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ABSTRACT
Smart water networks can provide great bene�ts to our society in
terms of e�ciency and sustainability. However, smart capabilities
and connectivity also expose these systems to a wide range of cy-
ber a�acks, which enable cyber-terrorists and hostile nation states
to mount cyber-physical a�acks. Cyber-physical a�acks against
critical infrastructure, such as water treatment and distribution
systems, pose a serious threat to public safety and health. Conse-
quently, it is imperative that we improve the resilience of smart
water networks. We consider three approaches for improving re-
silience: redundancy, diversity, and hardening. Even though each
one of these “canonical” approaches has been throughly studied in
prior work, a uni�ed theory on how to combine them in the most
e�cient way has not yet been established. In this paper, we address
this problem by studying the synergy of these approaches in the
context of protecting smart water networks from cyber-physical
contamination a�acks.
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1 INTRODUCTION
Smart water networks promise to provide great bene�ts to our
society in terms of e�ciency and sustainability. For instance, smart
water-distribution and waste-water systems may facilitate conserv-
ing water, thereby reducing consumer costs and environmental
impact at the same time. In a smart water network, physical pro-
cesses, sensor devices, controllers, and actuators form a connected
cyber-physical system. Unfortunately, enhanced capabilities and
connectivity also have a downside: previously secluded infrastruc-
ture is now susceptible to cyber-a�acks.

Cyber-a�acks against cyber-physical systems can pose a severe
threat to public safety and health. For instance, compromising sys-
tems that control the treatment and distribution of drinking water
may allow adversaries to suppress warnings about contaminations
or to decrease the quality of water. As evidenced by the recent wa-
ter crisis in Flint, MI [6], ensuring the quality of drinking water is of
critical importance. Cyber-a�acks can also have a devastating envi-
ronmental impact. For example, in 2000, a disgruntled ex-employee
launched a series of a�acks against the SCADA system controlling
sewage equipment in Maroochy Shire, Australia [1, 12]. As a result
of these a�acks, approximately 800,000 liters of raw sewage spilt
out into local parks and rivers, killing marine life.

Considering the importance of the issue, there has been an in-
creasing concern to develop tools and approaches for assessing
vulnerabilities in water networks [10]. In this direction, the empha-
sis is on identifying components in water networks that could be
exposed to cyber-physical a�acks, as well as the types of a�acks that
could be carried out [2, 14]. Recently, a simulation-based approach
is presented in [13] for realistically assessing the risks associated
with cyber-physical a�acks on water distribution networks.

In this paper, we consider three canonical approaches for improv-
ing the resilience of a smart water network against cyber-a�acks:
redundancy, diversity, and hardening.

Redundancy means adding extra components to a system, which
are not strictly necessary for achieving desired system functionality.
Similar to hardening, redundancy can increase the cost of an a�ack,
or reduce its success probability. In a cyber-physical systems, re-
dundancy can be implemented by, e.g., deploying multiple sensors
for monitoring the same physical processes. Further, redundancy
can be implemented not only for components providing function-
ality, but also for security mechanisms. For example, multi-factor
authentication methods grant a user access to a system only a�er
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the user’s identity has been successfully veri�ed by multiple au-
thentication methods. �e rationale behind redundancy is that an
adversary needs to disable or circumvent multiple components to
compromise a system, which can signi�cantly decrease the success
probability of an a�ack.

Components that are based on the same hardware or so�ware
implementation typically su�er from the same vulnerabilities. Con-
sequently, if an adversary can automate the exploitation of vul-
nerabilities, it may compromise a multitude of components with
relatively li�le e�ort. Diversity can prevent the adversary from com-
promising a large number of system components using the same
vulnerability. Diversity means employingmultiple so�ware or hard-
ware implementations for components that perform the same tasks.
In practice, di�erent implementations are typically susceptible to
di�erent vulnerabilities, which limits the number of components
that the adversary may compromise using a single vulnerability.
In prior work, diversity has been explored using both static ap-
proaches (e.g., the e�ect of so�ware diversity on cyber-risks [7, 11])
and dynamic approaches (e.g., moving target defense [9]).

Hardening means eliminating potential vulnerabilities from a
component of the system. In a deterministic model, hardening in-
creases the e�ort that an adversary needs to spend in order to �nd
an exploitable vulnerability, while in a non-deterministic model,
hardening decreases the probability of �nding an exploitable vul-
nerability. A component can be hardened at multiple levels, ranging
from hardware protection to so�ware techniques. On the hardware
level, employing tamper-resistant devices can prevent adversaries
from mounting simple a�acks based on physical access. On the
so�ware level, hardening approaches range from following secure-
coding principles to se�ing up �rewalls. Operators can also �nd
and eliminate vulnerabilities by hiring security experts for penetra-
tion testing or by outsourcing vulnerability discovery through bug-
bounty programs [8, 15]. Optimal security investments have been
thoroughly studied in the economics of security literature [3, 4].

In this paper, we provide theoretical foundations for �nding
optimal combinations of these approaches in a smart water network.
First, we introduce a model of cyber-physical contamination a�acks
and security investments into redundancy, diversity, and hardening
(Section 2). Based on this model, we perform a case study of a real-
world water network using simulated contaminations (Section 3).
In our case study, we evaluate various combinations of the three
approaches and compare them with each other. Finally, we present
our concluding remarks (Section 4).

2 MODEL
In this section, we introduce our framework for studying the secu-
rity of smart water networks. We �rst establish our system model,
which captures the physical network and the sensor devices mon-
itoring water quality. �en, we discuss our security-investment
model, which includes redundancy, diversity, and hardening. Fi-
nally, we introduce our model of cyber-physical a�acks.

2.1 System Model
We model the water network as a graph G = (V ,E), where the set
of links E models pipes, and the set of nodes V models reservoirs,
tanks, consumers, junctions of pipes, etc. Every consumer node

v ∈ V has a demand value Uv , which quanti�es the amount of
water consumed at node v . For notational simplicity, we assign a
demand value of zero to sources, such as water tanks.

To detect harmful contaminants in the water, the network is
monitored by a set of sensor devices S . We assume that the sensors
are deployed at the nodes of the network, and we let the location of
sensor s ∈ S be denoted by ls ∈ V . A sensor continuously monitors
the water �owing through its node, and raises an alarm when the
concentration of a contaminant reaches a threshold level τ .

2.2 Security-Investment Model
To increase the impact of its physical a�ack, an adversary may
compromise and disable sensor devices. Here, we discuss three
approaches that defenders can implement to thwart cyber-a�acks.

Redundancy. Firstly, a defender can increase resilience by de-
ploying additional sensor devices. We let the minimum number of
sensors that can adequately monitor the water network – without
cyber-a�acks – be denoted by Smin. �en, we let the level of redun-
dancy R be the number of sensor devices deployed above the bare
minimum Smin, that is, the level of redundancy is R = |S | − Smin.
Assuming that the cost of deploying and operating an additional
sensor is CR , the total cost of implementing redundancy is CR · R.

Diversity. Secondly, a defender can increase resilience by em-
ploying a diverse set of hardware and so�ware to implement the
sensor devices. We let the set of implementation types employed by
the defender be denoted byT , and let the type of sensor s be denoted
by ts ∈ T . An implementation type t ∈ T de�nes the choice of both
hardware and so�ware (e.g., hardware architecture and operating
system). We let the level of diversity D be the number of di�erent
implementation types employed minus one, that is, the level of
diversity is D = |T | − 1. Assuming that the cost of employing an
additional sensor type is CD , the total cost of diversity is CD · D.

Hardening. �irdly, a defender can increase resilience by in-
vesting in hardening the implementation types (e.g., performing
thorough testing for so�ware vulnerabilities), as well as the individ-
ual devices (e.g., using tamper-resistant hardware). We let the de-
fender’s investment in hardening implementation type t ∈ T be ht ,
and the investment in hardening sensor device s ∈ S be denoted by
hs . �en, we let the level of hardening H be the sum of all of these in-
vestments, that is, the level of hardening isH = ∑t ∈T ht +

∑
s ∈S hs .

2.3 Cyber-Physical Attack Model
Finally, we introduce our model of cyber-physical a�acks. We �rst
discuss physical a�acks, and then extend them with cyber-a�acks.

2.3.1 Physical A�acks. We consider a malicious adversary who
tries to cause harm by contaminating the water network with harm-
ful chemicals. We assume that the adversary can introduce con-
taminants at certain nodes of the network, such as unprotected
reservoirs or tanks. We let the possible introduction points for
contamination be denoted by P ⊆ V .

Following its introduction at a node p ∈ P , the contaminant
spreads in the network according to a function Cp : N ×V 7→ R≥0.
For a given number of time steps n ∈ N and node v ∈ V , the value
Cp (n,v ) is the concentration of the contaminant at node v , n time
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steps a�er its introduction. Since a sensor detects the contaminant
when its concentration reaches a threshold level τ , the number of
time steps Lp until the contamination is detected is

Lp (S ) = min
{
n ∈ N ��� ∃s ∈ S : Cp (n, ls ) ≥ τ

}
. (1)

We measure the impact of a physical a�ack as the amount of
contaminants consumed with the water, which is proportional to
both the demand values and the concentration of the contaminant.
More formally, we quantify the impact of an undetected physical
a�ack p in time step n as∑

v ∈V
Uv · Cp (n,v ). (2)

Further, we assume that once the contamination is detected, opera-
tors can take instant countermeasures, such as warning customers
not to consume water from the network. Consequently, we quantify
the total impact Ip of a physical a�ack p as

Ip (S ) =

Lp (S )∑
n=1

∑
v ∈V

Uv · Cp (n,v ). (3)

In other words, the cumulative impact of the a�ack up to the time
step in which it is �rst detected.

2.3.2 Cyber-Physical A�acks. To increase the impact of the
physical a�ack, an adversary can launch a cyber-a�ack, which
compromises and disables some of the sensors. Here, we introduce
our probabilistic model of cyber-a�acks against sensors.

First, for each implementation type t ∈ T , the adversary �nds a
common vulnerability (e.g., a so�ware bug) with probability

Pr [�nding a vulnerability in type t] = Vt · e−ht /C
T
H , (4)

whereVt is the vulnerability probability of type t without hardening,
andCTH is the unit cost of hardening an implementation type. If the
adversary �nds a common vulnerability in type t , it compromises
and disables all sensors of type t (i.e., removes every sensor s ∈ S
such that ts = t ).

Second, for each remaining sensor device s , the adversary com-
promises and disables the device with probability

Pr [compromising sensor s] = Vs · e−hs /C
S
H , (5)

where Vs is the vulnerability probability of sensor s without hard-
ening, and CS

H is the unit cost of hardening a sensor.
Due to the cyber-a�ack, only a subset SA of the sensors remains

active and monitors the network for contaminants. Consequently,
the expected total impact of a cyber-physical a�ack p is

E
SA

[
Ip (SA )

]
, (6)

where Ip (SA ) is the total impact of physical a�ack p given that only
sensors SA are active.

2.4 Problem Statement
We assume that the malicious adversary launches a worst-case
a�ack against the system. Formally, the adversary mounts

argmax
p∈P

E
SA

[
Ip (SA )

]
. (7)

For given levels of redundancy R, diversity D, and hardening H ,
an optimal defenseminimizes the expected impact of cyber-physical
a�acks, assuming that the adversary will launch a worst-case a�ack:

min
S,T ,〈ls ,ts ,hs 〉s∈S ,〈ht 〉t∈T :

|S |−Smin≤R, |T |−1≤D,
∑
t∈T ht+

∑
s∈S hs ≤H

max
p∈P

E
SA

[
Ip (SA )

]
. (8)

More generally, for a given amount of security investment C , the
optimal combination of redundancy, diversity, and hardening is

min
S,T ,〈ls ,ts ,hs 〉s∈S ,〈ht 〉t∈T :

|S |−Smin≤R, |T |−1≤D,
∑
t∈T ht+

∑
s∈S hs ≤H,

CR ·R+CD ·D+H ≤C

max
p∈P

E
SA

[
Ip (SA )

]
. (9)

Since these problems are very challenging computationally, we use
a simple but e�ective greedy heuristic to �nd optimal placements,
type assignments, and distributions of hardening expenditure.

3 NUMERICAL ILLUSTRATIONS
For our numerical illustrations, we used a real-world water-distribu-
tion network from Kentucky, which we obtained from the Water
Distribution System Research Database [5] 1. �e topology of this
network, which is called KY3 in the database, is shown by Figure 1.
In addition to the topology, the database also contains hourly water-
demand values for each node of the network.

We assumed that the adversary may introduce contaminants
into the network at one of six nodes, which model three tanks
and three reservoirs. We simulated every one of these six physical
contamination a�acks using EPANET 2, and recorded the resulting
water-quality values at each node. Figure 1 shows the spread of the
contaminant from the �rst reservoir two hours a�er its introduction.

Figure 1: Topology of the water-distribution network. Col-
ors show the spread of the chemical contaminant from the
�rst reservoir two hours a�er its introduction.

To detect contamination a�acks, a defender can deploy water-
quality sensors at any node of the network. We assumed the level
of redundancy R to be equal to the number of sensors minus one
(i.e., Smin = 1), the level of diversity D to be equal to the number
of di�erent sensor types (e.g., di�erent architectures or operat-
ing systems) minus one, and the cost of hardening to be CD

H = 1
and CTH = 100 for sensor devices and sensor types, respectively.

1h�p://www.uky.edu/WDST/database.html
2h�ps://www.epa.gov/water-research/epanet

https://www.epa.gov/water-research/epanet
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Figure 2: Expected impact of cyber-physical attacks with various levels or redundancy R, diversity D, and hardening H .

For each combination of redundancy, diversity, and hardening lev-
els, we simulated 1 million cyber-a�ack scenarios to estimate the
expected impact of each cyber-physical a�ack, and �nd the worst-
case a�ack (Equation (7)). Finally, we used our greedy heuristic
to �nd optimal placements, type assignments, and distributions of
hardening expenditure (Equation (8)).

Figure 2(a) shows the impact of cyber-physical a�acks with
various levels of redundancy and hardening. In this �gure, the level
of diversity is �xed at D = 2. We observe that both redundancy and
hardening are e�ective, but focusing only one approach may leave
the network vulnerable.

Figure 2(b) shows the impact of cyber-physical a�acks with
various levels of diversity and hardening. In this �gure, the level of
redundancy is �xed at R = 17. We see that investing in diversity
can signi�cantly improve security; however, increasing the level
of diversity above 1 leads to negligible improvement. On the other
hand, investing in hardening provides a more modest but smooth
improvement in security.

Figure 2(c) shows the impact of cyber-physical a�acks with vari-
ous levels of redundancy and diversity. In this �gure, the level of
hardening is �xed at H = 0 in this �gure. We observe that neither
redundancy nor diversity can solve security problems alone; how-
ever, their combination can signi�cantly reduce the vulnerability
of the network.

4 CONCLUSION
Cyber-physical a�acks against smart water networks pose a severe
threat to public health and safety. To protect a system from cyber-
physical a�acks, defenders may invest in multiple approaches: re-
dundancy, diversity, and hardening. In this paper, we provided
theoretical foundations for �nding an optimal combination of these
approaches in a smart water network. We �rst introduced a model
of cyber-physical contamination a�acks and security investments
into redundancy, diversity, and hardening. Based on this model,
we performed a case study of a real-world water network using
simulated contaminations. We found that the three approaches
are much more e�ective when combined, but �nding optimal an
combination can be challenging since expected impact is not a
smooth function of the security investment levels. In future work,

we will investigate the computational complexity of optimally com-
bining the three approaches, and provide e�cient algorithms for
improving the resilience of a system in practice.

Acknowledgments. �is work was supported in part by the Na-
tional Science Foundation (CNS-1238959), by the Air Force Research
Laboratory (FA 8750-14-2-0180), and by the National Institute of
Standards and Technology (70NANB15H263).

REFERENCES
[1] Marshall Abrams and Joe Weiss. 2008. Malicious Control Sys-

tem Cyber Security A�ack Case Study – Maroochy Water Ser-
vices, Australia. h�p://csrc.nist.gov/groups/SMA/�sma/ics/documents/
Maroochy-Water-Services-Case-Study report.pdf. (July 2008).

[2] Saurabh Amin, Xavier Litrico, Shankar Sastry, and Alexandre M Bayen. 2013.
Cyber security of water SCADA systems – Part I: Analysis and experimentation
of stealthy deception a�acks. IEEE Transactions on Control Systems Technology
21, 5 (2013), 1963–1970.

[3] Ross Anderson and Tyler Moore. 2006. �e economics of information security.
Science 314, 5799 (2006), 610–613.

[4] Lawrence A Gordon and Martin P Loeb. 2002. �e economics of information
security investment. ACM Transactions on Information and System Security
(TISSEC) 5, 4 (2002), 438–457.

[5] Ma�hew D Jolly, Amanda D Lothes, L Sebastian Bryson, and Lindell Ormsbee.
2014. Research database of water distribution system models. Journal of Water
Resources Planning and Management 140, 4 (2014), 410–416.

[6] Merrit Kennedy. 2016. Lead-Laced Water In Flint: A Step-By-Step Look At �e
Makings Of A Crisis. NPR, h�p://www.npr.org/sections/thetwo-way/2016/04/
20/465545378/. (April 2016).

[7] Aron Laszka and Jens Grossklags. 2015. Should Cyber-Insurance Providers Invest
in So�ware Security?. In Proc. of the 20th European Symposium on Research in
Computer Security (ESORICS). 483–502.

[8] Aron Laszka, Mingyi Zhao, and Jens Grossklags. 2016. Banishing Misaligned
Incentives for Validating Reports in Bug-Bounty Platforms. In Proc. of the 21st
European Symposium on Research in Computer Security (ESORICS). 161–178.

[9] Hamed Okhravi, �omas Hobson, David Bigelow, and William Streilein. 2014.
Finding focus in the blur of moving-target techniques. IEEE Security & Privacy
12, 2 (2014), 16–26.

[10] Lina Perelman and Saurabh Amin. 2014. A network interdiction model for
analyzing the vulnerability of water distribution systems. In Proc. of the 3rd
International Conference on High Con�dence Networked Systems. ACM, 135–144.

[11] Fred B. Schneider and Kenneth P. Birman. 2009. �e Monoculture Risk Put into
Context. IEEE Security & Privacy 7, 1 (2009), 14–17.

[12] Jill Slay and Michael Miller. 2008. Lessons learned from the Maroochy water
breach. In Critical Infrastructure Protection. Springer, 73–82.

[13] Riccardo Taormina, Stefano Galelli, Nils Ole Tippenhauer, Elad Salomons, and
Avi Ostfeld. 2017. Characterizing Cyber-Physical A�acks on Water Distribution
Systems. Journal of Water Resources Planning and Management (2017), 04017009.

[14] Gurudeo Anand Tularam and Mark Properjohn. 2011. An investigation into
modern water distribution network security: Risk and implications. Security
Journal 24, 4 (2011), 283–301.

[15] Mingyi Zhao, Jens Grossklags, and Peng Liu. 2015. An empirical study of web
vulnerability discovery ecosystems. In Proc. of the 22nd ACM SIGSAC Conference
on Computer and Communications Security (CCS). ACM, 1105–1117.

http://csrc.nist.gov/groups/SMA/fisma/ics/documents/Maroochy-Water-Services-Case-Study_report.pdf
http://csrc.nist.gov/groups/SMA/fisma/ics/documents/Maroochy-Water-Services-Case-Study_report.pdf
http://www.npr.org/sections/thetwo-way/2016/04/20/465545378/
http://www.npr.org/sections/thetwo-way/2016/04/20/465545378/

	Abstract
	1 Introduction
	2 Model
	2.1 System Model
	2.2 Security-Investment Model
	2.3 Cyber-Physical Attack Model
	2.4 Problem Statement

	3 Numerical Illustrations
	4 Conclusion
	References

