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Abstract 
This paper explores some of the analytical and statistical challenges encountered when 
seeking to derive predictive models of vehicle exhaust emissions from instrumented vehicle 
measurements. Data at a microscopic temporal resolution (1Hz) from forty drivers on a 
suburban route is utilised as a case study. A range of analytical issues are highlighted, 
including temporal synchronisation of dependent and independent variables, determining the 
most appropriate temporal sampling resolution, multi-modality in the frequency distribution of 
exhaust emissions data relating to vehicle operating modes, variability in driver behaviour, 
and specification of predictive models. Illustrative examples of each issue are presented, 
utilising the case study as a test case. 
 
1. Preamble 
The development of predictive models of road vehicle (internal combustion engine) exhaust 
emissions of sufficient robustness for use in local air quality assessment requires an 
adequate understanding of the relevant generative system processes encompassing: 
 

 Automotive control systems (engine management, emissions control, sensors and 
actuators); 

 Fuel delivery, combustion, and exhaust system operation; 

 Driver behaviour (nature, range and variability of system inputs);  

 Combustion chemistry; 

 Catalyst / emissions control system chemistry; 

 Atmospheric chemistry. 
 
Further, the nature, operation, and limitations of the system monitoring (data collection) 
methodology and associated instrumentation need to be fully understood to allow correct 
processing and interpretation of data gathered from monitoring campaigns. This 
encompasses issues such as: 
 

 Type of sensor technology used to measure variation in relevant system parameters; 

 Type of sensor technology employed to measure exhaust gas composition; 

 Sensor sensitivity, specificity, cross-sensitivity, resolution, and response times; 

 Physical location of sensor measurements within the system; 

 Quantification of time lags between system inputs (potential independent variables), 
system outputs, and sensor outputs, including variations in components of exhaust 
emissions; 

 Time resolution of the sensor measurements themselves; 

 Range of operational conditions under which measurements were taken. 
 
Clearly, the scope of this problem is wide, and the potential complexity challenging. This 
paper does not attempt to provide a comprehensive treatment of the issues, but provides 
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some illustrative examples of the type of problem encountered when analysing data obtained 
from a vehicle emissions monitoring campaign, with a view to the development of predictive 
models. A more comprehensive treatment will be the subject of later publication. Initially, this 
paper provides brief details of the measurement campaign which provided the data for this 
research. This is followed by a description of the issues relating to temporal synchronisation 
and resolution. The frequency distributions of measured vehicle characteristics paves the 
way for an elaboration of the driver characteristics based on a cluster analysis. Finally, 
before conclusions are drawn, the reader is introduced to preliminary ideas of the proposed 
modelling framework expected to evolve from this work. 
 
2. Background to the dataset 
The RETEMM project (Real-world Traffic Emissions Monitoring and Modelling), funded by 
the UK Engineering and Physical Sciences Research Council, and completed in 2008, 
investigated the impact of driver behaviour on emissions (Bell et al 2008). Simultaneous 
measurements of real-world traffic conditions, driver behaviour, and instantaneous vehicle 
emissions were undertaken. The analysis presented in this paper utilises some of the data 
generated in the RETEMM project to illustrate various aspects of the data analysis process 
being developed to improve the tailpipe emission prediction capability in traffic micro-
simulation models. A short (0.6km) circular route was defined in a suburban residential area 
characterised by having priority junctions only. The route comprised four reasonably straight 
sections varying in length between 140 and 165 metres. Forty drivers were recruited, 
comprising 20 male and 20 female. The sample of drivers spanned a wide range of driving 
experience, and ages from 21 to 63. Drivers drove ten laps of the circuit. The analysis 
presented here utilises data collected from a Euro 4 standard petrol 1800cc SI passenger 
car with manual transmission fitted with an HORIBA OBS-1300 emissions measurement 
system, combined with GPS vehicle positioning (Daham 2006). Data were collected at 1 Hz. 
Further information can be found in Bell M.C. and Rhys-Tyler G.A. (2008) and Rhys-Tyler 
G.A and Bell M.C. (2009a & 2009b). 
 
3. Temporal synchronisation 
According to INRETS(2006), there are a number of potential systematic problems associated 
with the measurement of instantaneous emissions. The emissions signals recorded by 
exhaust gas analysers are delayed in time and smoothed compared to the emission events 
at the location of formation due to: 
 
1. The transport of the exhaust gas to the analysers; 
2. The mixing of exhaust gas, especially in the vehicle silencer and measurement 

equipment; 
3. The response time of the analysers. 
 
Research published by Le Anh et al (2006) presents mathematical techniques to attempt to 
address these issues by explaining the change of the emission value from its location of 
formation to the exhaust gas analyser signal by formula, and then by inverting these 
formulae to obtain equations which transform the analyser signal into the engine out (or 
catalyst-out) emission value. This technique has been used within the EU 5

th
 Framework 

ARTEMIS project by both the Technical University of Graz and by the EMPA research 
institute in Switzerland (INRETS 2006). Figure 1 is adapted from the ARTEMIS work, and 
illustrates both the emissions signal time offset and smoothing effects, and the signal 
reconstruction using the equation inversion approach. In this example, an oxygen signal at 
the catalyst outlet (measured at location „C‟) is reconstructed from the analyser signal 
(measured at location „F‟). One of the conclusions drawn from this work is that the use of 
data from sensor measurements which have not been corrected for time alignment and 
signal smoothing will potentially lead to errors in the allocation of emissions to corresponding 
engine operating conditions (INRETS 2006). Static time realignment may be satisfactory in 
some limited circumstances where engine operation is constant in terms of engine speed, 
load, and resultant gas transit times in the vehicle exhaust and measurement system. 
However, in the real world, engine speed and load have the potential to be highly variable, 
due to: 
 

 The designed operational range of the vehicle‟s engine; 
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 Fuel type (diesel engines tend to operate over a narrower and lower engine speed 
range than petrol engines); 

 Variability of behaviour (system inputs) within individual drivers; 

 Variability of behaviour (system inputs) across drivers within the wider population. 
 
The RETEMM data set utilised within this case study was originally processed by colleagues 
at the University of Leeds employing techniques described in Ropkins et al 2007. A constant 
time offset was assumed which accounted for the delay time due to sample measurement 
and sensor response time i.e. the delay between points E and F in Figure 1. However, it was 
recognised by the researchers that this approach did not explicitly take account of variation 
due to the dynamic nature of gas transit times within the vehicle exhaust system due to 
changes in engine speed and load. Ropkins et al (2009) have subsequently suggested 
alternative approaches using correlation optimised warping techniques. 
 

 
Figure 1: Variability of time alignment between engine operation and measured 
emission signal, and reconstruction of source emissions using sensor signal 
inversion techniques. Adapted from INRETS (2006), and Ajtay et al (2004). 
 
The constrained nature of the route used to collect the data in this case study would 
(arguably) limit the range of variability one would expect to observe in the dataset in terms of 
temporal offset between emission generation and emission measurement. However, 
variability may be observed within the sample of 40 drivers. To investigate this phenomena 
further, a simple linear correlation was carried out between emissions (g/sec), and vehicle 
acceleration (-/+m/s

2
) and throttle position (0-100%) with varying time offsets. Similar 

techniques have been used by North et al (2006). Intuitively (and assuming that a 
relationship exists between the prospective dependent and independent variables), one 
would expect to observe different time offsets for throttle position and acceleration since 
throttle application (and consequent combustion) occurs before acceleration takes place. A 
time offset range of -5 seconds (before the emissions event) to +5 seconds (after the 
emissions event) was explored in 1 second steps. Figure 2 presents the results graphically 
for the 40 drivers. This analysis has the potential both to indicate the appropriate static time 
lag between prospective dependent and independent variables, and to highlight variability 
between drivers, but also to indicate where linear relationships (positive or negative) might 
exist. Carbon dioxide emissions display the strongest positive correlation with both 
acceleration and throttle position. All drivers displayed the strongest correlation for CO2 with 
throttle position at ∆t=0 time offset. The majority of drivers (32) displayed the strongest 
correlation with acceleration at ∆t=-1 time offset, although 8 drivers were observed to have 
the strongest correlation at ∆t=-2. 
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Figure 2: Investigation into variation in static time offsets using linear correlation 

 
Oxides of nitrogen were observed to display the next strongest positive correlation with both 
throttle position and acceleration

1
. The majority of drivers (39) displayed the strongest 

positive correlation for NOx with throttle position at ∆t=0 time offset, although 1 driver was 
observed to have the strongest correlation at ∆t=+1. The majority of drivers (24) displayed 

                                                      

1
 The NOx emissions values should be interpreted with caution. It has been demonstrated that the sensor utilised in 

the experiment is cross-sensitive to ammonia (NH3), rendering measurements sometimes unreliable, especially 
under rich engine operating conditions (Ropkins et al 2008). 
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the strongest correlation with acceleration at ∆t=-2 time offset, although 16 drivers were 
observed to have the strongest correlation at ∆t=-1. 
 
Table 1: Summary of correlation coefficients derived from static time offset analysis 
 

 
N.B. Negative and indeterminate coefficients relating to hydrocarbons have been excluded, resulting in 
sum of n<40. 

 
The correlation between carbon monoxide and throttle position/acceleration was less strong 
than for CO2 or NOx, but a positive correlation can be observed (throttle position ∆t in the 
range -1 to +1, and acceleration ∆t in the range -1 to -3 with the majority of drivers at ∆t=-2). 
 

  
 

  
Figure 3: Scatter plots of Hydrocarbons (g/sec) against Throttle Position (%) and 

Acceleration (m/s
2
) respectively for Drivers 4 and 8. 

 
The results for hydrocarbons are interesting and warrant further investigation to better 
understand the relationships and formation processes. Whilst a positive correlation can be 
observed for many drivers (typically throttle position ∆t=0, acceleration ∆t=-1), the strength of 
the correlation is highly variable. In addition, a small number of drivers display a negative 
correlation together with a longer time lag. This can be partly explained by the fact that the 
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nature of Pearson „r‟ is such that it imparts no information about the magnitude of the 
variables being analysed, only the extent to which „x‟ increases or decreases with changes in 
„y‟ (and of course implies no causality). In the hydrocarbon plots in Figure 2, two drivers have 
been highlighted; Driver 8 displaying a more typical positive correlation, and Driver 4 
displaying a less typical negative correlation. Figure 3 presents scatter plots of hydrocarbons 
against throttle position and acceleration respectively for these two drivers. It can be seen 
that the absolute levels of hydrocarbon emissions for Driver 4 are significantly lower than 
Driver 8, and that the higher levels generated by Driver 8 result in a more defined positive 
relationship with the independent variables, whereas the relationships for Driver 4 are far 
more ambiguous. Thus it can be seen that whilst correlation can be used successfully to 
derive static time alignment of dependent and independent variables, it should be used 
cautiously and with a knowledge of the distribution and magnitude of the underlying data. 
 
4. Temporal sampling resolution 
The data gathered in this case study was collected at a sampling frequency of 1Hz across all 
variables. However, there is no reason to assume that independent variables relevant to 
instantaneous modelling of emissions have a maximum frequency of the order of 1Hz, or 
indeed that they all have the same frequency of operation. Sensor response time (which may 
vary for different pollutants) is often a practical constraint, particularly for measurement of 
specific gases in the exhaust emissions. 
 
The Shannon (or Nyquist) Sampling Theorem provides a theoretical basis for determining 
the appropriate sampling rate of a variable. Essentially, “the sampling frequency should be at 
least twice the highest frequency contained in the signal” (Olshausen 2000). Mathematically; 
 

fs ≥ 2fc        (1) 
 

where fs is the sampling frequency, and fc is the highest frequency contained in the signal. If 
fs < 2fc, then „aliasing‟ can occur where a misleading/false understanding of the form of the 
original signal can be arrived at. 
 

 
Figure 4: Changes in vehicle throttle position (%), measured at 10Hz. 

 
 
Determining the highest frequency contained in a signal can be determined by 
measurement. A simple, but relevant, illustrative example is presented in Figure 4. Changes 
in throttle (accelerator) position were measured at a sampling frequency (fs) of 10Hz on an 
instrumented vehicle during normal driving. Figure 4 presents four short (2 second duration) 
samples of 10Hz data (TP1 – TP4) from these measurements. By observation, it can be 
seen that significant transitions in throttle position (+/- 20 to 40%) occur within time periods 
of 0.3 to 0.1 seconds (3Hz - 10Hz). Based on this data set, it cannot be stated with certainty 
that the maximum signal frequencies (fc) are not higher than 10Hz (this can only be 
determined by sample measurement at a higher frequency than 10Hz). From this simple 
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example, it can be seen that if throttle position was a significant independent variable in our 
analysis, it should be sampled at a rate fs = 20Hz to capture transitions taking place at fc = 
10Hz. However, this raises practical concerns for experimental design about achieving 
consistency of sampling frequency if, for example, sensor response times for some variables 
are constrained by limitations of technology. 
 
5. Frequency distribution of data 
When the frequency distribution of emissions data (CO2, HC, NOx, CO etc) is examined, it is 
often seen to exhibit more than one local maxima, in addition to significant skew and 
kurtosis. Multi-modality in the distribution (which can be a function of inherent system 
characteristics, and variability in driver behaviour), can inhibit the efficacy of „standard‟ data 
transformations used traditionally to address issues of non-normality. De-convolution of the 
frequency distribution into vehicle operating modes has been observed to result in uni-modal 
distributions which are more amenable to statistical analysis and modelling. There is a 
practical rationale for such de-convolution in a modelling context since the independent 
variables/emissions precursors may be different in each operating mode. This issue is 
explored further. 
 
Figures 5 and 6 respectively illustrate the multi-component nature of the frequency 
distributions for CO2 and NOx for four vehicle operating modes, acceleration, cruise, 
deceleration, and stop; 
 

Acceleration  – where acceleration (m/s
2
) > 0 

Cruise  – where velocity (m/s) < 0, and acceleration (m/s
2
) = 0 

Deceleration  – where acceleration (m/s
2
) < 0 

Stop   – where velocity (m/s) = 0, and acceleration (m/s
2
) = 0 

 
It is of course possible to define vehicle operating modes in greater detail. 
 
 

+ +  
 

+  =  
Figure 5: Modal components of CO2 (g/sec) exhaust emissions frequency distribution 

 
It can be seen clearly in Figure 5 that the frequency distribution of total CO2 (g/sec) (sum of 
acceleration, deceleration, cruise, and stop) has two local maxima, one at approximately 
1.12 g/sec, and a second at approximately 3.2 g/sec. However, it is clear that the peak at 3.2 
g/sec is generated largely by the „acceleration‟ component of vehicle operation, whereas the 
peak at 1.2 g/sec is dominated by the „deceleration‟ component. 
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On the other hand, the frequency distribution of total NOx g/sec emissions in Figure 6 is uni-
modal and highly skewed. However, it can be seen that the individual operating mode 
components are quite distinct. As is perhaps to be expected, „acceleration‟ dominates the 
right hand tail of the distribution, and whilst still skewed, the „acceleration‟ distribution is more 
„normal‟ (for want of a better descriptor) than the other components. „Deceleration‟ and „stop‟ 
modes have similar distributions, whereas the „cruise‟ mode has a denser right hand tail. 
 
This type of analysis is useful, not only because it provides guidance on the most 
appropriate statistical techniques to adopt (and possible data transformations), but also 
because it can provide indications regarding which operating modes are most dominant, and 
therefore where the analyst should be focusing attention when specifying predictive models 
of instantaneous tailpipe emissions. 
 

+ +  
 

+  =  
Figure 6: Modal components of NOx (g/sec) exhaust emissions frequency distribution 

 
6. Variability in driver behaviour 
Whilst emissions models can be derived from data collected from instrumented vehicle 
surveys and laboratory campaigns, with current vehicle technology, variability in driver 
behaviour (i.e. how drivers operate the primary vehicle controls such as the accelerator, 
gears, brake, clutch etc.) will have a significant influence on exhaust emissions, both green 
house gases and local pollutants. A knowledge of such variability, its nature and extent, is 
necessary if emissions models are to be used as part of a wider modelling framework to, for 
example, predict local air quality. Relatively little research data is currently available 
regarding the nature and extent of such variability in the „amateur‟ (non-professional) driver 
population. 
 
Cluster analysis techniques can be used to analyse data collected as part of the case study, 
grouping driver cases with similar attributes or characteristics. In this illustrative example, 
hierarchical cluster analysis was applied to the driver behaviour data to investigate how 
engine speed (rpm), throttle position (%), and vehicle acceleration (+ve or –ve m/s

2
) could be 

used to group or „cluster‟ drivers. The environmental efficiency of these clusters of drivers 
could then be investigated to provide an insight into the relationship between driver 
behaviour and environmental performance. 
 
The distributions of the behavioural data for each variable by driver were standardised by 
generating percentile values at 5 percentile intervals. These percentile values were then 
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utilised in the cluster analysis. The average (between-group) linkage cluster method was 
adopted, with squared Euclidean distance being used as the measure of similarity. Separate 
cluster analyses were carried out for each variable, engine speed, throttle position, and 
acceleration respectively (it is of course also possible to cluster all three variables at the 
same time). Data from 37 of the 40 drivers were included in the analysis, 3 drivers being 
discarded due to instrumentation reliability issues. Hierarchical cluster analysis (unlike other 
methods such as k-means clustering) makes no prior assumptions about the number of 
clusters to be generated. The number of clusters is determined by the analyst using metrics 
from the analysis such as the measure of proximity between clusters. In this case, four 
clusters of drivers were identified for each variable respectively. 
 

Table 2 – Clustering of drivers by variable 
 

 Cluster (R1) Cluster (R2) Cluster (R3) Cluster (R4) 

(R) Engine speed 10, 15, 17, 36 7, 8, 9, 12, 13, 16, 
18, 19, 20, 21, 22, 
23, 26, 29, 30, 33, 
34, 35, 37, 38, 40 

1, 5, 6, 11, 24, 25, 
31, 32 

2, 14, 27, 28 

 

 Cluster (T1) Cluster (T2) Cluster (T3) Cluster (T4) 

(T) Throttle Position 15* 20, 22, 24, 25, 27 2, 8, 10, 11, 14, 16, 
17, 18, 19, 21, 23, 
26, 28, 30, 33, 37 

1, 5, 6, 7, 9, 12, 13, 
29, 31, 32, 34, 35, 
36, 38, 40 

 

 Cluster (A1) Cluster (A2) Cluster (A3) Cluster (A4) 

(A) Vehicle 
acceleration 

15, 20, 24 2, 10, 18, 21, 22, 
23, 25, 27, 30, 33, 
37 

1, 7, 8, 11, 12, 14, 
16, 17, 19, 26, 28, 
29, 31, 32, 36, 40 

5, 6, 9, 13, 34, 35, 
38 

*N.B. Driver 15 was an outlier for the Throttle Position variable, and was allocated to its own cluster. 

 
Investigation of the clusters generated by the analysis determined that they could be 
characterised by the attributes in Table 3. 
 

Table 3 – Behavioural attributes of clustered drivers by variable 
 

  Cluster (R1) Cluster (R2) Cluster (R3) Cluster (R4) 

(R) Engine 
speed (RPM) 

Mean 25
th
 %tile 1561 rpm 1343 rpm 1184 rpm 825 rpm 

Mean 50
th
 %tile 2094 rpm 1754 rpm 1493 rpm 1311 rpm 

Mean 75
th
 %tile 2500 rpm 1970 rpm 1706 rpm 1573 rpm 

Mean 95
th
 %tile 2896 rpm 2359 rpm 2021 rpm 1927 rpm 

 

  
Cluster (T1) Cluster (T2) Cluster (T3) Cluster (T4) 

(T) Throttle 
Position (%) 

Mean 65
th
 %tile 21% 19% 12% 6% 

Mean 75
th
 %tile 35% 28% 20% 11% 

Mean 85
th
 %tile 73% 36% 28% 15% 

Mean 95
th
 %tile 98% 47% 38% 22% 

 

  Cluster (A1) Cluster (A2) Cluster (A3) Cluster (A4) 

(A) Vehicle 
acceleration 
(m/s

2
) 

Mean 5
th
 %tile -1.97 m/s

2
 -1.82 m/s

2
 -1.45 m/s

2
 -1.10 m/s

2
 

Mean 25
th
 %tile -0.86 m/s

2
 -0.66 m/s

2
 -0.40 m/s

2
 -0.30 m/s

2
 

Mean 75
th
 %tile 0.85 m/s

2
 0.72 m/s

2
 0.52 m/s

2
 0.36 m/s

2
 

Mean 95
th
 %tile 1.60 m/s

2
 1.34 m/s

2
 1.09 m/s

2
 0.92 m/s

2
 

 
In principle, the production of 4 clusters of drivers for each of the 3 variables produces 4

3
 

(64) potential cluster combinations (R1 to 4 by T1 to 4 by A1 to 4). However, with a relatively 
small sample of 37 drivers, the three dimensional cluster matrix could not be fully populated. 
In addition, some combinations of driver behaviour clusters may have a greater probability 
than others, and others may not be feasible in practice. It transpired that when the clusters of 
drivers by variable are cross-tabulated, 18 of the possible 64 matrix cells are populated, 11 
of these by individual drivers. 
 
The environmental „performance‟ of these 18 cluster cells is presented in Table 4 in terms of 
CO2 emissions, fuel consumption, and pollutant emissions HC, CO, and NOx. 
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Table 4 – Environmental performance of clustered drivers 
 
 Carbon dioxide Fuel 

Consumption 
Hydrocarbons Carbon 

monoxide 
Oxides of 
nitrogen 

Cluster cell Mean 
rate 
(g/sec) 

Mean 
rate 
(g/km) 

Mean 
rate 
(g/sec) 

Mean 
rate 
(g/km) 

Mean 
rate 
(g/sec) 

Mean 
rate 
(g/km) 

Mean 
rate 
(g/sec) 

Mean 
rate 
(g/km) 

Mean 
rate 
(g/sec) 

Mean 
rate 
(g/km) 

R1_T1_A1 
(n=1) 

3.67 385 1.10 115 0.00411 0.43 0.1219 12.77 0.1217 1.27 

R1_T3_A2 
(n=1) 

2.72 344 0.83 106 0.00261 0.33 0.0277 3.51 0.0059 0.75 

R1_T3_A3 
(n=1) 

3.02 365 0.87 105 0.00020 0.02 0.0056 0.67 0.0020 0.25 

R1_T4_A3 
(n=1) 

2.41 340 0.72 102 0.00077 0.11 0.0033 0.46 0.0014 0.20 

R2_T2_A1 
(n=1) 

3.11 346 0.91 101 0.00049 0.05 0.0126 1.40 0.0026 0.30 

R2_T2_A2 
(n=1) 

2.87 346 0.84 101 0.00026 0.03 0.0083 1.01 0.0023 0.28 

R2_T3_A2 
(n=6) 

2.79 348 0.83 104 0.00114 0.14 0.0104 1.29 0.0030 0.38 

R2_T3_A3 
(n=4) 

2.60 349 0.76 102 0.00133 0.18 0.0114 1.54 0.0030 0.41 

R2_T4_A3 
(n=4) 

2.22 325 0.66 97 0.00131 0.19 0.0049 0.72 0.0025 0.37 

R2_T4_A4 
(n=5) 

2.14 330 0.63 98 0.00094 0.14 0.0024 0.38 0.0017 0.26 

R3_T2_A1 
(n=1) 

3.21 369 0.99 113 0.00069 0.08 0.0233 2.68 0.0041 0.47 

R3_T2_A2 
(n=1) 

3.22 375 0.98 115 0.00079 0.09 0.0131 1.53 0.0035 0.41 

R3_T3_A3 
(n=1) 

2.51 328 0.75 98 0.00161 0.21 0.0107 1.40 0.0033 0.44 

R3_T4_A3 
(n=3) 

2.11 312 0.63 93 0.00088 0.13 0.0047 0.70 0.0027 0.41 

R3_T4_A4 
(n=2) 

1.93 307 0.58 93 0.00110 0.18 0.0032 0.51 0.0030 0.48 

R4_T2_A2 
(n=1) 

2.89 343 0.93 111 0.00184 0.22 0.0219 2.61 0.0043 0.51 

R4_T3_A2 
(n=1) 

2.77 350 0.84 106 0.00038 0.05 0.0112 1.41 0.0041 0.52 

R4_T3_A3 
(n=2) 

2.34 358 0.72 110 0.00154 0.24 0.0133 2.02 0.0036 0.56 

 
When interpreting the data, it should be remembered that the context of the measurements 
was a low speed suburban route with short links connected by left-hand turns at priority 
junctions. Drivers were generally either accelerating or decelerating between corners with 
little opportunity to „cruise‟. Gear selection was dominated by 2nd and 3rd gears. Hence, 
measured CO2 emissions and fuel consumption would be expected to be significantly higher 
than „typical‟ rates for mixed driving conditions. The main objective of the analysis is to 
assess the degree of variability displayed by drivers when presented with these constrained 
driving conditions, the vehicle and the highway geometry being held constant (ambient traffic 
conditions were extremely light with very little interaction with other traffic). 
 
It is clear that the throttle application behaviour of Driver 15 was extreme relative to the other 
drivers. This behaviour tended to result in very high levels of fuel consumption and 
emissions for all pollutants. Generally, lower rates of fuel consumption and CO2 emissions 
are associated with lighter throttle applications and lower rates of acceleration (a degree of 
symmetry was observed between positive (+ve) and negative (–ve) acceleration; the drivers 
who accelerated heavily also tended to brake heavily). However, it was observed that very 
low engine speeds (for example, associated with the R4 cluster) are not always desirable, 
perhaps because they are associated with engine „labouring‟. The engine appeared to 
operate more efficiently in the R2 and R3 clusters when combined with light throttle 
application and low levels of acceleration, although some of the lowest emissions results for 
HC, CO, and NOx were associated with the R1 cluster when combined with light throttle 
application (T3, T4) and low levels of acceleration (A3). It should also be noted that there is 
sometimes a trade-off between the rate of emissions in g/sec and the rate of emissions in 
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g/km, where average speed is a factor. Total emissions for a journey can be high, even with 
a low rate g/sec, if average speed is very low. This implies that over-cautious, hesitant 
driving can increase emissions in g/km for a total journey, relative to a more competent 
driver who maintains a reasonable g/sec emissions rate, and completes the journey 
expeditiously, resulting in a lower g/km. 
 
Clearly, such a small sample of drivers is not necessarily representative of the whole driver 
population, but it is a subset of the UK driver population. The highway network used for the 
measurements is also only a subset of the total network, and only one vehicle was utilised in 
the measurements. Nevertheless, the research has provided an insight into the nature and 
potential scale of driver behaviour variability in the population, and can be used to inform 
future experimental design. 
 
7. Predictive models 
Taking into account issues discussed above such as static time synchronisation and 
modality of frequency distributions, predictive models of instantaneous exhaust emissions 
can be explored. As an illustrative example only, a simple linear regression model of CO2 
emissions during the positive acceleration mode only (see Figure 5) is presented below. 
Vehicle power (kW) and throttle position (%) are used as independent variables (Vehicle 
power is defined as the power required to propel the vehicle (encompassing rolling 
resistance, aerodynamic resistance, road gradient, and acceleration). 
 
 Model Summary 

b
 

Model R R Square 
Adjusted R 

Square 
Std. Error of the 

Estimate Durbin-Watson 

 .843
a
 .710 .710 .87700682163 2.017 

a  Predictors: (Constant), Throttle Position (%), Vehicle Power (kW) 
b  Dependent Variable: CO2 (g/sec) 

 
 Coefficients 

a
 

Model   
Unstandardised 

Coefficients t Sig. 

    B Std. Error   

1 (Constant) 1.842 .012 155.392 .000 

  Vehicle Power (kW) .088 .001 80.142 .000 

  Throttle Position (%) .052 .001 83.307 .000 

a  Dependent Variable: CO2 (g/sec) 

 

  
 
Figure 7: Residual plots for prototype CO2 emissions (positive acceleration) model 
 
Whilst the adjusted R

2
 value of 0.71 is reasonable (for an initial prototype model), the 

distribution of residuals are not normally distributed. In addition, the constant is relatively 
dominant, suggesting that further investigation, perhaps of model form or independent 
variables, is required. Clearly, such an investigation of the relationships between dependent 
and independent variables relating to instantaneous vehicle exhaust emissions will be wide 
ranging, and the subject of further research and publication. 
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8. Conclusions 
This paper has explored some of the analytical and statistical challenges encountered when 
seeking to derive predictive models of instantaneous vehicle exhaust emissions from 
instrumented vehicle measurements. Time synchronisation of dependent and independent 
variables using static alignment procedures may prove to be increasingly limiting for model 
development, especially as sampling rates increase in future experimental design. Model 
development by mode of vehicle operation appears to be a promising avenue of future 
research, but explicit recognition of the significance of variability in driver behaviour will be 
required in future models if instantaneous vehicle emissions are to be more robustly 
represented within the wider integrated modelling framework for local air quality assessment. 
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