mean sub-Gaussian entries, but may fail for a rank-deficient 

A. One may refer to the method [21] to improve the stability 
of the GAMP against the ill-condition of the matrix A. 

Nevertheless, GAMP is expected to perform well in wireless 

communication scenarios since indoor and urban outdoor 

environments are typically rich in scattering and entries of 

MIMO channel matrices are usually assumed to be i.i.d 

Gaussian [23]. 

C. EM-GAMP Procedure: 

To search for a low PAPR solution, a hierarchical 

truncated Gaussian mixture prior model is proposed and 

assigned to the unknown signal (i.e. solution). This 

hierarchical prior has the potential to encourage a quasi-

constant magnitude solution with as many entries as 

possible lying on the truncated boundaries, thus resulting in 

a low PAPR. A variational expectation-maximization (EM) 

algorithm is developed to obtain estimates of the hyper 

parameters associated with the prior model, along with the 

signal.  
In addition, the generalized approximate message 

passing (GAMP) technique [22] is employed to facilitate the 

algorithm development in the expectation step. This GAMP 

technique also helps significantly reduce the computational 

complexity of the proposed algorithm. 

 

 
 

          Fig.4  Variational EM-GAMP framework. 

 

 

GAMP is a simplification of loopy BP, and can be 

used to compute approximate marginal posteriors and 

likelihoods. Here we approximate the joint likelihood 
function p(y|x;β) as a product of approximate marginal 

likelihoods computed via the GAMP, i.e. 

p(y|x;β) ≈ �̂�(y|x;β) ∝ ∏ 𝑁(𝑥𝑖|ri, τ𝑖
r̂)𝐼

𝑖=1              (19) 
Where 𝑁(𝑥𝑖|ri , τ𝑖

r̂) is the approximate marginal 

likelihood obtained by the GAMP algorithm. To calculate 𝑟𝑖 

and τ𝑖
r, an estimate of the posterior q(x) and β is required as 

inputs to the GAMP algorithm (see the details of the GAMP 

algorithm provided below). Hence the GAMP algorithm can 

be embedded in the variational EM framework: given an 
estimate of q(x) and β, use the GAMP to obtain an 

approximation of the likelihood function p(y|x;β); with the 

approximation ˆ p(y|x;β), the variational EM proceeds to 

yield a new estimate of q(x) and β, along with estimates of 

other deterministic parameters (e.g. v) and posterior 

distributions for the other hidden variables (e.g. α1,α2,κ). 

This iterative procedure is illustrated in Figure 4. 

 Note that besides the approximation �̂� (y|𝑥𝑖;β), 

GAMP also produces approximations for the marginal 

posteriors of the noiseless output u = [𝑢1, 𝑢2. . . , … 𝑢𝑗]𝑇 ≜

 Ax, which are given by  

p(𝑢𝑗 |y,β)≈�̂�((𝑢𝑗 |y,β)∝p((𝑦𝑗|(𝑢𝑗;β)N((𝑢𝑗 |𝑝�̂�,𝜏𝑗
𝑝

)           (20) 

Where 𝑝�̂� and 𝜏𝑗
𝑝

 are quantities obtained from the GAMP 

algorithm. 

GAMP is a very-low-complexity Bayesian iterative 

technique recently developed in [24] for obtaining 

approximate marginal posteriors and likelihoods. It therefore 

can be naturally embedded within the EM framework to 

provide an approximate posterior distribution of x and 

reduce the computational complexity, as shown in [24]. 

Specifically, the EM-GAMP framework of [24] proceeds in 

a double-loop manner: the outer loop (EM) computes the Q-

function using the approximate posterior distribution of x, 
and maximizes the Q-function to update the model 

parameters (e.g. α1, α2, κ); the inner loop (GAMP) utilizes 

the newly estimated parameters to obtain a new 

approximation of the posterior distribution of x.  

However, this procedure is not suitable for our 

variational EM framework, because from the GAMP’s point 

of view, the hyper parameters {α1, α2,κ} need to be known 

and fixed in order to compute an approximate posterior 

distribution of x, while the variational EM treats the model 

parameters (e.g. α1,α2,κ) as latent variables. Therefore, 

instead of computing the approximate posterior distribution 

of x, in our variational EM framework, the GAMP is simply 

used to obtain an amiable approximation of the likelihood 
function p(y|x;β), and this approximation involves no latent 

variables {α1,α2,κ}. 

Besides, unlike the EM-GAMP framework where 

the inner loop (GAMP) is implemented in an iterative way, 

in our proposed variational EM-GAMP framework, the 

GAMP only needs to go one iteration to obtain an 

approximation of the likelihood function. In fact, the GAMP 

algorithm described here is a simplified version of the 

original GAMP algorithm by retaining only its first three 

steps and skipping its iterative procedure. Note that the 

original GAMP algorithm involves a four-step iterative 
process, in which the fourth step computes the posterior of x 
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by using the approximate likelihood function obtained from 

the first three steps. 

. Note that we can also treat {α1, α2, κ} as 
deterministic parameters and resort to the EM-GAMP 

framework for Bayesian inference. Nevertheless, in this 

case, we need to estimate a set of binary parameters {𝑘𝑖} in 

the M-step. This is essentially a combinatorial search 

problem and the binary estimation may cause the algorithm 

to get stuck in undesirable local minima. 

i) E-Step: Update of Hidden Variables:  

Update of q(x): As discussed above, p(y|x;β) is 

approximated as a factorized form of independent scalar 

likelihoods, which enables the computation of q(x) (18.A). 

Specifically, using (18.A) (19) can be simplified as 

ln q(x)=⟨ln p (y, x, , α1 , α2, κ; β, v)⟩q(α1)q(α2)q(κ) +const (20) 

 lnq(x) = −∞ otherwise. It can be seen that lnq(x) 

has a factorized form, which implies that hidden variables 

{xi} have independent posterior distributions. Also, it can be 

readily verified that the posterior q(xi) follows a truncated 

Gaussian distribution 

q (𝑥𝑖) =∫ .

N (𝑥𝑖 |𝜇𝑖,𝜎𝑖
2

)

∅i
    if xi  ∈[−v,v],

             0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
..................... (21) 

Where 𝜎𝑖
2= variance 

          𝜇𝑖, = Mean 

         ∅i= Normalization constant 

 

Update of q ( α1) : 

Keeping only the terms that depend on α1, the variational 

optimization of q (α1) yields 

ln q(α1)= ⟨ln p ( x|α1, α2, κ; v)p(α1)⟩q(x)q(α2)q(κ) +const 

= ∑ .𝐼
𝑖=1  ⟨ln p ( xi|α𝑖1, α𝑖2, ki; v)p(α𝑖1)⟩q(x)q(α2)q(κ) +const  

Therefore q(α1) follows a Gamma distribution 

q (α1) =Gamma (α𝑖1| 𝑎𝑖1̂, 𝑏𝑖1̂)                      (22) 
with 

𝑎𝑖1̂ = a + 
1

2
〈𝑘𝑖〉 

𝑏𝑖1̂ = b + 
1

2
〈𝑘𝑖〉 〈(𝑥𝑖 − 𝑣)2〉 

Update of q (α2): 

Following a procedure similar to the derivation of q (α1), we 
have 

q (α2) =Gamma (α𝑖2| 𝑎𝑖2̂, 𝑏𝑖2̂)                        (23) 

with 

𝑎𝑖2̂ = a + 
1

2
(1 − 〈𝑘𝑖〉                                

𝑏𝑖2̂ = b + 
1

2
(1 − 〈𝑘𝑖〉) 〈(𝑥𝑖 + 𝑣)2〉 

ii. M-step: Update of deterministic Parameters: 

 As indicated earlier, in the variational EM 

framework, the deterministic parameters 𝜃 = {𝛽, 𝑣} are 

estimated by maximizing the Q-function, i.e.  

𝜃𝑁𝐸𝑊 = 𝑄 (𝜃, 𝜃𝑜𝑙𝑑)𝜃
𝑚𝑎𝑥

                     (24) 

Update of β: 

 We first discuss the update of the parameter β the 

inverse of the noise variance. Since the GAMP algorithm 

provides an approximate posterior distribution for the noise 

less output u ≜ Ax., we can simply treat u as hidden 

variables when computing the Q-function, i.e. 

Q(β,β(𝑡))= ∑ 〈ln 𝑝(𝑦𝑗|𝑢𝑗 ; β)〉𝑝(𝑢𝑗|𝑦,𝛽)̂
𝐽
𝑗=1  +const            (25) 

The new estimate of data is obtained by 

maximizing the Q-function, which can be solved by setting 

the derivative of Q(𝛽, β(𝑡)) with respect to 𝛽 to zero. 

Update of v:  

We now discuss how to update the boundary 

parameter v. The boundary parameter v can be updated by 

maximizing the Q-function with respect to v. Nevertheless, 
the optimization is complex since the Q-function involves 

computing the expectation of the normalization terms η𝑖𝑙, i 

= 1, 2, …..I, l = 1, 2 with respect to the posterior 

distributions p (𝛼𝑖𝑙). The basic idea is to find an appropriate 

value of v such that the mismatch ∥y−A𝑥∥2  is minimized, 

where ˆ x denotes the estimated signal which is chosen as 

the mean of the posterior distribution q(x).  

Note that when the boundary parameter v is small, 

the mismatch could be large since there may not exist a 
solution to satisfy the constraint y = Ax. Therefore we can 

firstly set a small value of v, then gradually increase v by a 

step-size such that the mismatch keeps decreasing and 

eventually becomes negligible. 

 

Algorithm 2:  EM-GAMP: 

EM-TGM-GAMP Initialization: β(0) = 103, 𝑣(0) = 

∥y∥∞/∥A∥∞, initialize the means of q(x), q(α1), q(α2), q(κ) 

as 0, 1, 1, 
1

2
1 respectively, set the variance of q(x) as 1, and 

set iteration number  t = 0. 

Repeat the following steps until t ≥ tMAX  

1. Based on the mean and variance of q(x) and β(t), calculate 

the approximate distributions ˆ p(y|x;β(t))and ˆ p(uj|y,β(t)), j 

= 1,...,J,  

2. Using the approximate likelihood ˆ p(y|x;β(t)), update the 

posteriors of hidden variables: q(x), q(α1), q(α2) and q(κ) 

3. Compute the new estimate β(t+1)  and obtain the v(t+1)  

4. Increase t = t + 1 and return to step 1. 

 

V. SIMULATION RESULT 

In this section, some simulations are employed to 
demonstrate PAPR reduction performance and 

computational complexity comparison between the proposed 

scheme and the original PTS scheme. The OFDM symbol of 

each antenna channel contains 1024 subcarriers, and for 

simplicity, we expect all N subcarriers. . We compare our 

approach method( EM-GAMP) with the PTS [1] [16], the 

zero-forcing (ZF) precoding scheme, and the amplitude 

clipping scheme [11] in which the ZF is first employed and 

then the peaks of the resulting signal are clipped with a 

specified threshold.  

In our simulations, we consider a MIMO system 

which has M = 16 number of bits per QAM symbol and 
alphabet size at the BS and serves K = 10 single antenna 

users. A 16-QAM constellation is considered, and the 

number of OFDM tones is set to N = 1024, in which only |T| 

= 840 tones are used for data transmission and remaining 93 

tones are guard symbols.  

The complementary cumulative distribution 

function (CCD- F) is used to evaluate the PAPR reduction 

performance. The CCDF denotes the probability that the 



IJRECE  VOL. 6 ISSUE 3 ( JULY - SEPTEMBER 2018)                 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR  598 | P a g e  
 

PAPR of the estimated signal exceeds a given threshold 

PAPR0,  

i.e. CCDF(PAPR0) = Pr(PAPR > PAPR0). (31) 
Also, to evaluate the multiuser interference of the transmit 

signals. The out-of-band (power) ratio (OBR) is introduced 

to measure the out-of-band radiation of the solution, which 

is defined as  

OBR = 
|𝑇|  ∑ ‖𝑤𝑛‖2

2
𝑛∈𝑇𝑐

|𝑇𝑐|  ∑ ‖𝑤𝑛‖2
2

𝑛∈𝑇.
                                (32) 

.The signals estimated by respective schemes. In 

the (a), (b), of Fig. 5, we depict the real part of the first 

transmit antenna’s time-domain signal (i.e.�̂�1) estimated by 

respective schemes (the imaginary part behaves similarly). 

Time domain signals representation for  PTS and EM-

GAMP methods. The PAPR for EM-GAMP is 1.2015 dB, 

and the MUI (Multi User Interference) is -79.98 dB. The 

PAPR for PTS is 9.393 (Approximately). 

 
 

 
 

Fig. 5 Time domain signals representation for different PTS 

and EM-GAMP 

 

           Fig 6(a) is an OFDM signal using PTS method with 

subblocks 1, 2, 4.  Here the signal is sub divided for 

reducing the PAPR loss like subblock 1, subblock 2, 

subblock 4. If increases the subblocks than decreases the 
PAPR loss. In this PTS method the PAPR loss is depends on 

subblocks i.e. PAPR loss is inversely proportional to 

subblocks  
 

 
 

Fig:6(a) PAPR reduction using PTS method in OFDM 

signal with subblocks 1,2,4 

            

            Fig 6(b) is an OFDM signal using PTS method with 

subblocks 1, 2, 4.  Here the signal is sub divided for 

reducing the PAPR loss like subblock 8, subblock 16. If 
increases the subblocks than decreases the PAPR loss. In 

this PTS method the PAPR loss is depends on subblocks i.e. 

PAPR loss is inversely proportional to subblocks. 

 

 

Fig: 6(b) PAPR reduction using PTS method in OFDM 

signal with subblocks 8, 16. 
To better evaluate the PAPR reduction 

performance, we plot the CCDF of the PAPR for EM-

GAMP in Fig.7 (a). The number of trials is chosen to be 

1024 in our experiments. Note that PAPRs associated with 

all M antennas are taken in account in calculating the 

empirical CCDF. We also include the results of our 

proposed algorithm obtained at the 200𝑡ℎ iteration achieves 

a substantial PAPR reduction: it reduces the PAPR by more 
than 4dB compared to the ZF scheme (at CCDF(PAPR) = 

1%), by about 2dB compared to the PTS algorithm with 

2000 iterations. 
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Fig: 7 (a) PAPR reduction using EM-GAMP 

The SER performance of respective schemes is 

shown in Fig. 7(b), where the signal-to-noise ratio (SNR) is 

defined as SNR = ∥ x ∥2
2 M𝑁0, 𝑁0 denotes the variance of 

the receiver noise. 

 

 
 

Fig: 7(b) SER performance in different schemes. 

 

TABLE 1 

 

Method PTS EM-GAMP 

FFT Size 1024 1024 

Iterations 3000 200 

PAPR 8dB 5dB 

Complexity High Low 

 
VI. CONCLUSION 

We considered the problem of joint PAPR 

reduction and multiuser interference (MUI) cancelation in 

OFDM based massive MIMO downlink systems. A 

hierarchical truncated Gaussian mixture prior model was 

proposed to encourage a low PAPR solution/signal. A 

variational EM algorithm was developed to obtain estimates 

of the hyperparameters associated with the prior model, as 

well as the signal. Specifically, the GAMP technique was 

embedded into the variational EM framework to facilitate 

the algorithm development. The proposed algorithm only 
involves simple matrix- vector multiplications at each 

iteration, and thus has a low computational complexity. 

Simulation results show that the proposed algorithm 

achieves notable improvement in PAPR reduction as 

compared with the PTS algorithm [14], and meanwhile 
renders better MUI cancelation and lower out-of- band 

radiation. The proposed algorithm also demonstrates a fast 

convergence rate, which makes it attractive for practical 

real-time systems. 
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