
IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1752 | P a g e

A Fault Tolerant Technique- Primary Backup Model For
Distributed Control System

Deepti R. Katare, Prof. N. N. Jangle

Dept. of Electrical Engineering, KKWIEER, Nashik, India

Abstract—Distributed control system has been widely
used in the recent years. In this seminar brief description is
presented about distributed control system. Hence a
distributed control sys-tem (DCS) is a computerized control
system, in which controller element are not centrally located
but distributed throughout the system. That means it is a type
of automated control system that is distributed throughout a
machine to provide instructions to dif-ferent parts of the
machine. Instead of having a centrally located device
controlling all machines, each section of a machine has its
own computer that controls the operation. For instance, there
may be one machine with a section that controls dry elements
of cake frosting and another section controlling the liquid
elements, but each section is individually managed by a DCS.
A DCS is commonly used in manufacturing equipment and
utilizes input and output to control the machine .Distributed
control concept is a cost effective approach for implementing
large systems and networks based on standard low cost
processing elements (microprocessor) and components.. But
with the increase of the number of processors, a DCS is
subject to hardware and software failures. Therefore, a small
information fault-tolerant scheduling algorithm based on
backward non-preemptive RM (BNPRMFT), which can
tolerate both hardware faults and software faults is presented
in this seminar. Also i have presented the disign og allocation
of primary backup model.

Index Terms—Distributed control system, Fault tolerant,
Pri-mary Backup Technique, Matlab Simulation.

I. INTRODUCTION

DCSs are increasingly being applied in many fields in
recent years, for example, avionic control, nuclear plant
control, process control systems, automatic manufacturing
control sys-tems and other autonomic systems, because of
their attractive advantages, such as the high control
performance, reliability and extensibility. With the increasing
complexity of a DCS, the possibility of hardware faults and
software failures increases. However, a DCS is a kind of hard
real-time system, in which the consequences of not executing
a task before its deadline may be catastrophic (for instance,
threat to human lives or significant economic loss). Thus, a
fundamental requirement of DCSs is to complete all real-time
tasks within their specified deadlines even in the presence of
faults. Fault tolerance is the property that enables a system to
continue operating properly in the event of the failure of (or

one or more faults within) some of its components. If its
operating quality decreases at all, the decrease is proportional
to the severity of the failure, as compared to a naively
designed system in which even a small failure can cause total
breakdown. Fault tolerance is particularly sought after in high
availability or life-critical systems. The ability of maintaining
functionality when portions of a system break down is referred
to as graceful degradation. A fault-tolerant design enables a
system to continue its intended operation, possibly at a
reduced level, rather than failing completely, when some part
of the system fails. The term is most commonly used to
describe computer systems designed to continue more or less
fully operational with, perhaps, a reduction in throughput or an
increase in response time in the event of some partial failure.
That is, the system as a whole is not stopped due to problems
either in the hardware or the software. An example in another
field is a motor vehicle designed so it will continue to be
drivable if one of the tires is punctured, or a structure that is
able to retain its integrity in the presence of damage due to
causes such as fatigue, corrosion, manufacturing flaws, or
impact In order to obtain the high reliability of an distributed
real-time system, several different models (techniques) have
been developed to realize fault-tolerance in last several
decades, namely, (1) Triple Modular Redundancy (TMR)
model, (2) Primary Backup (PB) model, and (3) Recovery
Block model.

II. FAULT AND FAULT TOLERANCE

A. Types of Faults

Transient Fault : appears once, then disappears

Intermittent Fault :occurs, vanishes, reappears; but:
follows no real pattern (worst kind).

Permanent Fault :once it occurs, only the replace-
ment/repair of a faulty component will allow the DS to
function normally

B. Fault Tolerance

Fault tolerance is the property that enables a system to
continue operating properly in the event of the failure of (or
one or more faults within) some of its components. If its
operating quality decreases at all, the decrease is proportional
to the severity of the failure, as compared to a naively
designed system in which even a small failure can cause total
breakdown. Fault tolerance is particularly sought after in high-
availability or life-critical systems. The ability of maintaining

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1753 | P a g e

functionality when portions of a system break down is referred
to as graceful degradation A fault-tolerant design enables a
system to continue its intended operation, possibly at a
reduced level, rather than failing completely, when some part
of the system fails. The term is most commonly used to
describe computer systems designed to continue more or less
fully operational with, perhaps, a reduction in throughput or an
increase in response time in the event of some partial failure.
That is, the system as a whole is not stopped due to problems
either in the hardware or the software. An example in another
field is a motor vehicle designed so it will continue to be
drivable if one of the tires is punctured, or a structure that is
able to retain its integrity in the presence of damage due to
causes such as fatigue, corrosion, manufacturing flaws, or
impact. A highly fault-tolerant system might continue at the
same level of performance even though one or more
components have failed. For example, a building with a
backup electrical generator will provide the same voltage to
wall outlets even if the grid power fails. A system that is
designed to fail safe, or fail-secure, or fail gracefully, whether
it functions at a reduced level or fails completely, does so in a
way that protects people, property, or data from injury,
damage, intru-sion, or disclosure. In computers, a program
might fail-safe by executing a graceful exit (as opposed to an
uncontrolled crash) in order to prevent data corruption after
experiencing an error. A similar distinction is made between
”failing well” and ”failing badly”. Fail deadly is the opposite
strategy, which can be used in weapon systems that are
designed to kill or injure targets even if part of the system is
damaged or destroyed. A system that is designed to experience
graceful degradation, or to fail soft (used in computing, similar
to ”fail safe) operates at a reduced level of performance after
some component failures.

III. PRIMARY BACKUP MODEL

This section presents simulation results of our proposed
algorithm BNPRMFT for different task sets. We demonstrate
the strength of our algorithm by comparing its simulation
results with the case the backward preemptive RM is
employed named BPRMFT.A set of n periodic tasks p = T1,
T2 Tn is to be scheduled on a number of processors, task i will
be represented as Ti until and unless specified. For each task
Ti, there are a primary copy and a backup copy associated
with it. The computation time of a primary copy is denoted as
c, which is the same as the computation time of its backup
copy

. The tasks may be independent or dependent of each
other.In this section, we first present our basic fault-tolerant
algorithm and the corresponding schedulability analysis. Then,
we point out some problems existing in the basic algorithm
and propose two more ideas to improve the percentage of the
successful primaries.

As mentioned earlier, our algorithm uses the last chance
philosophy If there are primaries pending for execution, al-
ternates will not be scheduled until the latest possible time,
called the notification time, on or before which if alternates
are not scheduled, they will not be completed in time. Here we

represent two algorithmic task in which the first job is to
assign the primary and backup task to uniprocessors and then
it will be preallocate and to each task notification time is
given. Our proposed algorithm has two main objectives: 1)
guarantee either primary or alternate of each task (job) to be
successfully completed before their corresponding deadlines;

(2) complete as many primaries as possible to achieve
better computation quality. The first objective is achieved by
using an offline fixed priority scheduling algorithm (such as
RM) to ensure the successful accommodation of all alternate
jobs. This offline schedule is constructed backward from time
T and the alternates are executed as late as possible, thus
leaving the largest possible room for the execution of the
primaries to accomplish the second goal.

A. Details of Simulation

1) Assigning the Primary Backup copies: Therefore starting
with the first algorithm that assigns the Primary and Backup
copies to the uniprocessor, following is the table which gives
us the four input as discussed in the algorithm 1 i.e. No of task
denoted as i, the commputation time both for primary and
backup copy, primary copy tp of task i, backup copy tb of task
i. The table is shown below

t c tp tb

1 2 1 2

2 5 2 3

3 10 3 4

4 15 4 5

5 20 5 6

This table gives us the values which will be put up into a
formula given below

by putting the values in this formula the Primary copy will
be assign.

Similarly there is another formula for to assign Backup
copy which is presented as follow

and this will assign backup Copy.

2) Result: Using the above content of the table and putting
it into the formulas we obtain primary and backup copy which
are assigned to the uniprocessor. The result will be given in
form of table in which the assigned Primary Backup copy is
obtain by summing all the values given above. Table represent

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1754 | P a g e

four columns S is for Primary Copy, P is for Backup copy,
sumS is the summation of Primary copy, and sumP is the
summation of Backup copy.

S P sumS sumP

0.20 0.40 0.20 0.40

1.00 1.50 1.20 1.90

3.00 4.00 4.20 5.90

6.00 7.50 10.20 13.40

10.00 12.00 20.20 25.40

3) Allocation of Primary Backup copy: Given a real-time
periodic task set, we first use any fixed priority-driven
schedul-ing algorithm to reserve time intervals as late as
possible for all the backup in a planning cycle before runtime.
At runtime, if there are primaries pending during the time
intervals that were not reserved by backup, the scheduler
chooses the primaries to execute first. The primaries can be
scheduled by any online scheduling algorithm, such as a (fixed
or dynamic)priority-driven preemptive scheduling scheme
with the RM or EDF priority assignment. A primary may fail
(because of software bugs or taking too long to complete) at
any time during its execution. If a primary fails, its
corresponding alternate must be executed. Moreover, when the
notification time, of alternate is reached, yet its corresponding
primary has not been completed or has failed, is activated
(thus preempting the execution of any primary, including, or
other lower-priority alternates). The primary, if it has not been
finished, will be aborted since its backup is now chosen to be
executed. Every backup, if activated on or after its notification
time, has higher priority than all primaries and the activated
backup are executed according to their priorities assigned by
the offline fixed-priority algorithm.

Note, however, that an alternate need not be activated if its
corresponding primary has been successfully completed
before its notification time. That is, if backup finishes its
execution successfully before the notification time, the
alternate need not be activated and, hence, the time interval(s)
allocated to can be reallocated to other primaries or backup. In
this case, the notification time is no longer needed and is thus
cancelled. Moreover, the notification times of other backup
need to be adjusted since the time reserved is now freed The
Simulink Model has six blocks namely

1) Primary Block - It is the first priority block which when
fault occurs comes into picture for the execution.

2) Backup Block- It is the alternate block for the primary
block which comes into action only when primary fails

. If primary is in running condition without occurrence of
fault then backup will not execute.

3) Notification Time - The system has two task which is
also called as job i.e. Primary task and Backup task. Each task

has been given its notification time whose other name is
deadline. This is given so that the task should complete its job
within the notification time otherwise it is consider as a fault.

4) End Time- End time is the time for which the Primary
and Backup copy finishes before the given notification time.
For eg if Primary copy finishes before the notifica-tion time,
so that time will be called as End time. Again the time
between the End time and Notification time is calculated
which is called as Available time on which the allocation of
primary and backup task is depended.

5) Switch - This is the Main block for the simulation model
which controls all the other blocks. This is the condition based
switch .So pass through input 1 when input 2 satisfies the
selected criterion; otherwise, pass through input 3. The inputs
are numbered top to bottom (or left to right). The first and
third input ports are data ports, and the second input port is the
control port.

6) Scope - It will give us the result of the implemented
inputs.

IV Results: Results are based on three different
conditions which are:-

End Time < Notification Time - In this condition if the end
time is less than notification time than available time is tested.
And obviously the primary has been completed its work
before deadline so we can obtain available time. Due to which
the backup will not come into picture and its primary will
continue to execute. According to the simulation and the
condition the result obtain is

Fig. 1. Primary waveform

End Time > Notification Time - In this condition if
Notification time is less than end time, it means the deadline
of the given task has been finished and it still have not been
completed therefore it is considered as a fault and its alternate
i.e. Backup will execute. According to the simulation and the
condition the result obtain is

Fig. 2. Backup waveform

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1755 | P a g e

End Time = Notification Time In this condition if the End
time and the Notification time is equal means the system is
working in the normal condition and after the primary task
completes at its notification time then immediately its
alternate i.e. Backup will execute. According to the simulation
and the condition the result obtain is

Fig. 3. waveform

IV. CONCLUSION

Considering that DCSs are subject to hardware and soft-
ware faults, I have presented a fault-tolerant scheduling
algorithm named BNPRMFT. Compared with other fault-
tolerant scheduling algorithms, BNPRMFT can tolerate not
only hardware faults, but also software faults. In our fault-
tolerant scheduling algorithm, every task has a primary copy
and a backup copy which are independent and assigned to
different processors according to a heuristic algorithm which
can balance the loads of primary copies and backup copies on
each processor. A backup copy is executed only when its
corre-sponding primary copy fails due to a fault. A
notification time (NT) is set for a task, before or at which
backup copy must start, otherwise it cannot be finished before
its deadline. Unlike other fault-tolerant scheduling algorithms
for hardware faults, BNPRMFT can execute as many primary
copies as possible due to their high control performance.
Unlike other algorithms for software faults, BNPRMFT can
tolerate hardware faults by executing backup copies assigned
to different processors. In order to lower the cost of the

algorithm, non-preemptive RM has been employed to
schedule primary copies and backward non-preemptive RM
has been applied to calculate notification times of tasks in
order to leave more time for executing pri-mary
copies.Finally, computer simulation has been carried out to
testify BNPRMFT. Compared with BPRMFT, BNPRMFT can
gain a higher success rate in executing primary copies and
lower the runtime overhead for the algorithm implementation.

REFERENCES

[1] Y. Rui, C. Qinqin, L. Zengwu, S. Yanmei, Multiobjective
evolutionary design of selective triple modular redundancy
systems against SEUs, Chinese Journal of Aeronautics
28,(2015)

[2] R. Al-Omari, A. K Somani, and G. Manimaran. An Adaptive
Scheme for Fault-Tolerant Scheduling of Soft Real-Time Tasks
in Multi-processor Systems. Journal of Parallel and Distributed
Computing, 2005,65(5):595-608.

[3] R. Mahmud Pathan. Fault-Tolerant Real-Time Scheduling
Algorithm for Tolerating Multiple Transient Faults. 4th
International Conference on Electrical and Computer
Engineering ICECE 2006, Dec. 2006, Dhaka, Bangladesh, 577-
580

[4] C. C. Han, K. G. Shin, and J. Wu. A Fault-Tolerant Scheduling
Algorithm for Real-Time Periodic Tasks with Possible Software
Faults. IEEE Transactions on Computers, 2003, 52(3): 362-372.

[5] H. Beitollahi, S. G. Miremadi and G. Deconinck. Fault-Tolerant
Earliest-Deadline-First Scheduling Algorithm. IEEE
International Parallel and Distributed Processing Symposium
(IPDPS), 2007, Long Beach, CA, 1-6.

[6] D. Liu, C. Y. Zhang, R. Li, et al. Fault-Tolerant Real-Time
Scheduling Algorithm in Software Fault-Tolerant Module.
Journal of Computer Research and Development, 2007, 44(9) :
1495- 1500.

[7] W. F. Ding, R. F. Guo, C. G. Qin, et al. A Fault-Tolerant
Scheduling Algorithm with Software Fault-Tolerance in Hard
Real-Time Systems. Journal of Computer Research and
Development, 2011, 48(4) : 691-698.

