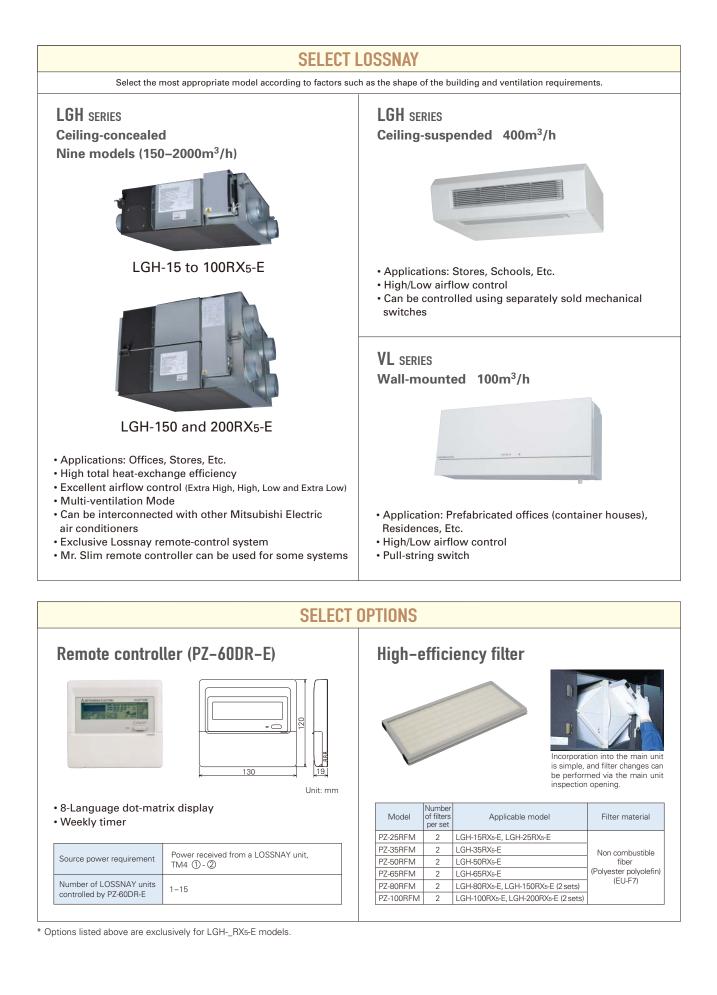
IOSSNAY SYSTEM



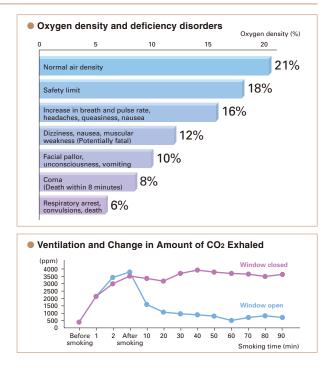
139

SELECTION

A line-up of three product groups that addresses a wide range of needs.

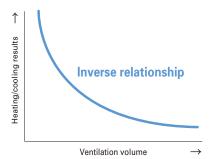
LOSSNAY

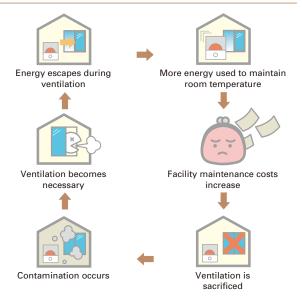
Lossnay ventilation systems are renowned industry-wide for their efficiency. They offer environment-friendly energy recovery and humidity control, and enable air conditioning systems to simultaneously provide optimum room comfort and energy savings.


One Adult Needs 400 Litres (Equivalent to Two Barrels) of Fresh Air Every Hour

In everyday life, occasionally there are times you might feel out of breath, for example, when you're in a closed room or a crowded train. This is because the air becomes carbon-rich; that is, the carbon dioxide (CO₂) that people exhale accumulates in closed spaces, thereby increasing the carbon gas density. The average person exhales about 20 litres of carbon-rich gas per hour. If there is no ventilation, the carbon gas density increases in the room as the oxygen density decreases, and various problems could occur. To live comfortably, every person needs a surprising 400 litres of fresh air per hour; a volume equivalent to two large barrels.

Main Gaseous Contaminants Found Indoors


Contaminant Name	Chemical Formula	Harm					
Carbon Monoxide	СО	Causes severe damage to the body					
Sulfurous Gases (sulfur oxide)	SO2	Damages the body; causes asthma; reacts with metals, generates rusting					
Nitrous Gases Nitric oxide Nitrogen dioxide	NO NO2	Direct harm to the body is unclear; becomes NO2 when bound with oxygen, causes indirect harm; irritates the throat and lungs, possibly causing serious damage.					
Carbon Dioxide Gas	CO2	No direct harm unless the gas is very dense					
Bad Odours	_	Bad odours found inside residences do not cause serious damage health-wise, but may create discomfort					


Source: An Introduction to Home Environment Studies. S. Fuji, Shoukokusha Publications

Ventilation Supporting Both Heating and Cooling

When using a ventilating system, indoor air that has been heated or cooled escapes causing the room to become cold in winter or hot in summer. As the heated/cooled air dissipates, the environment becomes uncomfortable, precious energy and money are wasted, and the increasing amount of contaminated indoor air that needs to be ventilated turns into a major problem. The reason for this phenomenon is that heating/cooling and ventilation have an incompatible relationship that is inversely proportional. For air conditioning, Mitsubishi Electric proposes heating and cooling systems that provide effective ventilation at the same time.

Simple Construction, High Performance – That's Lossnay Air Ventilation

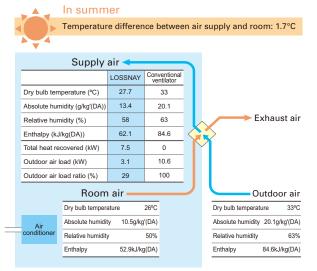
Simple Construction

As shown in the illustration, the Lossnay element design adopts a cross-flow shape and plate-fin construction that enables total heat exchange using specially processed paper dividers and interval plates. Since the dividers separate the intake and exhaust passages, fresh air is always inducted without mixing with exhaust air.

Indoor-air supply (fresh heating/cooling air) Divider (specially processed paper) Indoor-air intake (dirty heating/cooling air) Outdoor air outlet (dirty indoor-air intake (fresh air) Interval plate (specially processed paper)

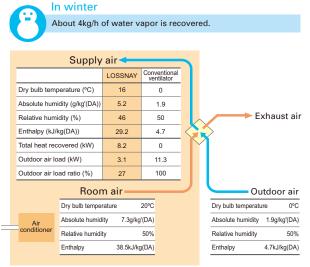
Operating Principle

The Lossnay element skillfully provides total heat exchange—temperature (i.e., sensible heat) and humidity (latent heat)—using specially processed paper dividers and moisture permeability characteristics; enabling dirty indoor-air to be expelled outside and fresh outdoor-air to be inducted inside, passing through the Lossnay without ever mixing.


The principle can be explained by a simple experiment. Roll a sheet of paper into a tube shape and blow through it. The warmth of the air is transferred to your hand, and conversely, if cold air is blown through the tube, the coldness would be transferred to your hand. The same special properties of the paper are used for the Lossnay total heat exchanger.

What are Sensible Heat and Latent Heat?

Sensible heat is the heat resulting from temperature changes (i.e., rise/fall) in a substance, and latent heat is that which is generated or dissipates according to changes in the state of a substance (e.g., evaporation, condensation, etc.).


- Temperature (sensible heat) exchange Thermal conduction and heat transfer through the divider in all temperature ranges.
- Humidity (latent heat) exchange Water vapor transference through the divider in all temperatures ranges based on differences in water vapor pressure.

Comfortable Air Ventilation Regardless of Being Hot or Cold

Energy-recovery calculating equation

 $\begin{array}{l} \mbox{Indoor supply-air emperature (°C) = 0 \mbox{Utdoor temperature (°C) - Indoor temperature (°C) - Indoor \mbox{Vertexperature (°C) - Indoor \mbo$

Energy-recovery calculating equation

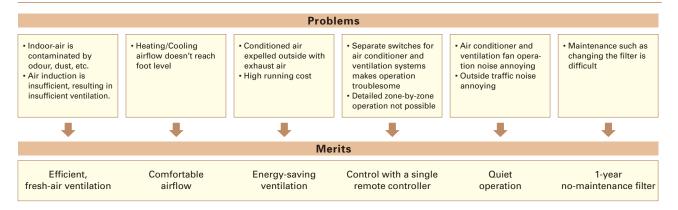
 $\begin{array}{l} \mbox{Indoor supply-air} = \left\{ \begin{array}{l} \mbox{Indoor} & \mbox{Outdoor} \\ \mbox{temperature (°C)} & \mbox{Temp recovery} & \mbox{Outdoor} \\ \mbox{temperature (°C)} \\ \mbox{Calculation example: } 16^{\circ}C = (20^{\circ}C - 0^{\circ}C) \times 80\% + 0^{\circ}C \end{array} \right\} \times \begin{array}{l} \mbox{Temp recovery} & \mbox{Outdoor} \\ \mbox{temperature (°C)} \\ \mbox{Calculation example: } 16^{\circ}C = (20^{\circ}C - 0^{\circ}C) \times 80\% + 0^{\circ}C \end{array}$

Other Features

Lossnay provides better air ventilation because air is inducted and expelled concurrently, thereby offering more efficient operation than traditional air ventilation (exhaust ventilation only).

If air is not supplied, the air pressure in the room drops and the entire space is not properly ventilated.

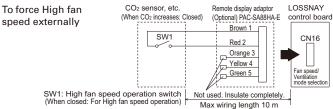
If Lossnay is used

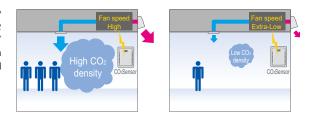

By inducting and expelling air concurrently, Lossnay constantly provides sufficient ventilation and maintains a good air environment indoors.

Mr. Slim & Lossnay Interconnected Ventilation Systems

High-quality Air Conditioning Systems Fusing Comfort and Economy

Six Major Merits of Interconnected Ventilation Systems




CO₂ Sensor

The system allows you to measure CO₂ density and thereby control the amount of fresh air supplied. By connecting a CO₂ sensor to the connector CN16, which is added to the LOSSNAY main unit, the setting can be switched to High, Low, or Extra Low operation, which is selected when the sensor is turned ON. This system produces additional energy conservation.

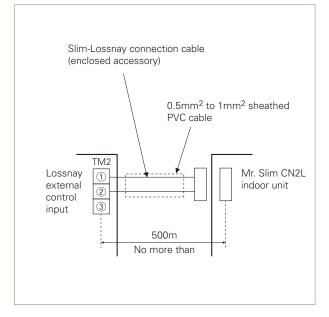
Air volume can be set using a pin position.

When SW1 is "ON", fan speed of the LOSSNAY will be set to "High" (Extra-High) regardless of the remote control setting. Use this in such a way that it ventilates at Low or Extra-Low fan speed normally, and when the external sensor detects contamination of indoor air, it changes to High (Extra High) fan speed operation.

One Remote Controller for All Operations

Control both Mr. Slim and Lossnay units with a single controller, the new "MA Remote Controller." Compared to conventional air conditioning and ventilation systems that require a separate remote controller for each unit, operation is greatly simplified. A variety of features are incorporated, such as a "Ventilation Changeover Switch" for independent operation of the Lossnay when running for long periods of time.

Mr. Slim Air Conditioners Connectable with Lossnay Ventilation Units


Туре	Model Name	Туре	Model Name	
Ceiling Cassette (4-way)	PLA-BA/SLZ-KA	Ceiling	PCA-KAQ/HAQ	
	PEAD-JA/PEA-GAQ	Wall-mounted	ΡΚΑ-ΗΑ/ΚΑ	
Ceiling-concealed	SEZ-KD	Floor-standing	PSA-GA	

* The wired remote controller must be set before it can be used to operate individual Lossnay units.

System Example

A-control Mr. Slim outdoor unit Slim-Lossnay connection cable (enclosed with Lossnay unit) A-control Mr. Slim indoor unit Lossnay unit LGH-RX5-E

Connection Method

Lossnay Function Table (Interlocked settings)

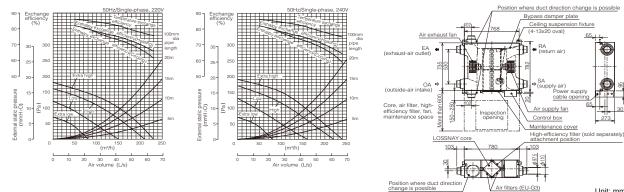
Item	Details
Number of indoor units that can be set to interlocked operation with 1 Lossnay unit in each group	1 unit
Number of Lossnay units that can be set to interlocked operation with 1 indoor unit	1 unit
Operation of Lossnay unit only (When indoor unit is stopped)	Possible
Independent Lossnay unit start and stop (When indoor unit is operating)	Not possible
Delayed operation (Optional setting)	30 minute delayed operation when indoor unit cooling/heating is started
Fan speed switching	High/Low*
Ventilation mode	Automatic
Filter indicator	None
Error indicator	None
Restrictions and precautions	The Lossnay remote controller cannot be used for systems interlocked with Mr. Slim.

* Cannot select extra-low fan speed when using the MA Remote Controller.

Controller Function Table for Lossnay Units

Switched and display \bigcirc : Group only (or function available) $\,$ \times : Not available

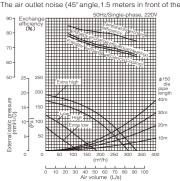
			Local remote		
	Model	MA Remote	e Controller	Lossnay Remote Controller	
		PAR-21MAA	PAR-30MAA	PZ-60DR-E	
	Start/Stop	0	0		
tion	Fan speed switching (High/Low)*	0	0		
Operation	Ventilation mode switching	× (Automatic)	× (Automatic)		
Ö	Priority instructions Local permitted/prohibited	×	×		
	Status (Operation/Stop)	0	0	Cannot be used	
	Fan speed switching (High/Low)	0	0	with interlocked	
ing	Ventilation mode	×	×	Lossnays	
Monitoring	Error indicator	×	×		
No	Error content	×	×		
	Filter sign	×	×		
	Local permitted/prohibited	×	×		

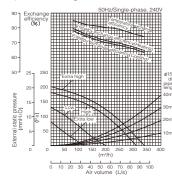

* Cannot select extra-low fan speed when using the MA Remote Controller.

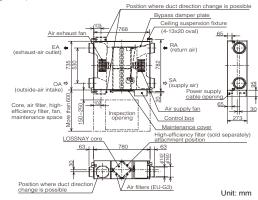
Specifications / Dimensions

LGH-15RX5-E

Model					LGH-1	5RX₅-E			
Power Supply (V/Phase/Hz)					220-240 /	Single / 50			
Ventilation Mode			LOSSNAY	ventilation		Bypass ventilation			
Fan Speed		Extra-Hi	Hi	Lo	Extra-Lo	Extra-Hi	Hi	Lo	Extra-Lo
Operating Current (A)		0.44-0.46	0.37-0.38	0.25-0.25	0.14-0.15	0.45-0.46	0.37-0.38	0.25-0.26	0.14-0.15
Power Consumption (W)		96-110	80-90	53-59	30-35	97-110	81-91	54-61	30-35
(m ³ /h)		150	150	110	70	150	150	110	70
Air Volume	(L/s)	42	42	31	19	42	42	31	19
External Static Pressure	(mmH2O)	10.2-10.7	6.6-7.1	3.6-4.1	1.4	10.2-10.7	6.6-7.1	3.6-4.1	1.4
External Static Pressure	(Pa)	100-105	65-70	35-40	14	100-105	65-70	35-40	14
Temperature Exchange Efficiency (%)	82.0	82.0	84.0	85.5	—	—	—	—
Enthalpy Exchange Efficiency (%)	Heating	75.0	75.0	77.5	81.0	_	—	—	_
Enthalpy Exchange Entciency (%)	Cooling	73.0	73.0	76.5	81.0	_	—	—	_
SPL (dB) (measured at 1.5m under the center of apanel in an anechoic chamber)		27.5-28	26.5-27	22-23.5	18	28.5-29	27-28	23-24	18-19
Weight (kg)	20								
Starting Current					0.	8A			

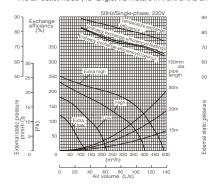

*The air outlet noise (45° angle, 1.5 meters in front of the unit) is about 10dB higher than the indicated value at high fan speed.

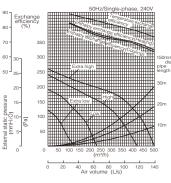


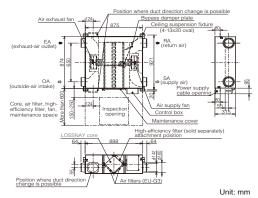

LGH-25RX5-E

	Extra-Hi	LOSSNAY		LGH-2 220-240 /	SRX5-E Single / 50				
	Evtra-Hi	LOSSNAY		220-240 /	Single / 50				
	Extra-Hi	LOSSNAY							
	Extra-Hi		ventilation		Bypass ventilation				
	EAU d-I II	Hi	Lo	Extra-Lo	Extra-Hi	Hi	Lo	Extra-Lo	
	0.52-0.55	0.47-0.48	0.26-0.27	0.17-0.18	0.53-0.55	0.47-0.48	0.26-0.27	0.17-0.18	
	113-129	102-114	56-62	36-42	115-131 103-115 56-63 36-42				
(m ³ /h)	250	250	155	105	250	250	155	105	
(L/s)	69	69	43	29	69	69	43	29	
(mmH2O)	8.2-8.7	5.1-6.1	2-2.5	0.9	8.2-8.7	5.1-6.1	2-2.5	0.9	
(Pa)	80-85	50-60	20-25	9	80-85	50-60	20-25	9	
	79.0	79.0	81.5	83.5	—	—	_	—	
Heating	69.5	69.5	74.0	77.5	—	—	—	—	
Cooling	68.0	68.0	72.5	76.0	—	—	—	—	
e center chamber)	26-27	25-26	20-21.5	18-19	26.5-27.5	25.5-26.5	20.5-22	18-19	
	20								
(r ŀ	(L/s) nmH2O) (Pa) Heating Cooling center	(m³/h) 250 (L/s) 69 nmH2O) 8.2-8.7 (Pa) 80-85 79.0 Heating 69.5 Cooling 68.0 center 28.27	(m³/h) 250 250 (L/s) 69 69 nmHzO) 8.2-8.7 5.1-6.1 (Pa) 80-85 50-60 79.0 79.0 Heating 69.5 69.5 Cooling 68.0 68.0 center 26.27 25.26	(m³/h) 250 250 155 (L/s) 69 69 43 nmHzO) 8.2-8.7 5.1-6.1 2-2.5 (Pa) 80-85 50-60 20-25 79.0 79.0 81.5 feating 69.5 69.5 74.0 Cooling 68.0 72.5 center 26.27 25.26 20.21.5	(m³/h) 250 250 155 105 (L/s) 69 69 43 29 nmHzO) 8.2-8.7 5.1-6.1 2-2.5 0.9 (Pa) 80-85 50-60 20-25 9 79.0 79.0 81.5 83.5 Heating 69.5 69.5 74.0 77.5 Cooling 68.0 68.0 72.5 76.0 center amber) 26-27 25-26 20-21.5 18-19	(m³/h) 250 250 155 105 250 (L/s) 69 69 43 29 69 nmHzO) 8.2-8.7 5.1-6.1 2-2.5 0.9 8.2-8.7 (Pa) 80-85 50-60 20-25 9 80-85 79.0 79.0 81.5 83.5 Heating 69.5 69.5 74.0 77.5 Cooling 68.0 68.0 72.5 76.0 center amber) 26-27 25-26 20-21.5 18-19 26.5-27.5	(m³/h) 250 250 155 105 250 250 (L/s) 69 69 43 29 69 69 mmH20 8.2-8.7 5.1-6.1 2-2.5 0.9 8.2-8.7 5.1-6.1 (Pa) 80-85 50-60 20-25 9 80-85 50-60 79.0 79.0 81.5 83.5 Heating 69.5 69.5 74.0 77.5 Cooling 68.0 68.0 72.5 76.0 center 26-27 25-26 20-21.5 18-19 26.5-27.5 25.5-26.5	(m ³ /h) 250 250 155 105 250 250 155 (L/s) 69 69 43 29 69 69 43 nmH20) 8.2-8.7 5.1-6.1 2-2.5 0.9 8.2-8.7 5.1-6.1 2-2.5 (Pa) 80-85 50-60 20-25 9 80-85 50-60 20-25 79.0 79.0 81.5 83.5 reating 69.5 69.5 74.0 77.5 Cooling 68.0 68.0 72.5 76.0 Center amber) 26-27 25-26 20-21.5 18-19 26.5-27.5 25.5-26.5 20.5-22	

*The air outlet noise (45° angle,1.5 meters in front of the unit) is about 10dB higher than the indicated value at high fan speed.

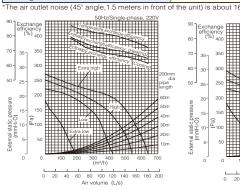


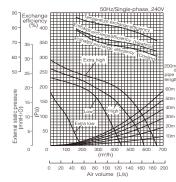


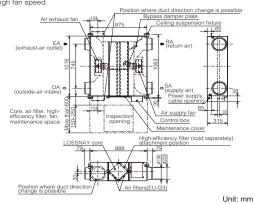

LGH-35RX5-E

Model					LGH-3	35RX₅-E					
Power Supply (V/Phase/Hz)					220-240 /	Single / 50					
Ventilation Mode			LOSSNAY	ventilation			Bypass ventilation				
Fan Speed		Extra-Hi	Hi	Lo	Extra-Lo	Extra-Hi	Hi	Lo	Extra-Lo		
Operating Current (A)		0.92-0.92	0.74-0.74	0.5-0.51	0.28-0.3	0.93-0.94	0.77-0.77	0.51-0.52	0.28-0.3		
Power Consumption (W)		195-212	160-169	105-116	58-69	197-217 164-173 105-116 58-69			58-69		
A	(m ³ /h)	350	350	210	115	350	350	210	115		
Air volume	(L/s)	97	97	58	32	97	97	58	32		
Futernel Otatia Drasoura	(mmH2O)	15.8-16.3	7.6-8.2	2.5-3.1	0.9	15.8-16.3	7.6-8.2	2.5-3.1	0.9		
External Static Pressure	(Pa)	155-160	75-80	25-30	9	155-160	75-80	25-30	9		
Temperature Exchange Efficiency (%)	80.0	80.0	85.0	88.0	-	—	—	—		
Enthalpy Exchange Efficiency (%)	Heating	71.5	71.5	76.5	81.5	-	—	—	—		
Enthalpy Exchange Enciency (%)	Cooling	71.0	71.0	75.5	81.0	_	—	—	—		
SPL (dB) (measured at 1.5m under the center of apanel in an anechoic chamber)		32-32	28.5-29.5	21.5-23	18	32.5-32.5	29.5-30.5	21.5-24	18		
Weight (kg)		29									
Starting Current					2	.4A					

*The air outlet noise (45° angle, 1.5 meters in front of the unit) is about 10dB higher than the indicated value at high fan speed.

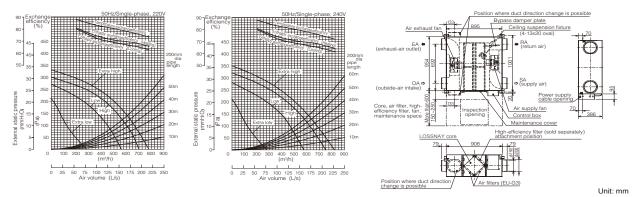



LGH-50RX5-E


Model					LGH-5	50RX5-E			
Power Supply (V/Phase/Hz)					220-240 /	Single / 50			
Ventilation Mode			LOSSNAY	ventilation			Bypass ve	entilation	
Fan Speed		Extra-Hi	Hi	Lo	Extra-Lo	Extra-Hi	Hi	Lo	Extra-Lo
Operating Current (A)		1.2-1.25	1.0-1.0	0.85-0.85	0.4-0.4	1.25-1.25 1.0-1.0 0.85-0.85 0.4-0.			0.4-0.4
Power Consumption (W)		255-286	207-228	175-190	80-95	260-290 210-230 180-195 80-9			80-95
A in Maluma	(m ³ /h)	500	500	390	180	500	500	390	180
Air Volume	(L/s)	139	139	108	50	139	139	108	50
5	(mmH ₂ O)	15.3-15.8	6.6-9.2	4.1-6.1	1.0	15.3-15.8	6.6-9.2	4.1-6.1	1.0
External Static Pressure	(Pa)	150-155	65-90	40-60	10	150-155	65-90	40-60	10
Temperature Exchange Efficiency (%)	78.0	78.0	81.0	86.0	—	—	—	—
Enthalpy exchange efficiency (%)	Heating	69.0	69.0	71.0	78.0	—	—	—	—
Entraipy exchange enciency (%)	Cooling	66.5	66.5	68.0	77.0	—	_	—	—
SPL (dB) (measured at 1.5m under the center of apanel in an anechoic chamber)		33-34	30.5-32	26.5-28	19	34-35	31-32.5	27-29	19
Weight (kg)		32							
Starting Current					3.	.0A			

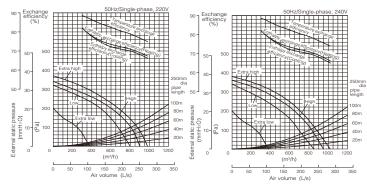
 Starting Current
 3.0A

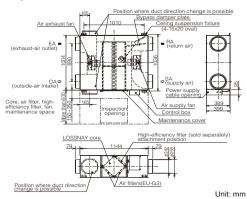
 *The air outlet noise (45° angle, 1.5 meters in front of the unit) is about 16dB higher than the indicated value at high fan speed



LGH-65RX5-E

Model					LGH-6	5RX₅-E				
Power Supply (V/Phase/Hz)					220-240 /	Single / 50				
Ventilation Mode			LOSSNAY	ventilation			Bypass ve	entilation		
Fan Speed		Extra-Hi	Hi	Lo	Extra-Lo	Extra-Hi	Hi	Lo	Extra-Lo	
Operating Current (A)		1.7-1.8	1.5-1.5	1.2-1.2	0.6-0.6	1.7-1.8	1.7-1.8 1.5-1.5 1.2-1.2 0.6-			
Power Consumption (W)		350-380	308-322	248-265	120-140	350-385	350-385 310-335 250-265 120-14			
	(m ³ /h)	650	650	520	265	650	650	520	265	
Air Volume	(L/s)	181	181	144	74	181	181	144	74	
External Static Pressure	(mmH2O)	11.2-12.2	6.1-8.2	4.1-5.1	0.8	11.2-12.2	6.1-8.2	4.1-5.1	0.8	
External Static Pressure	(Pa)	110-120	60-80	40-50	8	110-120	60-80	40-50	8	
Temperature Exchange Efficiency (%)	77.0	77.0	80.0	86.0	_	_	—	—	
Enthalpy exchange efficiency (%)	Heating	68.5	68.5	70.5	78.0	_	_	—	—	
Enthalpy exchange enciency (%)	Cooling	66.0	66.0	68.5	77.0	-	—	—	—	
SPL (dB) (measured at 1.5m under the center of apanel in an anechoic chamber)		34-34.5	32-33	28.5-31.5	22	34.5-35	32.5-33.5	28.5-30.5	22-22.5	
Weight (kg)			40							
Starting Current					4	4A				

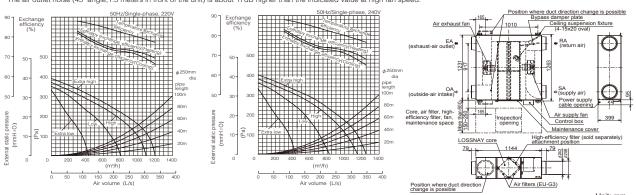

*The air outlet noise (45° angle, 1.5 meters in front of the unit) is about 10dB higher than the indicated value at high fan speed.



LGH-80RX5-E

Model					LGH-8	0RX₅-E				
Power Supply (V/Phase/Hz)					220-240 /	Single / 50				
Ventilation Mode			LOSSNAY	ventilation			Bypass ve	entilation		
Fan Speed		Extra-Hi	Hi	Lo	Extra-Lo	Extra-Hi	Hi	Lo	Extra-Lo	
Operating Current (A)		1.75-1.75	1.6-1.6	1.45-1.45	0.60-0.65	1.75-1.75 1.6-1.6 1.45-1.45 0.60-0				
Power Consumption (W)		380-415	345-370	315-340	125-145	380-415 345-370 315-340 120-14				
Ale Malence -	(m ³ /h)	800	800	700	355	800	800	700	355	
Air Volume	(L/s)	222	222	194	99	222	222	194	99	
Futernel Otatia Drasavura	(mmH2O)	14.8-15.3	10.7-12.2	8.2-9.7	2	14.8-15.3	10.7-12.2	8.2-9.7	2	
External Static Pressure	(Pa)	145-150	105-120	80-95	20	145-150	105-120	80-95	20	
Temperature Exchange Efficiency (%)	79.0	79.0	80.5	87.5	—	—	—	—	
Enthalpy exchange efficiency (%)	Heating	71.0	71.0	72.5	79.5	—	_	—	—	
Enthalpy exchange enciency (%)	Cooling	70.0	70.0	71.5	79.5	_	_	—	—	
SPL (dB) (measured at 1.5m under the center of apanel in an anechoic chamber)		33.5-34.5	32-33	30-31	22	34.5-35.5	33-34	31-32	22	
Weight (kg)						53				

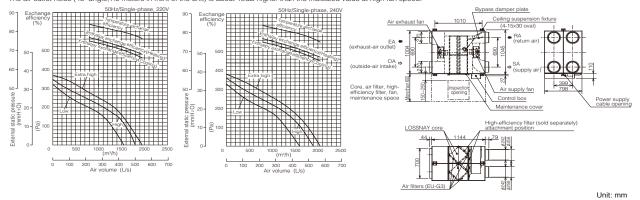
*The air outlet noise (45° angle, 1.5 meters in front of the unit) is about 16dB higher than the indicated value at high fan speed



LGH-100RX5-E

Model					LGH-1	00RX₅-E				
Power Supply (V/Phase/Hz)					220-240 /	Single / 50				
Ventilation Mode			LOSSNAY	ventilation			Bypass ve	entilation		
Fan Speed		Extra-Hi	High	Lo	Extra-Lo	Extra-Hi	Hi	Lo	Extra-Lo	
Operating Current (A)		2.3-2.4	2.1-2.1	1.7-1.7	0.9-0.9	2.3-2.4 2.1-2.1 1.7-1.7 (0.9-0.9	
Power Consumption (W)		500-535	445-475	350-380	175-200	510-550	510-550 460-485 365-395 175-20			
	(m ³ /h)	1000	1000	755	415	1000	1000	755	415	
Air Volume	(L/s)	278	278	210	115	278	278	210	115	
External Static Pressure	(mmH ₂ O)	16.3-17.3	10.2-11.2	5.6-6.1	1.8	16.3-17.3	10.2-11.2	5.6-6.1	1.8	
External Static Pressure	(Pa)	160-170	100-110	55-60	18	160-170	100-110	55-60	18	
Temperature Exchange Efficiency (%)	80.0	80.0	83.0	87.0	_	_	_	_	
Enthalpy exchange efficiency (%)	Heating	72.5	72.5	74.0	80.0	—	—	-	-	
Entraipy exchange eniciency (%)	Cooling	71.0	71.0	73.0	79.0	_	—	_	_	
SPL (dB) (measured at 1.5m under the center of apanel in an anechoic chamber)		36-37	34-35	31-32.5	21-22	37-38	35-36	32-33	21-22	
Weight (kg)		59								
Starting Current					4	6A				

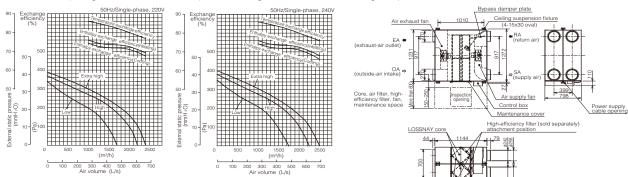
*The air outlet noise (45° angle,1.5 meters in front of the unit) is about 17dB higher than the indicated value at high fan speed.



LGH-150RX5-E

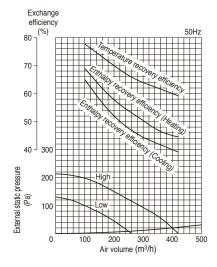
Model				LGH-1	50RX₅-E					
Power Supply (V/Phase/Hz)				220-240 /	Single / 50					
Ventilation Mode			LOSSNAY ventilation			Bypass ventilation				
Fan Speed		Extra-Hi	Hi	Lo	Extra-Hi	Hi	Lo			
Operating Current (A)		3.5-3.5	3.2-3.2	2.9-2.9	3.5-3.5 3.2-3.2 2.9-2.9					
Power Consumption (W)		760-830	690-740	630-680	765-835 695-745 635-685					
	(m ³ /h)	1500	1500	1300	1500	1500	1300			
Air Volume	(L/s)	417	417	361	417	417	361			
External Static Pressure	(mmH2O)	16.3-17.8	13.3-13.8	9.7-10.2	16.3-17.8	13.3-13.8	9.7-10.2			
External Static Pressure	(Pa)	160-175	130-135	95-100	160-175	130-135	95-100			
Temperature Exchange Efficiency (%	.)	80.0	80.0	81.0	-	—	—			
Enthalpy exchange efficiency (%)	Heating	72.0	72.0	72.5	—	—	—			
Enthalpy exchange enciency (%)	Cooling	70.5	70.5	71.5	-	—	—			
SPL (dB) (measured at 1.5m under the center of apanel in an anechoic chamber)		38-39	36-37.5	33.5-35	39-40.5	37.5-39	35.5-37			
Weight (kg)			105							

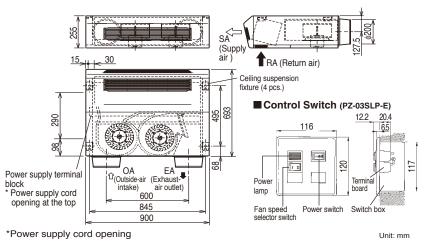
 Starting Current
 (.3A


 *The air outlet noise (45° angle, 1.5 meters in front of the unit) is about 19dB higher than the indicated value at high fan speed.

LGH-200RX5-E

Model	LGH-200RX₅-E							
Power Supply (V/Phase/Hz)	220-240 / Single / 50							
Ventilation Mode			LOSSNAY ventilation		Bypass ventilation			
Fan Speed		Extra-Hi	Hi	Lo	Extra-Hi	Hi	Lo	
Operating Current (A)		4.8-4.8	4.2-4.2	3.4-3.4	4.8-4.8	4.2-4.2	3.4-3.4	
Power Consumption (W)	1035-1100	910-980	715-785	1040-1110	915-980	720-785		
Air Volume	(m ³ /h)	2000	2000	1580	2000	2000	1580	
Air volume	(L/s)	556	556	439	556	556	439	
External Static Pressure	(mmH2O)	16.3-16.8	10.2-10.7	6.1-6.6	16.3-16.8	10.2-10.7	6.1-6.6	
	(Pa)	160-165	100-105	60-65	160-165	100-105	60-65	
Temperature Exchange Efficiency (%)		80.0	80.0	83.0	—	—	—	
Enthalpy exchange efficiency (%)	Heating	72.5	72.5	73.5	-	-	-	
Entraipy exchange enciency (%)	Cooling	71.0	71.0	72.0	-	-	—	
SPL (dB) (measured at 1.5m under the center of apanel in an anechoic chamber)		39.5-40	37-38	32.5-34	40.5-41	38-39	33.5-35	
Weight (kg)	118							
Starting Current	11.9A							

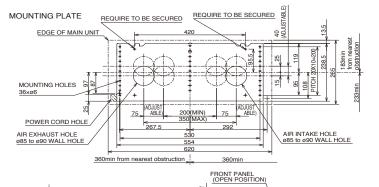

*The air outlet noise (45° angle, 1.5 meters in front of the unit) is about 20dB higher than the indicated value at high fan speed.

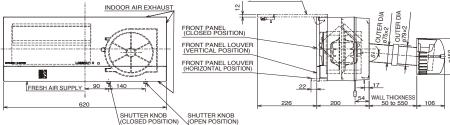


LGH-40ES-E

Supply Voltage	Power Supply Frequency (Hz)	Fan Speed	Power Consumption (W)	Air Volume		Temperature Recovery	Enthalpy Recovery Efficiency (%)		Noise (dB(A))	Weight (kg)
(V)				(m ³ /h)	(L/s)	Efficiency (%)	Heating	Cooling	(00(71))	(19)
1-phase	50	Hi	132-146	400	111	60	45	40	41-43	25
220~240	50	Lo	82-95	250	69	66	54	48	32-34	25

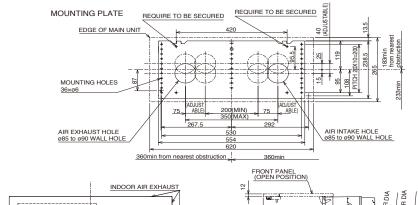
*The value of noise was measured at an anechoic chamber. it may vary depending on the room structure, building materials or the way the main was installed.

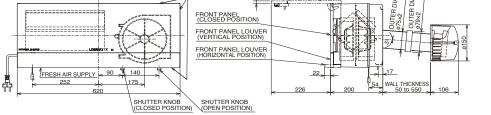




Air filters (E

VL-100EU₅-E


	Supply voltage (V)	Power line frequency (Hz)	Fan speed	Air volume (m ³ /h)	Power consumption (W)	Temp.exchange efficiency (%)	Noise (dB)	Weight (kg)	
[220	50	HI	100	30	73	36.5		
			LO	55	13	80	24		
ſ	230	50	HI	105	31	73	37		
			LO	60	15	80	25	7.5	
	240	50	HI	106	34	72	38	7.5	
			LO	61	17	79	27		
ſ	220	60	eo HI	HI	103	34	73	38	
			LO	57	17	80	25		



VL-100U₅-E

Supply voltage (V)	Power line frequency (Hz)	Fan speed	Air volume (m³/h)	Power consumption (W)	Temp.exchange efficiency (%)	Noise (dB)	Weight (kg)	
220	50	HI	100	30	73	36.5		
		LO	55	13	80	24		
230	50	HI	105	31	73	37		
230		LO	60	15	80	25	7.5	
240	50	HI	106	34	72	38	1.5	
		LO	61	17	79	27		
220	60	60 H	HI	103	34	73	38	
		LO	57	17	80	25		

