WELCOME TURF INDUSTRY

Welcome to Clemson University's Turf Field Day! Thank you for taking time out your schedules to participate in this informative and educational activity. Our faculty, staff and students have worked diligently to showcase our research and demonstrations to update the technical knowledge of turfgrass managers and educators. South Carolina is very fortunate to have a national award winning turf faculty that provides excellent service in our research and educational programs. Clemson University invests nearly a million dollars annually in salaries and facilities to support the Turf research and education programs. Thank you for supporting this Field Day and Clemson University's Turfgrass Program.

Ted Whitwell Associate Dean for Academic Programs College of Agriculture, Forestry & Life Sciences (CAFLS) Interim Director of the School of Agricultural, Forest and Environmental Sciences (SAFES)

Clemson University Turfgrass Research & Education Field Day

August 5, 2015 8:30 am

Sponsored By:

Clemson University College of Agriculture, Forestry, and Life Sciences, SC Public Service Activities, Carolinas Golf Course Superintendents Association, and The Walker Golf Course

ITINERARY

8:00 - 8:30am	Gathering at Owen Pavilion, 100 Madren Center Drive, Clemson, SC 29634 (just off Old Stadium Road, behind Martin Inn).
8:30 - 9:00am	Welcome and Explanation of the Field Day events and locations, -Ted Whitwell, Associate Dean for Academic Programs, CAFLS, -Tom Dobbins, Director, CU Cooperative Extension Service -Tim Kreger, Executive Director, CGCSA -Bert McCarty, Professor of SAFES - Horticulture
9 – 10am	Stop 1 – Pest Control/IPM Updates at the Owen Pavilion.
10 – 11am	Stop 2 – Soil & Water Updates – Turf Plots
11am – 12pm	Stop 3 – Turfgrass Nutrient Management – Walker GC Maintenance Facility/Turf Plots
12 – 1pm	Lunch (on your own)
1:15 - 3pm	Stop 4 – Turfgrass/Agronomic Management of CU Athletic Fields/Golf Facility <i>or</i> play golf at Walker GC <i>or</i> resume self-guided tour of the research plots.

NOTE: SC Pesticide Recertification, CPAg, CCA and PTI Credits will be offered.

Those with more than 1 SC pesticide license (e.g., Private, Commercial or Noncommercial) should list all license numbers on the recertification sign-in forms to receive credit for each license. Four CPAg/CCA CEU credits will be offered: 1 each for Soil & Water Management, Integrated Pest Management, Nutrient Management, and Crop Management.

Stop 1. Integrated Pest Management Updates – Bert McCarty & Alan Estes

Pesticide Regulatory Update – Bob Bellinger

Spring Dead Spot Disease Update – Alejandro Canegallo, B. Martin, L. Tredway, J. Kerrigan, B. McCarty Controlling SU-Resistant *Poa annua* - Bob Cross, B. McCarty, T. Whitwell, N. Tharayil, B. Bridges. Insect Integrated Management, Especially Stunt Mites – J. C. Chong Diamond Zoysiagrass Greens Management – D. Garrett, B. McCarty, J. Brown, A. Estes PGRs to Reduce Mowing of Bermudagrass – Spencer Young, A. Gore, B. McCarty, W. Totten. PRE and POST control of American Burnweed - Alan Estes, B. McCarty, A. Charles POST Crabgrass and Goosegrass Control - Alan Estes, B. McCarty PRE Crabgrass Control with Various Products - Nathan Gambrell, A. Estes, B. McCarty

Stop 2. Soil & Water Management – Dara Park.

Water Quality Flow Chart, A New Way to Assess Agronomic Water Quality – Dara Park, S. White New Tools to Measure and Quantify Soil Moisture Levels for Turfgrass Managers – Dara ParkI-Mol Thatch Control study on Champion Bermudagrass Green to Improve Irrigation Efficiency - Nick Menchyk, F. Bethea, H. Liu

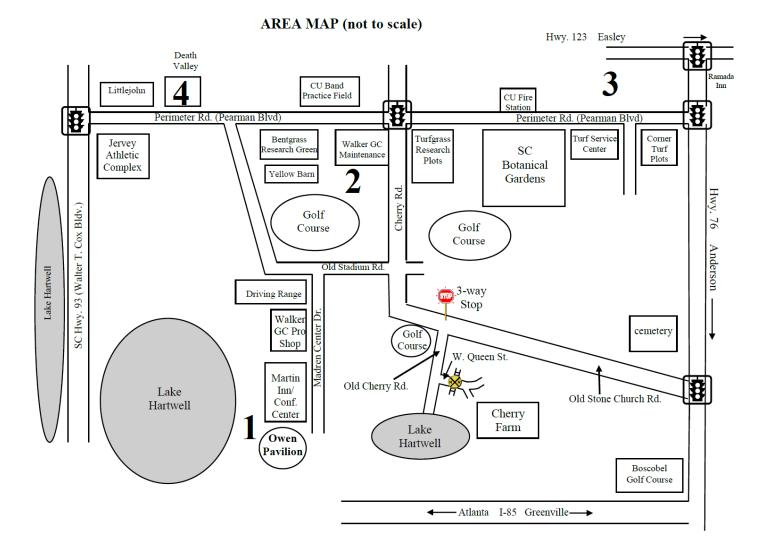
Aerification Trends to Improve Moisture & Soil Management - Ray Hubbard, B. McCarty

Stop 3. Turfgrass Nutrient Management – Haibo Liu

Mini-Verde foliar fertilizer study -,<u>H. Liu</u>, N. Menchyk, and F. Bethea Diamond zoysiagrass putting green responses to various fertility programs - Nick Menchyk, F. Bethea, B. Martin, and <u>H. Liu</u> I-Mol product on thatch control studies on TifEagle and Champion bermudagrass greens - <u>F. Bethea</u>, Nick Menchyk, Mohan Li, and H. Liu Winter traffic on creeping bentgrass greens - <u>M. Li</u>, F. Bethea, L.B McCarty, and H. Liu Carbon fertilizer burning potentials on Tifway bermudagrass -<u>Nickles Mirmow</u>, Mohan Li, F. Bethea, and H. Liu A short update on soil chemistry/nutrient trends for the turfgrass industry - <u>Haibo Liu</u> Doveweed Biology and Control - Jeff Atkinson, B. McCarty, S. McElroy, F. Yelverton

12pm – Lunch (on your own)

Stop 4. Turfgrass Crop Management – Bert McCarty (meet at DV West Endzone at 1:15pm)


Managing Turfgrass Programs on Death Valley – Mike Echols, B. McCarty Renovation of Doug Kingsmore Baseball Field – Mike Echols, B. McCarty Managing an Indoor Artificial Turfgrass Playing Surface – Mike Echols

or

-Continued Self-guided Tours of the Turfgrass Research Facilities.

or

-Play Golf at Walker Golf Course

Cooperator Acknowledgements

Without the generous support of the following cooperators, no turf program would be successful. The Clemson University Turfgrass Team sincerely appreciates their continued support.

Agro-Culture Liquid Fertilizers Andersons Arysta LifeScience Augusta Country Club Ayus Industries Barenbrug USA BASF **Bayer Crop Science** Bladerunner Farms Boscobel Golf Course Arysta LifeScience Burlingham Seeds Carolinas Golf Course Superintendents Association Cleary Chemical Clemson Landscape Services Clemson Univ. Research Farms - Support Clemson Univ. Athletic Dept./Sports Field Maintenance Collier's Reserve GC Corbin Turf & Ornamental Supply Cross Creek Plantation Del Tura G & CC Dow AgroSciences Dupont **Evonik Industries** FMC From the Ground Up Inc. Golf Agronomics Gowan Greenville Turf and Tractor - John Deere Greer Country Club Griffin LLC Harrell's Fertilizers Helena Chemical Company Humble Acres Organics Improcrop LTD. International Seeds, Inc. ISK BioSciences Koch Agronomic Services, LLC

Lesco Lebanon Fertilizer LidoChem. Inc. MCMG Turf Services MicroFlo Milliken Chemicals Modern Turf Monsanto Chemical Nature Safe Fertilizer NewLife Turf Nimmer Turf Nufarm Americas PBI Gordon Petro-Canada Lubricants Inc. Ponderosa Country Club Progressive Turf, LLC Sage Valley Golf Club SC Botanical Garden SePRO Corp. Sisis INC Smith Turf and Irrigation – Toro South Carolina - Public Service Activities Syngenta Crop Protection Sulvaris, Canada Terra Max, INC Textron Golf, Turf, and Specialty Products The Cliffs Communities The Creek Club The Preserve at Verdae The Rock at Jocassee The Scotts Company Tri-State Pumping Systems - Jacobson Turf Pro Plus USDA (US Dept of Agriculture) USGA (US Golf Association) Valent USA VitAg Corp Walker Golf Course Staff Wild Dunes Golf Courses

Approval Code Notice For an External Education Program

Event Name: 2014 Clemson University Turfgrass Research & Field Day

Event Approval Code: 999-12885-19395

Event Location: Clemson, SC

Event Date(s): August 05, 2014

Education Points: .30

Sponsor Instructions:

Please provide **copies of the Approval Code Notice** to all GCSAA members in attendance towards the **end** of your program.

Member Instructions for Submitting the Event Approval Code:

To receive .30 education points for attending this event, you must submit the approval code of 999-12885-19395 to GCSAA within 30 days of the event. You can record your attendance by using the online Education Point Affidavit in the Submit Points area of www.gcsaa.org. By using the online affidavit, your education points will automatically populate your educational history. If you do not have access to the Internet, you can call GCSAA at (800)472-7878 and submit the code by phone.

South Carolina Sports Turf Managers Association

www.scstma.org

Membership Form

Date:	Invoice # Purchase Order #
Name:	E-Mail:
Company/Organization:	Phone:
Address:	

• Please be sure to write your correct e-mail address in a clearly legible manner so that we may contact you about future events. Your e-mail address will not be used for any other purpose or redistributed to third parties. For multiple memberships please duplicate form.

Please circle one of the following

Option	Annual Benefits Include	Cost	Total
Professional Membership	Attendance and lunch at all SC events	\$30	
Commercial Membership	Attendance and lunch at all SC events	\$100	
	(2 Members)		
Student Membership	Attendance and lunch at all SC events	\$15	FREE
SCSTMA Polo Shirt	Size:	\$25	
SCSTMA Hat	Flex Fit Size: S/M L/XL	\$12.50	

Method of Payment:

Cash_____

Visa

Mastercard_____

Check_____

Checks are made payable to: SCSTMA

PO Box 161023

Boiling Springs, SC 29316

Questions may be addressed to Bruce Suddeth (864)503-5514 or <u>BSuddeth@uscupstate.edu</u> Thank you for your interest in the SCSTMA and we look forward to serving you.

THIS WILL BE THE ONLY INVOICE YOU WILL RECEIVE

SUPERINT SUPERINT
CAROLINAS
1954

Carolinas Golf Course Superintendents Association P.O. Box 210 Liber 800-476-42 www.

Membe

CAROLINAS T 1954		800-476-4272 / 86 <u>www.carolir</u>	Liberty, SC 29657-0210 Member # 476-4272 / 864-843-1149 (Fax) Amount Pd. www.carolinasgcsa.org Entered Note Note								
Last Name	e Fi	rst Name	Middle Name		Preferred Name						
	Club or (Company Name			Date of Birth						
Ног	me Mailing Information		CI	ub or Company Mailin	g Information						
Н	ome Mailing Address		(Club or Company Mail	ing Address						
City	State	Zip	City	State	Zip						
Home Phone	н	ome Fax	Work Phon	le	Work Fax						
Pret	Job Title ferred Mailing Location:		Mobile Pho	ne	Club/Co. Phone						
Home	Club/Co.			Work E-Mai	il la						
The Carolinas GCSA is an of America (GCSAA) and	SAA Class & Number: n Affiliate Chapter of the Go all Class A or SM Member			Applicant Signa Years in Cui	ature rrent Position:						
Employment History Prior From: Mo. & Yr.	to Current Position To: Mo. & Yr.	Ti	tle	Place of	Employment						
Dues: Class A \$180; Clas	nation of classifications. Mer ss SM \$180; Class C \$90; C orship in the Carolinas Golf (Class AF \$180; Class AS	\$90; Student \$30; Class A	AF1 \$440; Class AF2 \$							
year. I understand that th my dues remittance will b	is application will be review e refunded. If accepted for ad, understand and will abid	ed by a representative of membership I agree to o	f the board of directors and bserve and abide by the C	l if rejected for any rea constitution and By-law	ason, /s of the association.						
Credit Card # (We accept	Visa, MasterCard & Discov	rer) *lf pay	ying by credit, provide 3 di	git v-code located on b	back of card in signature strip						
Name o	n Credit Card			Attester Signature							
Expir	ation Date		A	ttester Printed Name							

For Office Use Only

Class

Expiration Date

CGCSA or GCSAA Class & Member #

North and South Carolina Applicants must have their application signed by a Class AA, A or SM member of the Carolinas Golf Course Superintendents Association. Out of state applicants must have their application signed by a Class AA, A or SM member of the Golf Course Superintendents Association of America.

Poa Herbicide Resistance Research Update

R. B. Cross, L. B. McCarty, J. S. McElroy, N. Tharayil, T. Whitwell, B. Bridges

Annual bluegrass (*Poa annua* L.) remains the most problematic winter annual weed for managed turfgrass. Over the last 5 years, control has steadily become more difficult to obtain, especially in the southeastern U.S., where resistant populations have evolved to several important herbicide mechanisms of action.

In South Carolina, the most widespread resistance issues are to ALS-inhibitors (sulfonylureas) and glyphosate. Resistance to sulfonylureas (e.g., foramsulfuron, trifloxysulfuron, rimsulfuron, flazasulfuron) is mostly from the coast up to the I-20 corridor, with the epicenter being near Hilton Head Island and Savannah, GA. Most resistance to glyphosate occurs north and west of I-20 where bermudagrass is fully dormant for longer periods of time.

Other resistance issues in SC include mitosis-inhibitors (e.g., prodiamine, dithiopyr) which mainly occur along the coast where applications of these herbicides have occurred prior to overseeding for many years. Some tolerance to ethofumesate has been reported at one SC location after 13 years of applications, but widespread resistance has not been documented.

Resistance to simazine is also less widespread in SC, although several locations in coastal and midlands regions have indicated poor control. This is probably due to other mechanisms of action becoming more popular over the past 10-15 years, especially the sulfonylureas, resulting in reduced use of simazine. It is likely more resistance will evolve to simazine in the foreseeable future, especially in coastal areas, as resistance to sulfonylureas becomes more widespread simazine is more extensively used for control.

Previous research determined most sulfonylurea resistance in Poa occurs from a gene mutation which changes the ALS enzyme such that herbicides will no longer bind and inhibit enzyme activity. This results in an extremely high level of resistance. Research into the mechanism of glyphosate resistance is underway and should be completed by the end of the year. Most glyphosate resistance occurs at a lower level than sulfonylurea resistance, but is enough such that plants can survive and reproduce after typical field applications of glyphosate (e.g., 16-32 oz/acre of 4L formulation). The genetics of Poa are extremely complicated, and we are working to understand how these genetic characteristics influence the development and maintenance of resistance in the field.

Computer models to predict the spread of Poa herbicide resistance have recently been developed at Clemson. As has been observed in the field, the models suggest resistance can develop in as quickly as 6 years with only one application of a sulfonylurea herbicide per year. If applications are made for 12 consecutive years, the predicted risk of developing resistance is >90%. For glyphosate, resistance develops at a slightly slower rate, although applications for about 16 consecutive years results in a predicted resistance risk of >90%. These numbers are important to consider, especially for turf managers who are already dealing with resistant populations. For example, a golf course with glyphosate-resistant Poa that exclusively uses sulfonylureas for control could potentially have a resistant population to both mechanisms of action in a short period of time.

The future of Poa resistance in turfgrass appears to be heading in a similar direction as other cropping systems, (e.g., Palmer amaranth in glyphosate-tolerant crops, rigid ryegrass in Australian grain crops). The problem with these is resistance to multiple mechanisms of action (termed multiple resistance). For example, a single population of rigid ryegrass in Australia is resistant to seven different mechanisms of action. At this point,

control with herbicides is essentially eliminated. The first report of a multiple resistant population of Poa came this year at a golf course in west Tennessee to both simazine and sulfonylureas. For turf managers, multiple resistance will be an increasing problem if herbicides are not used cautiously.

Table 1. Listing of currently used herbicides in the turfgrass market based on their timing and mechanism-ofaction (courtesy, L. B. McCarty).

Timing	Mechanism of Action	Active Ingredient*
Preemergence	Cellulose biosynthesis inhibition	Indaziflam (Specticle)
	Mitotic inhibition	Benefin (Balan)
		Dithiopyr (Dimension)
		Oryzalin (Surflan)
		Pendimethalin (Pendulum)
		Prodiamine (Barricade)
		Trifluralin (Treflan)
Pre/Postemergence	Mitotic inhibition	Dimethenamid (Tower)
-		Pronamide (Kerb)
	Photosystem II inhibition	Atrazine (Aatrex)
		Metribuzin (Sencor)
		Simazine (Princep)
	Lipid biosynthesis inhibition	Ethofumesate (Prograss)
	Protoporphyrinogen oxidase (PPO) inhibition	Flumioxazin (SureGuard)
Postemergence	Acetolactate synthase (ALS) inhibition	Bispyribac-sodium (Velocity)
-		Chlorsulfuron (Corsair)
		Flazasulfuron (Katana)
		Foramsulfuron (Revolver)
		Imazaquin (Image)
		Metsulfuron (Manor)
		Rimsulfuron (TranXit)
		Sulfosulfuron (Certainty)
		Trifloxysulfuron (Monument)
	Carotenoid biosynthesis inhibition (HPPD	Mesotrione (Tenacity)
	inhibitors)	Topramezone (Pylex)
	Enolpyruvyl Shikimate-3 Phosphate (EPSP) synthase inhibition	Glyphosate (Roundup)
	Glutamine synthetase inhibition	Glufosinate (Finale)
	Photosystem I inhibition	Diquat (Reward)
	Photosystem II inhibition	Amicarbazone (Xonerate)

*Additional trade names are available for many products but due to space limitations, only one was provided for each.

The computer models suggest rotating mechanisms of action provides short-term resistance management by itself, but is not an effective long-term management solution. For example, models predicted the appearance of resistance after 12 years when sulfonylureas were rotated for two years and about 17 years when rotated for 3 years. Therefore, as many mechanisms of action as possible should be used in rotation or herbicides should be used as combinations, and cultural practices should be implemented so as to limit growth and spread of Poa populations. Table 1 shows pre- and postemergence products currently used in the turf market and their mechanisms of action.

Only three mechanisms of action currently labeled for Poa control in turfgrass remain where resistance has not been reported. These include cellulose biosynthesis inhibition (indaziflam, Specticle), PPO inhibition (oxadiazon, Ronstar; flumioxazin, Sureguard), and glutamine synthetase inhibition (glufosinate, Finale). It is extremely important for turfgrass managers to develop integrated control programs to prevent further resistance development or multiple resistant populations.

Trial ID: Protocol ID: Location: Study Director: Project ID: Investigator: L. B. McCarty Sponsor Contact:

Trt Treatment No. Name	Form Form Rate Conc Type Rate Unit	Other App1 App1 Rep Rate Code Description 1 2 3 4 Notes
1 Untreated		101 302 404 201
2 Plateau Trinexapac-ethyl	1L 4FL OZ/ 1 1L 22FL OZ/	
3 Glyphosate	1L 4FL OZ	A 103 303 402 206
4 Stronghold	1 L 38 FL OZ/	A 307 104 205 401
5 Trinexapac-ethyl	1 1 L 22 FL OZ	A 208 105 304 405
6 Aneuw	1 L 27.5 OZ/A	203 407 305 106
7 Plateau	1L 4FL OZ	A 403 107 202 308
8 Plateau	1 L 8 FL OZ/	A 406 301 204 108

Evaluate Anuew against standard for season long growth regulation and turf quality.

Trial ID: Anuew 14-1 Location: Clemson, SC Trial Year: 2014 Protocol ID: Anuew 14-1 Investigator: L. B. McCarty Project ID: Study Director: Sponsor Contact:

Trt Treatment No. Name	Form Form Conc Type I		Appl Description	Rep 1	2	3	Notes
5 Primo Maxx		6 fl oz/a		105	201	301	
Primo Maxx	L	0 11 02/3	a 3 WAIT				
7 Cutless	L	20 fl oz/a		103	202	304	
Cutless	L	20 fl oz/a	a 3 WAIT				
4 Anuew	27.5 DG	16 oz/a		102	203	305	
Anuew	27.5 DG	16 oz/a	3 WAIT				
1 Untreated				101	204	306	i
6 Primo Maxx	L	12 fl oz/a	a INT	107	205	303	
Primo Maxx	L	12 fl oz/a	a 3 WAIT				
3 Anuew	27.5 DG	8 oz/a	INT	104	206	307	,
Anuew	27.5 DG	8 oz/a	3 WAIT				
2 Anuew	27.5 DG	4 oz/a	INT	106	207	302	
Anuew	27.5 DG	4 oz/a	3 WAIT				

Bermudagrass and Goosegrass Control in Bentgrass Greens

Trial ID: Pylex Bent 14-1 Location: Clemson, SC Trial Year: 2013 Protocol ID: Investigator: L. B. McCarty Project ID: Study Director: N.J. Gambrell Sponsor Contact:

Trt Treatment No. Name	Form Form Conc Type	Rate Rate Unit	Growth Stage	Appl Code	Appl Description	Rep 1	2 3	3	Notes
1 Non-Treated							202 3		
2 Pylex MSO	2.8 SC	0.25 oz/a 0.5 % v/v		Α	July 30, 2014	4 102	205 3	07	
Pylex MSO	2.8 SC L	0.25 oz/a 0.5 % v/v		В					
3 Pylex MSO	2.8 SC	0.5 oz/a 0.5 % v/v		Α	July 30, 2014	4 103	209 3	05	
Pylex MSO	2.8 SC L	0.5 oz/a 0.5 % v/v		В					
4 Pylex Velocity MSO Pylex Velocity MSO	2.8 SC 17.6 SC 100 L 2.8 SC 17.6 SC 100 L	0.25 oz/a 1 oz/a 0.5 % v/v 0.25 oz/a 1 oz/a 0.5 % v/v	POST POST 2 WAIT 2 WAIT		July 30, 2014	104	206 3	602	
5 Pylex Velocity MSO Pylex Velocity MSO	2.8 SC 17.6 SC 100 L 2.8 SC 17.6 SC 100 L	0.5 oz/a 1 oz/a 0.5 % v/v 0.5 oz/a 1 oz/a 0.5 % v/v	POST POST 2 WAIT 2 WAIT		July 30, 2014	105	207 3	09	
6 Pylex Turflon Ester MSO Pylex Turflon Ester MSO	100 L 2.8 SC	0.25 oz/a 8 oz/a 0.5 % v/v 0.25 oz/a 8 oz/a 0.5 % v/v	POST POST 2 WAIT 2 WAIT		July 30, 2014	106	201 3	808	
7 Pylex Acclaim Extra MSO Pylex Acclaim Extra MSO	100 L 2.8 SC	0.25 oz/a 3 oz/a 0.5 % v/v 0.25 oz/a 3 oz/a 0.5 % v/v	POST POST 2 WAIT 2 WAIT		July 30, 2014	107	204 3	01	
8 Acclaim Extra Turflon Extra MSO Acclaim Extra Turflon Extra MSO	4 L 100 L 0.94 L	8 oz/a 0.5 % v/v 3 oz/a	POST 2 WAIT 2 WAIT		July 30, 2014	108	203 3	04	
9 Acclaim Extra MSO Acclaim Extra MSO	100 L	6 oz/a 0.5 % v/v 6 oz/a 0.5 % v/v	2 WAIT		July 30, 2014	109	208 3	03	

Goosegrass Control with F6482

Trial ID: FMC 14-5 Protocol ID: FMC 14-5 Project ID: PS14 BW27 Location: Trial Year: Investigator: L. B. McCarty Study Director: Sponsor Contact:

Trt Treatmen No. Name	t Form Form Conc Type						3	3 Notes
1 Check					101	204	303	303
2 F6482 NIS	45 DG L	8 oz/a 0.25 % v/v	POST	Α	102	203	302	302
3 F6482 NIS	45 DG L	16 oz/a 0.25 % v/v		Α	103	202	301	301
4 MSMA + Sencor	6.6 L 75 DF	2 lb ai/a 0.25 lb/a	a POST	Α	104	201	304	304

Plant Health Field Studies

Trial ID: Protocol ID: Location: Study Director: Adam Gore Project ID: Investigator: L. B. McCarty Sponsor Contact:

Trt Treatment No. Name	Form Form Cone Type		Other Appl Appl Rate Code Description	Rep 11		3	4	Notes
1 Untreated				101	204	301	407	
2 Turf Screen	n 1 L	2.5 FL OZ/1000 FT2	2	102	208	305	408	
3 PAR	1 L	0.37 FL OZ/1000 FT2	2	103	201	307	401	
4 Title Phyte	1 L	4 FL OZ/1000 FT2	2	104	202	303	406	j
5 Turf Screer Title Phyte		2.5 FL OZ/1000 FT2 4 FL OZ/1000 FT2		105	206	302	405	i
6 PAR Title Phyte	1 L 1 L	0.37 FL OZ/1000 FT2 4 FL OZ/1000 FT2		106	207	306	404	
7 Signature	80 WG	6 OZ/1000 FT2		107	203	308	402	
8 Aliette	80 WG	4 OZ/1000 FT2		108	205	304	403	·

Preemergence Crabgrass Control

Trial ID: Crab 14-1 Location: Turf Plots Trial Year: Protocol ID: Investigator: L. B. McCarty Project ID: Study Director: A. G. Estes Sponsor Contact:

Trt Treatment No. Name					Appl Description	Rep 1		3	4	Notes
1 Untreated						101	209	306	405	
2 Tower Tower	6 L 6 L	32 oz/a 32 oz/a		A B	March 18, 2014 May 23, 2014					
3 Pendulum	3.8 L	2 lb ai/a	PRE	Α	March 18, 2014	103	204	308	404	
Tower Pendulum Tower	6 L 3.8 L 6 L	32 oz/a 2 lb ai/a 32 oz/a	8 WAIT		May 23, 2014					
4 Pendulum	3.8 L	3 lb ai/a	PRE	Α	March 18, 2014	104	202	307	408	
5 Barricade	4 L	1 lb ai/a	PRE	Α	March 18, 2014	105	207	302	410	
6 Surflan	4 L	3 qt/a	PRE	Α	March 18, 2014	106	203	304	403	
7 Ronstar Flo	3.2 L	3 lb ai/a	PRE	Α	March 18, 2014	107	206	309	411	
8 Echelon	4 L	1.25 lb ai/a	PRE	Α	March 18, 2014	108	210	311	401	
9 Specticle	0.622 SC	9 oz/a	PRE	Α	March 18, 2014	109	201	310	402	
10 Dimension Dimension	2 SC 2 SC	0.5 lb ai/a 0.5 lb ai/a			March 18, 2014 May 23, 2014	110	205	301	407	
11 SureGuard	51 WDG	12 oz/a	PRE	Α	March 18, 2014	111	208	303	409	
	Part A									

Weed Control with Tenacity and Pylex

Trial	ID: Crab	14-2	Location: Turf Plots Trial Year:
Protocol	ID: Crab	14-2	Investigator: L. B. McCarty
Project	ID:		Study Director:
			Sponsor Contact:

Trt Treatment No. Name	Form Form Conc Type	Rate Rate Unit	Growth Stage	Appl Code	Rep 1	2	3	4	Notes
1 Check									
2 Tenacity	L	5 oz/a	POST	AB					2
3 Tenacity + Princep	L L	5 oz/a 8 oz/a	POST	AB	103	210	308	410)
4 Tenacity + Turflon Ester	L L	5 oz/a 8 oz/a	POST	AB	104	201	306	404	L
5 Tenacity + Spotlight	L L	5 oz/a 21 oz/a	POST	AB	105	203	307	403	3
6 Pylex	L	1 oz/a	POST	AB	106	209	305	401	
7 Pylex + Princep	L L	1 oz/a 8 oz/a	POST	AB	107	204	310	407	
8 Pylex + Turflon Ester	L L	1 oz/a 8 oz/a	POST	AB	108	202	303	405	j
9 Pylex + Spotlight	L L	1 oz/a 21 oz/a	POST	AB	109	205	302	40 9)
10 MSMA + Sencor	6.6 L L	2 lb ai/a 0.33 lb/a	POST	AB	110	208	301	406	<u>.</u>

Crabgrass/Goosegrass Control with Pylex

Trial	ID: Goose	14 - 2	Location:	Trial Year:
Protocol	ID: Goose	14-2	Investigator: L.	B. McCarty
Project	ID:		Study Director: A.	G. Estes
			Sponsor Contact:	

Trt Treatment No. Name	Form Form Conc Type R	Rate ate Unit	Growth Stage	Appl Code	Appl Description	Rep 1	2	3	4	Notes
1 Untreated						101	20	8 31	2 413	
2 Pylex NIS	2.8 SC L 0	1.5 oz/a .25 % v/v	POST	AB	July 10, 2014					
3 Pylex + Princep NIS	4 L	1.5 oz/a 8 oz/a).25 % v/v	POST	AB	July 10, 2014	103	21	5 30	7 412	
4 Pylex + Velocity NIS	17.6 WDG	1.5 oz/a 6 oz/a 0.25 % v/v	POST	AB	July 10, 2014	104	20	1 31	0 408	
5 Pylex + Revolver NIS	0.19 SC	1.5 oz/a 13 oz/a .25 % v/v	POST	AB	July 10, 2014	105	21	3 30	6 414	
6 Revolver NIS		26 oz/a .25 % v/v	POST	AB	July 10, 2014	106	21	6 30	4 403	
7 Pylex + Dismiss NIS	4 L	1.5 oz/a 6 oz/a).25 % v/v	POST	AB	July 10, 2014	107	21	0 31	4 411	
8 Pylex + Xonerate NIS	4 L	1.5 oz/a 5 oz/a).25 % v/v	POST	AB	July 10, 2014	108	21	2 31	5 405	
9 Pylex + Revolver + Dismiss NIS	4 L	1.5 oz/a 13 oz/a 6 oz/a 0.25 % v/v	POST	AB	July 10, 2014	109	20	2 30	8 401	
	75 WG 0	13 oz/a).25 lb/a).25 % v/v	POST	AB	July 10, 2014	110	20	4 31	3 407	
11 Pylex + Sencor NIS	75 WG 0	1.5 oz/a).25 lb/a).25 % v/v	POST	AB	July 10, 2014	1111	20	3 30	2 416	
12 MSMA Sencor NIS	6.6 L 75 WG 0 L 0	2 lb ai/a).25 lb/a).25 % v/v	POST	AB	July 10, 2014	112	20	5 31	6 410	
13 Dismiss + Sencor NIS	75 WG 0	12 oz/a).25 lb/a).25 % v/v	POST	AB	July 10, 2014	113	20	9 31	1 402	
14 Dismiss + Sencor NIS	4L 75WG 0 L 0		POST	AB	July 10, 2014	114	20	6 30	5 415	
15 Dismiss South + Sencor NIS	75 WG 0	7.25 oz/a 9.25 lb/a 9.25 % v/v	POST	AB	July 10, 2014	115	21	4 30	1 409	
16 Pylex + Dismiss South NIS	4L /	1.5 oz/a 7.25 % v/v 9.25 % v/v	POST	AB	July 10, 2014	116	21	7 30	9 417	
17 Pylex + Dismiss South +	2.8 SC 4 L 7	1.5 oz/a .25 oz/a	POST	AB	July 10, 2014	117	20	7 31	7 404	

Crabgrass/Goosegrass Control with Pylex

Trial	ID: Goose	14-2	Location:	Trial Year:
Protocol	ID: Goose	14-2	Investigator: L.	B. McCarty
Project	ID:		Study Director: A.	G. Estes
			Sponsor Contact:	

Trt Treatment	Form Form Rate	Growth Appl Appl	Rep				
No. Name	Conc Type Rate Unit	Stage Code Description	1 2	3	4	Notes	
Sencor	75 WG 0.25 lb/a						

Crabgrass Control with Tenacity, Princep, and Pennant Magnum

Trial ID: Syngenta	14-4	Location:	Tur	f I	Plots	Trial	Year: 2014
Protocol ID: Syngenta	14-3	Investigator:	L.	в.	McCart	У	
Project ID: LPT-2014-	-T25 S	tudy Director:	Α.	G.	Estes		
	Sp	onsor Contact:					

Trt Treatment No. Name	Form Form Conc Type	Rate Rate Unit	Growth Stage	Appl Code	Appl Description	1	2			
1 Untreated						101	202	310	406	
2 Tenacity + Princep NIS	4 SC 4 SC L	5 oz/a 8 oz/a 0.25 % v/v	POST	AB		102				
3 Tenacity + Princep + Pennant Magnum	4 SC 4 SC 7.6 SC	5 oz/a 8 oz/a 21 oz/a	POST	AB	July 8, 2014 July 22, 2014	103	205	306	409	
4 Tenacity + Princep NIS	4 SC 4 SC L	5 oz/a 16 oz/a 0.25 % v/v			July 8, 2014 July 22, 2014		206	301	402	
5 Tenacity + Princep + Pennant Magnum NIS	4 SC 4 SC 7.6 SC L	5 oz/a 16 oz/a 21 oz/a 0.25 % v/v	POST	AB	July 8, 2014 July 22, 2014	105	207	303	401	
6 Tenacity + Sencor NIS	4 SC 75 WG L	5 oz/a 0.33 lb/a 0.25 % v/v	POST	AB	July 8, 2014 July 22, 2014	106	203	305	407	
7 Tenacity + Princep + Sencor NIS	4 SC 4 SC 75 WG L	5 oz/a 8 oz/a 0.33 lb/a 0.25 % v/v	POST	AB	July 8, 2014 July 22, 2014	107	204	308	405	
8 Dismiss + Sencor NIS	4 L 75 WG L	12 oz/a 0.33 lb/a 0.23 % v/v	POST	AB	July 8, 2014 July 22, 2014	108	209	302	408	
9 Dismiss South + Sencor NIS	4 L 75 WG L	7.25 oz/a 0.33 lb/a 0.25 % v/v	POST	AB	July 8, 2014 July 22, 2014	109	210	304	410	
10 MSMA + Sencor NIS	6.6 L 75 WG L	2 lb ai/a 0.33 lb/a 0.25 % v/v		AB	July 8, 2014 July 22, 2014	110	208	307	404	

Kylinga Control with F7127

Trial ID: FMC 14-6 Location: Trial Year: Protocol ID: FMC 14-6 Investigator: L. B. McCarty Project ID: Study Director: Sponsor Contact:

Trt Treatmen No. Name		n Rate Growt e Rate Unit Stage				3 Notes
1 Check				101	203 3	302
2 F 7127 NIS	3.5 S C L	0.156 lb ai/a POST 0.25 % v/v	Α	102	204 3	303
3 F 7127 NIS	3.5 SC L	0.280 lb ai/a POST 0.25 % v/v	Α	103	201 3	304
4 MSMA NIS	6.6 L L	2 Ib ai/a POST 0.25 % v/v	Α	104	202 3	301

Plant Health Field Studies

Trial ID: Protocol ID: Location: Study Director: Adam Gore Project ID: Investigator: L. B. McCarty Sponsor Contact:

Trt Treatment			Other Appl Appl	Rep	
No. Name	Cone Type	Rate Unit	Rate Code Description	11 2 3	4 Notes
1 Untreated				101 204 301	407
2 Turf Screen	1 L	2.5 FL OZ/1000 FT2	2	102 208 305	408
3 PAR	1 L	0.37 FL OZ/1000 FT2	2	103 201 307	401
4 Title Phyte	1 L	4 FL OZ/1000 FT2	2	104 202 303	406
5 Turf Screen Title Phyte	1 L 1 L	2.5 FL OZ/1000 FT2 4 FL OZ/1000 FT2	-	105 206 302	405
6 PAR Title Phyte	1 L 1 L	0.37 FL OZ/1000 FT2 4 FL OZ/1000 FT2		106 207 306	404
7 Signature	80 WG	6 OZ/1000 FT2		107 203 308	402
8 Aliette	80 WG	4 OZ/1000 FT2		108 205 304	403
9 Civitas	1 L	16 OZ/1000 FT2		109 309 210	410
10 Civitas Harmonizer	1 L 1 L	16 OZ/1000 FT2 1 OZ/1000 FT2		209 409 110	310

Preemergence Crabgrass Control with Quali-Pro Formulations

Trial	ID: Quali	Pro	14-1	Location: Trial Year: 2014
Protocol	ID: Quali	Pro	14-1	Investigator:L. B. McCarty
Project	ID:			Study Director:
				Sponsor Contact:

Trt Treatment No. Name	Form Form Conc Type		Growth Stage				Rep 1		3	4	Notes
1 Untreated							101	207	304	403	
2 QP Dithopyr QP Dithopyr	2 EC 2 EC		PRE 8 WAIT		March 11, May 23, 20	2014)14	102	209	307	409	·
3 QP Dithopyr	2 EC	32 oz/a	PRE	Α	March 11,	2014	103	205	302	401	
4 QP Oxadiazon	3.17 SC	121 oz/a	PRE	Α	March 11,	2014	104	202	308	406	
5 QP Prodiamine	e 4 L	32 oz/a	PRE	Α	March 11,	2014	105	203	301	405	
6 Dimension Dimension	2 L 2 L	16 oz/a 16 oz/a	PRE 8 WAIT		March 11, May 23, 20		106	204	309	408	·
7 Dimension	2 EW	32 oz/a	PRE	Α	March 11,	2014	107	206	303	404	
8 Ronstar Flo	3.17 SC	121 oz/a	PRE	Α	March 11,	2014	108	201	305	402	. <u> </u>
9 Barricade	4 L	32 oz/a	PRE	Α	March 11,	2014	109	208	306	407	
8 Ronstar Flo	3.17 SC 4L	121 oz/a	PRE	Α	March 11,	2014	108	201	305	402	

Specticle Products for Control of Crabgrass

Trial	ID:Bayer 14-5	Location: The Rock Trial Year:	
Protocol	ID:Bayer 14-4	Investigator:L. B. McCarty	
Project	ID: HE14USAMQA	Study Director: A. G. Estes	
		Sponsor Contact:	

Trt Treatment No. Name		Form Type Rate		e Growth Stage				Rep 1		3	4	Notes
1 Untreated								101	202	303	402	2
2 Specticle .0142% on Fe	rt 0.0142	GR 271.	8 lb/a	PRE	Α	March 19	, 2014	102	201	305	404	L
3 Specticle .0142% on Fe	rt 0.0142	GR 20	0 lb/a	PRE	Α	March 19	, 2014	103	204	302	405	j
4 Specticle Flo		SC	8 oz/a	PRE	Α	March 19	, 2014	104	205	301	403	<u> </u>
5 Barricade .22% + Fert	0.22	2 GR 20	0 lb/a	PRE	Α	March 19	, 2014	105	203	304	401	l
0 (0 L D L (1												

Split Applications of Specticle for Crabgrass Control

Trial	ID:Bayer 14-7	Location:	Trial Year:
Protocol	ID:Bayer 14-6	Investigator: L.	B. McCarty
Project	ID: HE14USAMQD	Study Director: A.	G. Estes
		Sponsor Contact:	

Trt Treatment No. Name	Form Type	Rate Rate Unit	Growth Stage		Appl Description	Rep 1	2	3	4	Notes
1 Untreated						101	20	04 306	403	<u> </u>
2 Specticle FLC	5 S C	9 oz/a	PRE	Α	March 18, 2014	102	20	01 307	402	2
3 Specticle FLC	D SC	6 oz/a	PRE	Α	March 18, 2014	103	20	05 302	406	5
Specticle FLC	D SC	3 oz/a	30 DAPA	В	April 21, 2013					
4 Specticle FLC Specticle FLC		4.5 oz/a 4.5 oz/a	PRE 30 DAPA	A B	March 18, 2014 April 21, 2013	104	20	03 305	404	l
5 Specticle FLC	D SC	3 oz/a	PRE	Α	March 18, 2014	105	20	06 301	407	7
Specticle FLC	D SC	3 oz/a	30 DAPA	в	April 21, 2013					
Specticle FLC) SC	3 oz/a	30 DAPA	С	May 23, 2014					
6 Specticle FLC Specticle FLC Specticle FLC Specticle FLC Specticle FLC	0 SC 0 SC 0 SC	1.5 oz/a 1.5 oz/a	PRE 30 DAPA 30 DAPA 30 DAPA 30 DAPA	C D	March 18, 2014 April 21, 2013 May 23, 2014 June 26, 2014 July 23, 2014	106	20	07 303	405	5
7 Specticle FLC Specticle FLC Specticle FLC Specticle FLC Specticle FLC Specticle FLC Specticle FLC	0 SC 0 SC 0 SC 0 SC 0 SC 0 SC	1 oz/a 1 oz/a 1 oz/a 1 oz/a	PRE 30 DAPA 30 DAPA 30 DAPA 30 DAPA 30 DAPA 30 DAPA	C D E F	March 18, 2014 April 21, 2013 May 23, 2014 June 26, 2014 July 23, 2014 TBD TBD	107	20	02 304	401	I

Postemergence doveweed control - Clemson

Trial ID: Clemson 14-1 Location: Clemson, SC Trial Year: 2014 Protocol ID: Clemson 14-1 Investigator: L. B. McCarty Project ID: Study Director: J. L. Atkinson Sponsor Contact:

Trt Treatment No. Name	Form Form Conc Type	n Rate Rate Unit	Other Other Rate Rate Un	Appl it Code	l Rep e 1	2	3	4	Notes
1 Untreated					101	206	308	407	
2 Celsius NIS	68 WG	3.7 oz wt/a 0.25 % v/v	176 g ai/ha						
3 Tribute Total NIS	60.5 WG	3.2 oz wt/a 0.25 % v/v	136 g ai/ha	A A	103	211	305	409	
4 Blindside NIS	66 WG	0.413 lb ai/a 0.25 % v/v	463 g ai/ha	A A	104	201	309	404	. <u></u>
5 Speedzone NIS	2.2 L	3 pt/a 0.25 % v/v	920 g ai/ha	A A	105	208	301	411	
6 Atrazine	4 L	2 lb ai/a	2240 g ai/ha	Α	106	209	310	403	
NIS		0.25% v/v	176 g ai/ha 176 g ai/ha	Δ	107	202	311	401	
NIS	60.5 WG	0.25 % v/v	136 g ai/ha 136 g ai/ha	A	108	210	303	406	
NIS	66 WG	0.25 % v/v	463 g ai/ha 463 g ai/ha	A	109	203	307	402	
10 Speedzone NIS Speedzone NIS	2.2 L	0.25 % v/v	920 g ai/ha	Α	110	204	306	405	
11 Atrazine Atrazine	4 L 4 L	2 lb ai/a 2 lb ai/a	2240 g ai/ha 2240 g ai/ha	A B	111	207	304	410	. <u> </u>

Doveweed (Murdannia nudiflora (L.) Brenan) biology, ecology, and control

J. L. Atkinson*, L. B. McCarty, W. Bridges, F. Yelverton, S. McElroy

J. L. Atkinson and L. B. McCarty, School of Agricultural, Forest, and Environmental Sciences, E-143 Poole Agricultural Center, Clemson, SC 29634; William C. Bridges, Department of Mathematical Sciences, O-110 Martin Hall, Clemson University, Clemson, SC 29634. *Corresponding author: (JeffreyLAtkinson@Gmail.com)

Traditional measures for summer annual weed management in fine turf have provided little doveweed control because of doveweed's late germination period and limited post-emergence control options. Doveweed's germination period begins ~ 1 to 2 months after summer annual weeds traditionally targeted by early-spring pre-emergence herbicide application. Further, field reports of postemergence control are inconsistent.

Research in Clemson, South Carolina and Augusta, Georgia aimed to identify environmental conditions that favor doveweed germination, growth, and spread in addition to herbicide selection and application strategies to improve the understanding of this species.

Greenhouse and growth chamber research has focused on identifying soil and environmental conditions that promote doveweed seed germination and plant growth. The effect of soil water availability, salt concentration, pH, and nitrate level on doveweed germination was evaluated by adding 5 mL of each treatment solution to a 9 cm diameter petri dish containing two sheets of filter paper and 50 doveweed seeds. Germinated seeds were counted every 2 d for 14 d after first germinated seed was observed.

Environmental conditions evaluated included mowing height and effect of soil moisture on doveweed growth and development. Four mowing heights were evaluated (0.5, 1.5, 3 inch, and unmown), and their effect on doveweed spread measured by determining percent coverage of a 1.5 m x 1.5 m grid-square using the line intersect method. Plots were mown twice weekly and percent coverage calculated weekly. The effect of soil moisture was determined by growing doveweed in pots irrigated to 12.5, 25, 50, 75, or 100% field capacity every 3 d after gravimetrically determining soil water content. At maturity, plants were harvested and shoot weight determined.

Numerous pre- and post-emergence herbicides were evaluated for doveweed control efficacy. Greater than 80% control has been achieved with Specticle Flo applied at 9 fl oz/a and Tower applied at 32 oz/a for 10 and 6 weeks after treatment, respectively, when applied on May 1 in Augusta, GA. Approximately 6 weeks of >75% doveweed control in heavily infested Tifway bermudagrass has been achieved with sequential applications on three week intervals of Celsius applied at 3.7 oz/a, Tribute Total applied at 3.2 fl oz/a, Speedzone at 3 pt/ac, and Blindside applied at 10 oz/ac. Further results will be discussed at field day.

CHARACTERIZATION AND CONTROL OF *OPHIOSPHAERELLA SPP*. CAUSING SPRING DEAD SPOT OF BERMUDAGRASS IN SOUTH CAROLINA & ARGENTINA

Alejandro Canegallo , Bruce Martin (Clemson University Pee Dee REC, Florence SC), Bert McCarty , Paula Agudelo , Julia Kerrigan (Clemson University, Clemson SC), Lane Tredway (Syngenta Lawn and Garden), and Wonkeun Park (Clemson University Pee Dee REC, Florence SC)

Spring dead spot is the most devastating disease of Bermudagrass in North America, Australia and Argentina. Symptoms are round and sunken patches and rings, bleached to straw in color that develop when bermudagrass breaks dormancy during the spring.

This patch disease is caused by the ectotrophyc root infecting fungi *Ophiosphaerella korrae*, *O. herpotricha*, and *O. narmari*; isolated from symptomatic roots of susceptible hosts including common (*Cynodon dactylon*) or hybrid bermudagrass (*C. dactylon x C. transvaalensis*) and zoysia grass (*Zoysia* spp.). Samples from symptomatic turf were taken, washed and diseased roots were selected and cultured in a specific media to grow *Ophiosphaerella* species. After fungal growth, hyphae resembling *Ophiosphaerella* species were transferred to new media to obtain pure cultures. Cultures were then transferred to potato dextrose broth media to obtain clean fungal hyphae for DNA extraction. Analysis of nucleotides from the nuclear ribosomal DNA (rDNA), which contains the three rDNA genes 28S, 5.8S and 18S and a non-coding or space regions ITS1 and ITS2 was performed on the samples using species specific primers for the various causal agents.

In South Carolina, 273 samples were taken from symptomatic turf out of 23 locations visited throughout the state. Of these, 221 cultures were obtained resembling *Ophiosphaerella spp*. and transferred to pure culture. 207 out of the 221 samples were positive for *Ophiosphaerella korrae*. In Argentina, 238 samples were taken from 21 locations from symptomatic common and hybrid bermudagrass turf on fairways and putting greens of 15 golf courses, 5 polo fields and one sod farm. Diseased roots were cultured and growth of 145 suspected cultures was transferred to new media. DNA was extracted and analyzed from 102 isolations, with 101 identified as *Ophiosphaerella herpotricha*. Sequencing of those amplifications will be done to determine relatedness between isolations.

Amplified fragment length polymorphism (AFLP) technique was also performed to determine species distribution patterns or potential correlations with cultivars and locations from samples from both Argentina and South Carolina.

A field experiment with three factors in a randomized complete block design with 4 replications was established at Pilara Golf Club, Pilar, BA (Argentina) in 2012. The purpose of the field trials were to evaluate the effects of nitrogen fertilizers, fungicide applications and cultural practices to develop best practices for management of SDS. 2014 will be the third year to complete the visual and digital image analysis to differentiate the area affected by the disease.

Mini-Ring: Pathogen identification and development of management practices to control and prevent the disease

Dant L.A., Martin S.B., McCarty L.B., and Kerns J.P

A turf disease now known as "mini-ring" (also called *Rhizoctonia* leaf and sheath spot) was first reported on bermudagrass putting greens in 1999. It has become more common in the southeast United States as golf courses convert from creeping bentgrass to ultradwarf bermudagrass putting surfaces. Mini-ring symptoms typically resemble "frog-eye" patches that measure 4-18 inches in diameter and generally appear mid- to late-July and may persist until bermudagrass dormancy. Infected turf may not recover in the fall; therefore, scars can be present through the winter into the following spring. Fungicidal control of mini-ring has been inconsistent and largely ineffective in recent research trials conducted in North Carolina and South Carolina. Initial isolations from diseased turf indicate that the causal agent may be Rhizoctonia zeae Voorhees, but this diagnosis has not been confirmed using molecular techniques. The objective of the current research is to: 1) Collect several geographically diverse isolates from symptomatic turf and identify the pathogen which causes miniring; 2) Genetically compare the causal agent of mini-ring to previously characterized *Rhizoctonia* spp. isolates; 3) Infect bermudagrass turf using mini-ring isolates to reproduce mini-ring symptoms; and 4) Determine optimal conditions for mini-ring infection including: environmental conditions, turf fertility, and agronomic practices that may promote the pathogen. The desired outcome of this research is to develop comprehensive management practices that control and prevent the pathogen which causes mini-ring.

UNDERSTANDING NEMATODE DAMAGE THRESHOLDS

J Bradly Shaver, Dr. Bruce Martin, Dr. Paula Agudelo. School of Agricultural, Forest, and Environmental Sciences, Clemson University, Clemson, SC 29634.

Turfgrass managers rely on nematode thresholds to make important decisions such as when to make costly nematicide applications. However, many people fail to understand how thresholds are determined and how they should be used to develop an overall management strategy for controlling plant-parasitic nematodes. An extensive literature review found no published research establishing thresholds for the sting nematode *Belonolaimus longicaudatus*. In South Carolina that threshold is only 17 nematodes per 100 cc of soil for bermudagrass. How are thresholds determined? Are they accurate? How should you evaluate your nematode assay report? This poster will answer these questions and more.

Get a free copy of *Nematode Guidelines for South Carolina* by scanning this image using a QR scanner on your smart phone.

Monitoring Electrical Conductivity of Tidally Influenced Surface Water for Irrigation Scheduling

Park¹, D. M., N. A. Menchyk², and B. Riddle³

 ¹Assistant Professor, School of Agricultural, Forest, and Environmental Sciences, Clemson University, darap@clemson.edu
 ²Post-Doc, School of Agricultural, Forest, and Environmental Sciences, Clemson University
 ³Assistant Golf Course Superintendent, Yeamans Hall Club

Yeamans Hall Club is located in Hanahan, South Carolina. Goose Creek (a tributary of the Cooper River) and it's tidally influenced marshes surround the Yeamans Hall Club on the North and East perimeter. The irrigation pond is primarily fed by a spring located in an adjacent pond (Cypress Pond), rain and associated stormwater runoff. However the irrigation pond also abuts the marsh. Salt water intrusion is minimized by a manmade dike, however in March 2012, it was determined that saltwater was still entering the pond causing the irrigation water to have salt concentrations greater than 600 ppm. Unfortunately, before it was determined that the water had become contaminated with salt, the turfgrass became stressed and in some areas, died due to using the water. Fortunately, once the water was identified as the problem, the club switched to using city water, until salt levels declined in the pond.

Yeamans Hall Club recognizes the importance of being good stewards of the environment and the importance of conserving potable water sources for essential uses. Thus in an effort to reduce their dependency on city water for irrigation, the club wanted to determine a way to monitor and manage the tidally influenced water from their main irrigation pond. On June 14th, 2013 Clemson scientists installed sensors in the main irrigation pond, and in the adjacent spring-fed pond to monitor electrical conductivity and water depth.

Over the past 1.5 months measurements have been recorded every 15 minutes. Data suggests that (a) during spring high tides (new and full moon) saltwater intrusion is greatest into the irrigation pond, otherwise, electrical conductivity is within a manageable range in the irrigation pond, (b) water in the Cypress Pond is not contaminated with salts, thus the spring which feeds the pond currently does not have saltwater intrusion, and subsequently (c) that the saltwater intrusion is only coming from the marsh. Over the next few months, data will continue to be collected and the team will determine an irrigation schedule customized for this source. The schedule will be based off of tidal charts and sensor data, and how to know timing and quantity of water to release from the Cypress Pond to minimize salinity in the irrigation pond.

Please see the poster for sample data and more information.

Development of Water Management and Drought Response Industry Standards for South Carolina Golf Courses

Park¹, D. M., T. Kreger², and D. Lowe³

¹Assistant Professor, School of Agricultural, Forest, and Environmental Sciences, Clemson University, darap@clemson.edu

²Executive Director, Carolinas Golf Course Superintendents Association

³Golf Course Superintendent, Greensboro County Club, Greensboro, NC

The Carolina Golf Course Superintendents Association (CGCSA) and South Carolina Department of Health and Environmental Control (SCDHEC) agreed on the importance of South Carolina golf courses to develop every-day water conservation plans and drought response procedures.

Doug Lowe, Clemson University and CGCSA have worked together to develop two documents that are currently in review with the South Carolina Directors of the CGCSA. After approval, they will be sent to SCDHEC for further review. The first document entitled The Carolinas Golf Course Superintendents Association Water Conservation Plan and Drought Response Procedures, lays the foundation for all SC golf courses that are members of the CGCSA to follow regarding general water management strategies. The document includes an overview of water conservation strategies that are always implemented on a golf course, regardless of drought conditions. In addition, the document also outlines how golf courses will respond to different drought phases issued by local municipalities. Under this document, among other actions, member golf courses agree to reduce water for irrigation purposes by 15, 20 and 25% for moderate, severe, and extreme drought phases respectively, as defined by the SC Drought Response Committee.

The second document is a template for SC golf courses to use for when developing Drought Operations and Contingency Plans (OCPs). The OCPs are a more detailed version of the first document, requiring specific information about the golf course facility and water conservation practices. An OCP is required for all SC golf courses that are reporting water use to SCDHEC and or are applying for a change or new water withdrawal permit.

View a draft and learn more about the documents at stop # 2.

Water Quality Flow Chart for Evaluation of Irrigation Water pH, Alkalinity, and Salts.

Park, D. M.*, N. Menchyk, and S. White

School of Agricultural, Forest, and Environmental Sciences, Clemson University *for more information email darap@clemson.edu

As demand and competition for high quality, potable water increases in South Carolina, proper irrigation management is becoming critical. Identifying all potential stressors and accurate interpretation of water quality reports is essential to identifying proper management strategies to optimize both soil and turfgrass health. Interpretation of irrigation water quality reports is complex, making interpretation and selection and implementation of appropriate management options difficult. This poster will (a) review potential stressors that must be considered when assessing irrigation quality, and (b) an easy to follow flow chart that has been developed for identifying common irrigation water quality issues will be introduced. Collectively, turfgrass managers will be able to make informed management decisions to increase turf and soil quality, and reduce potential contamination and minimize pressure on natural water sources.

Learn how to use the flow chart at stop 2.

Over-expression of *AsHSP17*, a creeping bentgrass (*Agrostis stolonifera*) small heat shock protein, increases abiotic stress sensitivity in transgenic *Arabidopsis thaliana*

Xinbo Sun, Chunyu Sun, Zhigang Li, Hong Luo Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC 29634, USA, e-mail: hluo@clemson.edu

Abstract: Heat shock proteins (HSPs) are universal stress proteins that accumulate in response to heat and other abiotic stressors. Small heat shock proteins (sHSPs) are the most ubiquitous HSP subgroup with molecular weights ranging from 12 to 42 kDa. We have cloned a new sHSP gene, *AsHSP17* from creeping bentgrass (*Agrostis stolonifera*) and studied the role it plays in plant response to environmental stress. *AsHSP17* encodes a protein of 17 kDa. Its expression was strongly induced in both leaf and root tissues by heat treatment. *AsHSP17* was also induced slightly in root by salt and abscisic acid (ABA) treatment, but not by water withholding. No expression was found in leaf tissue under salt, drought and ABA treatment. These results indicate that *AsHSP17* accumulates in response to heat, salt and ABA but not in response to drought. Transgenic *Arabidopsis* plants overexpressing *AsHSP17* also led to decreased seed germination in transgenic plants under salt and ABA treatment. The results obtained so far suggest that AsHSP17 may be a negative regulator involved in plant response to adverse environmental stresses. This information would allow development of molecular strategies manipulating sHSP expression in transgenic plants, achieving improved plant resistance to various abiotic stresses in crop species.

Constitutive Expression of *Osa-miR528* Alters Plant Development and Enhances Plant Tolerance to Salinity Stress and Nitrogen Starvation in Transgenic Creeping Bentgrass

Shuangrong Yuan, Zhigang Li, Dayong Li, Qian Hu & Hong Luo Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC 29634, USA, e-mail: <u>hluo@clemson.edu</u>

ABSTRACT

One of the adaptive mechanisms that plants have evolved in stress response is mediated by microRNAs (miRNAs). Large-scale expression analyses reveal that a conserved monocot-specific miRNA, miR528 has the potential of mediating multiple stress responses. So far, however, the experiment support is lacking. To determine the role miR528 plays in plant response to abiotic stress, and the underlying molecular mechanisms, we analyzed its impacts on a perennial monocot crop species, creeping bentgrass (Agrostisstolonifera L.). Our stem-loop RT-PCR analysis demonstrates that the expression of miR528 was up-regulated under salt and drought stresses, but down-regulated under N deficiency in the wild type (WT) creeping bentgrass. Furthermore, we generated transgenic creeping bentgrass plants overexpressing a rice miR528 (Osa-miR528). Our data indicate that both plant development and stress response have been altered in transgenic plants. Morphologically, transgenic plants display shorter internodes, more tillers and upright growth than WT controls. Resistance to salt stress and N deficiency was enhanced in transgenics. Improved salt stress resistance was associated with increased water retention, cell membrane integrity, and chlorophyll content, while enhanced tolerance to N deficiency was associated with increased biomass, total nitrogen and chlorophyll content. Gene expression analysis identified four putative target genes, AsASO, AsLAC11, AsCSD2, and AsLPR1, which function in oxidation-reduction. Additionally, the expression level of AsNir encoding for nitrite reductase is increased in transgenic plants compared to WT controls, which might contribute to enhanced N use efficiency. The data obtained indicate the potential of manipulating miR528 in improving plant abiotic stress resistance.

Evaluation of foliar N regime and reduced aeration on 'TifEagle' and 'Champion' ultradwarf bermudagrass in the transition zone

Bethea, Jr. F.G., N. Menchyk, M. Li, and H. Liu

School of Agricultural, Forest, and Environmental Sciences, Clemson University for more information please email Frank Bethea: <u>fbethea@g.clemson.edu</u>

Superintendents and golf course managers are constantly searching for ways to reduce costs without reducing turfgrass health or performance. Proper management of golf course greens includes regular fertilization and yearly aeration to maintain turfgrass health and playability. Turf managers could try to decrease cost by reducing the amount of inputs from fertilization or labor from reduced aeration regimes. To investigate the effects nitrogen (N) fertilization and reduced aeration on warm-season golf course greens in the transition zone, a two year study was initiated during summer of 2012 and continued through the fall of 2013. The study was a split-plot design investigating two cultivars ('Champion' and 'TifEagle' bermudagrass), two nitrogen fertility programs (196 and 392 kg N ha annually) and two hollow tine aeration regimes (1x and 2x per season). Urea nitrogen was applied foliarly on a 7-10 d interval with a CO₂ packback sprayer during the growing seasons. Parameters measured were turf quality, chlorophyll content, ball roll distance, thatch depth and organic matter. Turf quality responded significantly to all three main effects with TifEagle, 2x per year aeration, and the 392kg N rate having significantly higher TQ than their respective treatments. Ball roll distance was significantly decreased with the increased N rate. Thatch depth was affected by the main effect of Cultivar with TifEagle revealing reduced thatch compared to Champion. Organic matter measured by loss on ignition revealed Cultivar and Aeration Rate significantly affected the organic matter, with TifEagle and the 2x per year aeration rate having lower total organic matter. There was not a significant interaction between any of the main effects. The results suggest that with by reducing your N input or aeration rate your turfgrass health will suffer over time leading to increased organic matter and decreased turf quality. Ultradwarf bermudagrass putting greens in the transition zone should be hollow tine aerated $\geq 2x$ per year accompanied with a balanced fertility program between 4lb and 8lb of N per year to aid turfgrass health without reducing playability.

Investigation of turfgrass leaf morphological and cuticular differences and their relationship to hydrophobicity of foliar applications

Bethea, Jr. F.G., M. Li, N. Mirmow, H. Lou, and H. Liu

School of Agricultural, Forest, and Environmental Sciences, Clemson University for more information please email Frank Bethea: <u>fbethea@g.clemson.edu</u>

Foliar applications of fertilizers and pesticides are common in turfgrass management. The quick response time, accuracy and ability to tank mix products make foliar applications cost effective and increase labor efficacy. Understanding the mechanisms involved in the uptake of the chemicals is pivotal to increasing uptake and reducing overall losses. The hydrophobicity of surfaces is commonly related to the surface roughness of the surface. A study was initiated to investigate the characteristics of the plant leaf that affect the hydrophobicity of the leaf and develop a model to determine which variables are most important to the repellency of foliar applications. Tall fescue and St. Augustine turfgrasses were studied first to develop methodologies and parameters that will be utilized for further species. Leaf morphology results showed tall fescue to have a rougher surface, because of the ridges that can be seen on the tall fescue morphology. But the cuticle morphology revealed that both species had wax platelets on their cuticle surface, and St. Augustine's cuticle had a higher crystalloid density and larger crystalloids compared to tall fescue creating a rougher micro-surface. These crystalloids are dependent upon the chemical constituents of the cuticle and the analyses of individual cuticles are in the process of being evaluated. The hydrophobicity, measured by the contact angle of a water droplet at the interface between the leaf and droplet, revealed St. Augustine to have significantly more hydrophobic leaf surface compared to tall fescue. This hydrophobicity is most likely caused by the cuticle morphology which is control by the cuticle composition. Even though tall fescue revealed a rougher leaf morphology, the ridges are large enough that the water droplet falls between them, reducing the contact angle and increasing the wettability of the leaf. Future work needs to be conducted investigating more parameters, such as stomatal density, as research has shown the stomatal pathway is major for foliar uptake. Also the relationship between hydrophobicity and foliar uptake needs to be confirmed, with tests using radio-labeled solutions and florescent microscopy.

Thanks for the funding from USGA and Carolinas Gold Course Superintendents Association (CGCSA)

Winter frost traffic impacts on 'Crenshow' creeping bentgrass putting green in the transition zone

Li, M., F. Bethea, L. McCarty, and H. Liu

School of Agricultural, Forest, and Environmental Sciences, Clemson University for more information please email Frank Bethea: <u>mohanl@clemson.edu</u>

Winter frosts often cause cancellations or delays of tee time resulting in lost revenue. In response to this winter golf course management issue, a field trial was conducted at Clemson University from January 2014 to March 2014 on a 'Crenshow' creeping bentgrass putting green to investigate the effects of winter frost traffic on bentgrass performance. Treatments consisted of no traffic (control), 3x rolling traffic, 6x rolling traffic or 9x rolling traffic (A modified roller stimulating a golfer or worker) at 08:00 am on mornings of heavy frost or temperatures below 32 F. Data collections included weekly readings of visual turfgrass quality (TQ), chlorophyll index (CI) and ball roll distance (BRD) throughout the study. The three levels of traffic decreased TQ and CI, but increased BRD. TQ and CI were decreased more badly by 6x and 9x traffic than 3x traffic. All the three levels of traffic increased BRD, but there was no difference within the three levels. This study indicates that a linear decreased relationship was identified from no traffic to the most severe traffic impact for TQ and CI.

Thanks for the funding from USGA Green Section.

Nitrogen uptake of foliar-applied different Nitrogen sources on creeping bentgrass under greenhouse conditions

Li, M., F. Bethea, J. Kruse, and H. Liu.

School of Agricultural, Forest, and Environmental Sciences, Clemson University for more information please email Frank Bethea: <u>mohanl@clemson.edu</u>

Absorption of foliar-applied nitrogen is complicated since the absorbed forms including a cation as NH_4^+ , an anion as NO_3^- , and organic forms as urea and amino acids. A project was conducted at Clemson University from January 2014 to May 2014 on creeping bentgrass to investigate the leaf N metabolism of different N sources at a molecular level-urease enzyme activity (UEA) and total amino acid (TAA) under greenhouse conditions. Six different N sources, including Urea, NH₄Cl, NaNO₃ and three commercially available N products UMAXX, UFLEXX, and HYDREXX, were foliar-applied at 0.2 lbs N/1000 ft² with a spray chamber. Timing of leaf tissue sampling was at 3, 6 and 9 weeks after foliar application and leaf tissue were used for testing UEA, TAA and total N content (TNC). Turf Quality (TQ) was recorded weekly throughout the study. N sources differently increased UEA at week 3 and week 6, but had no effect for TAA and TNC. UMAXX, FLEXX, HYDREXX and Urea had higher UEA than other N sources and control at week 3. At week 6, Urea had a little lower UEA than UMAXX and HYDREXX, but higher than other N sources and control. All N sources showed higher TQ than control in the first two weeks, but Urea, NH₄Cl and NaNO₃ had a gradually decreased TQ compared to UMAXX, UFLEXX, and HYDREXX, which oppositely showed a more consistent higher TQ throughout the study. This study indicates that a higher turf quality may benefit from a more consistent release of N and a higher level of N metabolism.

Thanks for the funding from Koch Agronomic Services, LLC.

Fertilizer Burn Potential and Color Response for 'TifWay' 419 Bermudagrass Fairway As Affected By N Sources with Carbon and Rates

Mirmow, N. Bethea, M. Li, E. Pedersen, and H. Liu

School of Agricultural, Forest, and Environmental Sciences, Clemson University for more information please email Nickles Mirmow: <u>wmirmow@clemson.edu</u>

'TifWay' 419 bermudagrass is a popular warm season turfgrass for both golf courses and sports fields. Proper fertilization is essential to the grass's optimal health, but incorrect fertilizers and application rates can be detrimental to the turf. This study was performed using various fertilizers at two different nitrogen levels to determine the burn potential of the turf under these varying treatments. Fertilizers were applied under conditions that maximize burning potential. There was heavy dew and the fertilizer was NOT watered in after the application.

Burn ratings are presented for the selected fertilizers at the 3 pound nitrogen rate because of their higher tendency to burn. With the exception of Scott's Turf Builder and CAS 5%/STB at the 3 lbs. N/ 1000 ft2, the general trend is for the turf to show symptoms of burning before the signs gradually fade. Both Turf Builder and CAS 5%/STB at the 3 lbs. N/ 1000 ft2 rate had comparable burn levels at 14 days after treatment compared to the initial burn levels 1 day after treatment. Initially, the fertilizers that showed the highest burn potential were Scott's Turf Builder, ammonium sulfate, and CAS 5%/STB .

Thanks to Sulvaris, Canada for the funding.

Clemson Turf Major Internship Program

Haibo Liu (Clemson Turf Major Internship Coordinator)

School of Agricultural, Forest, and Environmental Sciences, Clemson University, Clemson, SC 29634

In the past two years (2013-2014), we have had a total of 16 turf interns in the turf related areas located in six states of SC, NC, and MA with 14 interns on golf courses, 2 with sports fields, and 1 in landscape management. The working experiences of our interns obtained from all aspects of turf management with a total estimated of more than 10,000 working hours input by these interns! The supervisors have spent hundreds of hours together with interns for providing advising and training.

We Clemson faculty members and interns would like to take this opportunity to thank all the intern sponsors for the great opportunities provided to our students and these internship experiences they obtained cannot be gained from regular classrooms and are invaluable for our students' current leaning and future careers. We thank you so much and hope for the continued support for the future internships and we also look for new internship sponsors as well to further broaden our internship experiences.

In the past 13 years, the turf major internship has become a required course for the turf majors at Clemson and we have had over 240 students finished their internships in close to 30 different states including some international internships. The connections through those internships have helped our students for their future employment and their career development. We want to thank many golf courses and sports fields who have hosted multiple Clemson turf majors for their internship programs and such great connection and support are so important and essential for our turfgrass education program at Clemson to be successful.

We thank Clemson Turf Major Internship Sponsors and look forward to sending more interns to your programs.

For more information, please contact Dr. Haibo Liu (haibol@clemson.edu).