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Abstract: In this paper, blocks-of-blocks (BOB) bootstrap method is employed for the commonly used diagnostic tests for 

generalized autoregressive conditional heteroscedastic (GARCH) models. More specifically, the single block-of-blocks and 
double blocks-of-blocks bootstrap techniques, using three different block lengths of size 4, 10, and 20, are implemented for 
bootstrapping the Li-Mak and Mcleod-Li portmanteau tests. Using Monte Carlo simulations, the size and power of both tests 
under the standard normal and Student-t errors are investigated. It was found that the discrepancy between the true and 
nominal probability of rejection was reduced for both the tests using single block-of-blocks and double blocks-of-blocks 
bootstrap methods. The power of the Li-Mak test for the GARCH (1, 1) model was found slightly better than the Mcleod-Li 
test. An empirical example using the monthly data of currency exchange rate (US $ per Pak Rupees) is also reported. 
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1. Introduction: 
In the classical linear regression model, one of the 

common assumptions is that the residuals of the estimated 
regression line are stochastically independent from each 
other. To determine the adequacy of the fitted model, 
various diagnostic tests are used based on the 
autocorrelation function (ACF) of the residuals. Box and 
Pierce (1970) developed one of the most commonly used 
portmanteau tests. Ljung and Box (1978) proposed a 
modification of the Box-Pierce test. The Ljung-Box test 
gives good approximations and is adequate for many 
practical purposes. 

Granger and Andersen (1978) suggested that for 
autoregressive moving average (ARMA) models if the 
statistical dependence in the residuals was found to be non-
linear than squared residual autocorrelations may be useful. 
It was observed from some of the time series models that 
squared values of residuals are highly correlated as 
compared to the residuals itself. McLeod and Li (1983) 
analyzed autocorrelation of squared residuals of ARMA 
models. They developed a test based on the square residual 
autocorrelations. For large sample size, the autocorrelation 
of squared residuals is asymptotically normally distributed 
with a mean of zero and unit covariance matrix.  

One of the assumptions of an econometric model is 
that the model has constant forecast variance. Engle (1982) 
developed autoregressive conditional heteroscedastic  

 
 
 
(ARCH) a process which allows the conditional variance 
varying with time.  

The conditional variance, also known as volatility, 
in ARCH models is a function of the past squared errors. 
Bollerslev (1986) introduced the generalized ARCH 
(GARCH) model in which the current conditional variance 
equation also includes the past conditional variance as 
explanatory variables. Li and Mak (1994) developed the 
portmanteau statistic which depends on the squared 
standardized residuals autocorrelations. This test is 
considered useful for the diagnostic testing of nonlinear 
time series with conditional heteroscedasticity. 

Bootstrap is a technique that can be used for 
determining the distribution of test statistic or an estimator 
by resampling the available data. The bootstrap work as an 
alternative method in that situation in which the asymptotic 
distributions are difficult to obtain. For finite samples, the 
first-order asymptotic theory often does not gives an 
accurate approximation to the distributions of test statistic 
as the bootstrap method. As a consequence, the test 
depends on the asymptotic critical values can lead to the 
nominal levels very different from the true levels 
(Horowitz; 1997). 

A simulation study conducted by Chen (2002) 
indicated that for heavily tailed data the size and power 
performance of the Ljung-Box and Mcleod-Li tests are not 
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robust. It was concluded that for serial correlations and 
volatility clustering effects other portmanteau tests which 
are robust to nonlinearity, conditional heteroscedastic 
higher order moments and distributional heavily tailed are 
required to be developed. Tsui (2004) analyzed the 
empirical size and power of Wooldridge (1991), Li-Mak 
(1994) and Tse (2002) diagnostic tests for the univariate 
conditional heteroscedastic model. It was observed that Tse 
and Li-Mak tests are powerful diagnostic tests for 
univariate conditional heteroscedastic models. 

Horowitz et al. (2006) used bootstrapping methods 
to test the hypothesis that in the existence of statistical 
dependence the first K autocorrelations are zero of a 
covariance stationary time series. The p-values were 
obtained for Box-Pierce test from blocks-of-blocks 
bootstrap methods with pre-whitening. It was observed that 
the double blocks-of-blocks bootstrap reduced the 
difference much more between the true and nominal 
probability as compared to single block-of-blocks 
bootstrap. 

Iqbal et al. (2013) analyzed the size and power of 
Ljung-Box and Li-Mak diagnostic tests using univariate 
autoregressive conditional heteroscedastic models for 
symmetric and asymmetric errors. When the distribution of 
the errors was asymmetrical the performance of the Li-Mak 
test was observed better than the Ljung-Box test. For 
asymmetrical heavily-tailed data, the empirical power of 
the Li-Mak test was found better. 

For weak ARMA models, Zhu (2016) employed the 
random weighting procedure to bootstrap the critical values 
of Ljung-Box, Monti (1994), weighted Ljung-Box and 
weighted Monti portmanteau tests. These four tests were 
also implemented to investigate the adequacy of power-
GARCH models. The outcomes from simulation conducted 
revealed that critical values of weighted Ljung-Box and 
weighted Monti test have higher power than un-weighted 
portmanteau tests.  

The aim of this article is to develop a bootstrap 
method for obtaining the rejection probabilities for Li-Mak 
and Mcleod-Li diagnostic tests that are commonly used for 
the diagnosis of GARCH models. The single block-of-
blocks (SBOB) bootstrap and double blocks-of-blocks 
(DBOB) bootstrap techniques are used with three block 
lengths of size 4, 10 and 20. Monte Carlo simulations are 
used to examine the true rejection probabilities of both the 
tests with the p-values of BOB bootstrap. Data were 
generated using the standard normal and Student-t 
distributions. Our results indicate that the p-values 
obtained, from the bootstrapping of both the tests, provide 
the close approximation to the true level of rejection than 
the asymptotic p-values. The DBOB bootstrap reduced the 
distinction between the true level of rejection and nominal 
probabilities more than SBOB bootstrap method.  

Therefore, it is recommended that a close 
approximation to the true level of rejection is possible with 
high accuracy by using the bootstrap method. 

This paper is arranged as follows: The GARCH 
model and diagnostic tests are briefly introduced in Section 
2. In Section 3, the SBOB and DBOB bootstrap methods 
for Li-Mak and Mcleod-Li diagnostic tests are described. 
Results of simulations are presented and discussed in 
Section 4. Section 5 provides an empirical example and 
finally, Section 6 concludes the article. 

 
2. GARCH Models and Portmanteau Tests: 

For the modeling of asset returns, it is known that 
the residuals of the estimated models are no longer 
homoscedastic and their variances vary over time. The 
ARCH process is generally used to reflect this type of 
effect. The GARCH model developed by Bollerslev (1986) 
is the generalized form of the ARCH model. The process ���; � ∈ ��  is considered. Observe ���; 1 
 � 
 ��  such 

that �� � 
��� 

�� � �� ��������� ����
����

�

���

�

���
 

Where �� > 0, ��  ≥ 0, i=1,2,…,p, ��  ≥ 0, 

j=1,2,…,qand �� 	 are i.i.d white noise error terms. The 

conditions ��> 0, �� ≥ 0 and �� ≥ 0 are necessary for the 

conditional variance to be positive. The GARCH process is 

said to stationary if	∑ �� � ∑�� � 1.The GARCH (1, 1) 

model is commonly found adequate in financial 
applications.  

To test the assumption that no autocorrelation is 
present between the white noise residuals of the fitted 
models. The portmanteau tests are used to test the null 
hypothesis of no autocorrelation. The portmanteau tests are 
distributed asymptotically as chi-square with a degree of 
freedom equal to the number of autocorrelation coefficient 
minus the number of parameters to be estimated in the 
equation. 

Conducting different diagnostic tests is an essential 
step in time series model building. When a model is fitted, 
diagnostic tests are used to evaluate the model which then 
serves as a test of model adequacy. To test the null 

hypothesi !:	#$1% � ⋯ � #$'% � 0, ' � 1, 5, 10  where #	is autocorrelation. The Mcleod-Li (1983) and Li-Mak 

(1994) tests are commonly used to test this type of 
hypothesis in GARCH-type models. The Mcleod-Li test is 
written as 

+,-$'% � �$� � 2%� /̂�1�� 2 3
!

1��
 

      Where the lag-K squared residual autocorrelation 
is given by  

/̂�1 � ∑ $�̂�� 2 �̅%$�̂��1� 2 �̅%5��16�∑ $�̂�� 2 �̅%�5��� for	3 � 1,2, … , ' 

Where	�; � �
5∑ �̂��  and n is the sample size. For 

large n the autocorrelations of squared residuals are 
asymptotically normally distributed with zero mean and 
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unit covariance matrix. The asymptotic distribution of 
Mcleod-Li portmanteau test is chi-square with degrees of 
freedom K when the eight-order moment exists. The Li-
Mak test for GARCH models is defined as 

+-,$'% � �� /̂�1�
!

1��
 

The standardized square residuals autocorrelation at lag-K 
is defined as 

/̂�1 � ∑ $�̂�� 2 1%$�̂��1� 2 1%5��16�∑ $�̂�� 2 1%�5��� for	3 � 1,2, … , '				 
 

     Where	�̂� is standardized residuals obtained from 

GARCH models. The Li-Mak test is asymptotically 
distributed as chi-square distribution with K-p-q degree of 
freedom. 

 
3. Bootstrapping Portmanteau Tests: 

Bootstrap is an important technique developed by 
Efron (1979). The bootstrap method worked as Monte 
Carlo method to simulate from the available data without 
making an assumption. The basic purpose of bootstrap 
testing is that it is useful to characterize the distribution of 
test statistics whose distribution is unknown under the null 
hypothesis. Through simulation, many artificial data sets 
are generated which are called bootstrap samples and for 
each sample, the statistic is calculated. The simulation-
based estimate for the unknown distribution is then 
obtained by using the empirical distribution function (EDF) 
of these bootstrap statistics. 

Efron (1979) bootstrap method is applicable to 
observations which are independent identically distributed. 
In time series data the observations are often dependent and 
the usual methods of bootstrap fail to provide consistent 
estimates because all the information related to dependence 
nature of observations is lost (Singh, 1981). Hall (1985) 
Introduced the block bootstrap technique, the overlapping 
block bootstrap developed by Kunsch (1989) and the no-
overlapping block bootstrap proposed by Carlstein (1986) 
are mostly used as bootstrapping technique for time series 
data to maintain the dependence structure of the 
observations within a block. 

The block bootstrap is a technique used to produce 
the bootstrap samples in those situations when a parametric 
model is not available. The blocking is a procedure in 
which data is divided into blocks and sampling is done 
randomly from these blocks with replacement. In the 
presence of statistical dependence for the testing of 
individual autocorrelation coefficients, Romano and 
Thombs (1996) produced robust inferences using the block 
bootstrap method. The block bootstrap method provides 
the closest approximation to the test statistic distribution 
under analysis. For asymptotically pivotal test statistic the 
block bootstrap procedure gives more precise 
approximation than the first order asymptotic theory (Hall 
et al., 1995; Hall and Horowitz, 1996; Andrews, 2002). 

3.1 Single bootstrap: 

To apply the single block-of-blocks (BOB) 
bootstrap a new matrix 	$<�, <�, … , <5�!%	 having order 

(K+1)=(n-K) is defined where <� � $�̂� , �̂�6�, … , �̂�61%> �$�̂��, �̂��, … , �̂�!6�%>,	K is lag length and ��  are residuals. 

Without the use of pre-whitening, the bootstrap sample of 
size n from the blocks is produced by resampling blocks 
from the K+1 dimensional series. Suppose b represents the 

block size and let h=n/b. let ?� 	 be a matrix of order 

(K+1) = b written as 	?� � <� , … , <�6@��,  where A �1,2, … , B  and B � � 2 C 2 ' � 1 . Using the following 

three steps the SBOB bootstrap test is derived. 
1. The number of blocks is randomly selected h times 

with replacement from the collection {?�, … , ?D }. 

These make a set of blocks 	?�∗, … , ?F∗ . The blocks 

selected are arranged end-to-end to make a matrix of 

order (K+1)=n known as bootstrap sample and is 

represented by <∗ � $<�∗, … , <5∗%  and the bootstrap 

replicate of <� is <�∗ � $�̂��∗, �̂��∗, … , �̂�$!6�%∗%>.  
2. Compute the tests +,-G $'% � �$� �2% H∑ $ÎJK∗ �ÎJLK%M5�1!1�� N  and +-,G $'% � �O∑ $/̂�1∗ 2!1��/̂�@1%�P	for Mcleod-Li and Li-Mak tests, respectively, 

from the bootstrap samples. Since overlapping blocks 

are used, in the collection { ?� , … , ?D }, some 

measurements received more weight than others. 

Therefore, both the statistics	+,-G $'% and +-,G $'%	are 

centered using the estimator 	/̂�@1 

and		/Q�@1 	respectively. 

 

/̂�1∗ � ∑ �$�̂��%�∗ 2 $�%�∗��$�̂��%$16�%∗ 2 $�%$16�%∗�5���O∑ �$�̂��%�∗ 2 $�%�∗��5��� ∑ �$�̂��%$16�%∗ 2 $�%$16�%∗��5��� P�/� 

 

Where	�; �∗ � 1/�∑ $�̂��%�∗5���  

 

/̂�@1 � ∑ S��$�̂��%� 2 $�%���$�̂��%$16�% 2 $�%$16�%�5�!���
T∑ S��$�̂��%� 2 $�%���5�1��� ∑ S��$�̂��%$16�% 2 $�%$16�%��5�1��� U�/� 

 

With	�; 1 � ∑ S��̂�15�!���  
 

/̂�1∗ � ∑ �$�̂��%�∗ 2 1��5��� $�̂��%$16�%∗ 2 1�O∑ �$�̂��%�∗ 2 1��5��� ∑ �$�̂��%$16�%∗ 2 1��5��� P�/� 

 

/̂�@1 � ∑ S��$�̂��%� 2 1��$�̂��%$16�% 2 1�5�!���O∑ S��$�̂��%� 2 1��∑ S��$�̂��%$16�% 2 1��5�1���5�1��� P�/� 

 
Where, S� � � C$� 2 ' 2 C � 1%⁄ 	,				� � 1, … , C 2 1 													� 1 $� 2 ' 2 C � 1%⁄ 	,							�� C, … , � 2 ' 2 C � 1 																																													� $� 2 ' � 1 2 �% C$� 2 ' 2 C � 1%⁄ 	,			�� � 2 ' 2 C � 2,… , � 2 '. 
3.  Step 1 and 2 are performed M1 times. 
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From single bootstrap, the distribution of +-,$K%	and	+,-$'%	 is estimated by the empirical 

distribution of the M1 values of +-,G $'%  and +,-G $'% 
respectively. The single BOB bootstrap estimate of p-value 

is	\1	∗  where \1	∗ � #^+-,G $'% _ +-,$'%` a�⁄ the number 

of +-,G $'%	greater than +-,$'% divided by a� and the p-

values for Mcleod-Li are computed using the same 

formula. The SBOB bootstrap test rejects 	 !  if \1	∗ � � 

under the given nominal level of  �. 
The test based on bootstrap p-values \1	∗  has 

probability of rejection 	�  if P (\1	∗ � �| ! ) = 	� , when 

the	\1	∗  distribution is uniform on [0, 1]. If the distribution 

is found to be not uniform then this will indicates the 

presence of some � such that P (\1	∗ � �| !) =	c�∗$�% ��. The unknown �	is the inverse of empirical distribution c�∗ obtained at	�, � � c�∗��(�). When the estimate of c�∗ 
is available both 	�  and the error in the p-values can be 

estimated. The	c�∗	 and �	can be estimated by using the 

double bootstrap method. 
 
3.2 Double bootstrap: 

The size n double bootstrap sample from the blocks 
is produced by resampling blocks from a bootstrap 

sample<�∗, … , <5∗ . Here also, the block size is b, where n=hb. 

Suppose 	?�∗  represents the block of b successive 

observations starting with 	<�∗	 that is, ?�∗ � <�∗, … , <�6@��∗ , 
where A � 1,2, … , B  and 	B � � 2 C 2 ' � 1 . The 

following steps described the DBOB bootstrap test. 
 
Perform the above step (1) and (2). 
 1>. For each single bootstrap sample, the number of blocks 

is randomly selected h times with replacement from the 

collection { ?�∗, … , ?D∗ }. These make a collection of 

blocks{?�∗∗, … , ?F∗∗�. The blocks selected are then put end-

to-end to make a time series of length n, which is known as 

double bootstrap sample <∗∗ � $<�∗∗, … , <5∗∗ ) where <�∗∗ �$���∗∗, ���∗∗, … , ��$16�%∗∗%>. 
 2> . Compute the statistic 	+,-d $'%	e�f	+-,d $'%	 from 
double bootstrap sample  

+,-d $'% � �$� � 2% g�$/̂�1∗∗ 2 /̂�@1∗ %�� 2 3
!

1��
h 

Where,  

/̂�1∗∗ � ∑ �$�̂��%�∗∗ 2 $�%�∗∗��$�̂��%$16�%∗∗ 2 $�%$16�%∗∗�5���O∑ �$�̂��%�∗∗ 2 $�%�∗∗��5��� ∑ �$�̂��%$16�%∗∗ 2 $�%$16�%∗∗��5��� P�/� 

           and 	�; �∗∗ � 1/�∑ $�̂��%�∗∗5���  

+-,d $'% � ��$/̂�1∗∗ 2 /̂�@1∗ %�
!

1��
 

Where, 

/̂�1∗∗ � ∑ �$�̂��%�∗∗ 2 1��5��� $�̂��%$16�%∗∗ 2 1�O∑ �$�̂��%�∗∗ 2 1��5��� ∑ �$�̂��%$16�%∗∗ 2 1��5��� P�/� 

The procedure for calculating 	/̂�@1∗ and 	/̂�@1∗ 	 is 

similar to /̂�@1  and 	/̂�@1	of the SBOB bootstrap sample 

respectively. 
 3>.  Steps 1> and 2>are performed M2 times. 
 4>.  Steps 1, 2 and 3> are performed M1 times. 

 

There are a� values of +-,d $'%	and +,-d (K) test 

statistics for every a� single bootstrap samples. Therefore 

the p-values of double bootstrap will be	a� represented by \1	∗∗  where \1	∗∗ � #^+-,d $'% _ +-,G $'%` a�⁄ 	and similar 

formula of p-values is used for Mcleod-Li test. c�∗∗ is used 

to represent the empirical distribution function of	a�		p-

values and it provides an estimate of c�∗.  �∗ � c�∗∗��(�) 

is an estimate of	�. If	\1	∗ <�∗, then double BOB test rejects 

the hypothesis that is the DBOB bootstrap test rejects if \1k	∗ � c�∗∗$\1	∗ % � �  where 	\1k	∗ is the adjusted p-values 

(Davison and Hinkley, 1997). The formula to estimate the 

adjusted p-values is \1k	∗ � # $\1∗∗ 
 \1	∗ % a�⁄  given by 

Hinkley (1989). 
 

4. Results and Discussion: 

In this section, we derived the probabilities of 
rejection for the Li-Mak and Mcleod-Li tests used to test 

the hypothesis  !:	#$1% � ⋯ � #$'% � 0, ' � 1, 5, 10 

for the GARCH (1, 1) model adequacy. Single BOB and 
double BOB bootstrap techniques are used with sample 
size of n = 300 with block lengths b = 4, 10, and 20. We 
use 1000 independent replications with M1 = 299 and M2 = 
200. For the asymptotic p-values we use 25000 
replications. All the computations are performed using R 
software.  

The data are generated from the GARCH (1, 1) 

model 
�� � 0.001 � 0.05����� +0.90 
���� . For these 

parameters values the condition that the fourth moment of ��exist is satisfied (He and Teräsvirta, 1999). The errors are 
generated from the standard normal and Student-t 
distributions with 3 degree of freedom.  

Table 1 and Table 2 show the rejection probabilities 
in percentage for both Mcleod-Li and Li-Mak tests, 
respectively. The asymptotic p-values of both the tests over 
reject all three hypotheses at lag 1, 5 and 10. At lag 10 the 
largest over rejection occurred of both the tests for the 
GARCH (1, 1) model with normal errors. The asymptotic 
p-values of Li-Mak test under reject the null hypothesis at 
the lag length 1, 5 and 10 with student-t errors. 

The difference between the nominal and the 
empirical probabilities of rejection was reduced by DBOB 
bootstrap method for both the tests at lag length 1, 5 and 10 
under both types of error distributions. Horowitz et al. 
(2006) also found that using the blocks-of-blocks bootstrap 
method for bootstrapping of the Box-Pierce (1970) test 
reduced the difference between the nominal and true 
probabilities of rejection more than the asymptotic p-
values. Our study is different from Horowitz et al. (2006) 
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in the sense that we used the Li-Mak (1994) and Mcleod-
Li (1983) tests. The results observed are independent to the 
selection of the block lengths. Davison and Hinkley (1997) 
also found that the blocks-of-blocks bootstrap is not 
influenced by the selection of block length.  

Next, we investigate the power of both the tests. For 
the power of the tests, the following two data generating 
processes are used.The GARCH (1, 1) model denoted by 
A1 and the ARCH (2) model denoted by A2. 
 
A1:  �� � 
��� ,								
�� � 0.5 � 0.3����� +0.2
����  

A2:  �� � 
��� ,								
�� � 0.1 � 0.8����� +0.1�����  
 

The power is calculated by fitting the GARCH (1, 1) 
model to A2 and fitting the ARCH (2) model to A1.Table 
3 shows the empirical powers of DBOB +-,  and 

DBOB	+,-tests under the normal and Student-t errors. The 

results show that both the tests have low powers at lag 1 
and the power of tests increase with lag lengths. The power 
of both the tests with t (3) errors was found to be low as 
compared to the tests with N (0, 1) errors. For testing that 
the fitted GARCH (1, 1) model is adequate the Li-Mak test 
is observed more powerful than the Mcleod-Li test using 
all the error distributions examined in this study. For 
univariate conditional heteroscedastic model Tsui (2004) 
also analyzed the empirical size and power of Wooldridge 
(1991), Li-Mak (1994) and Tse (2002) diagnostic tests and 
it was observed that Tse and Li-Mak test are more powerful 
diagnostic tests for univariate conditional heteroscedastic 
models.  
 

5. Empirical example:  

In this section, we derived the rejection probabilities 
for the Li-Mak and Mcleod-Li portmanteau tests using an 
empirical example. The data set for our analysis includes 
the monthly data of foreign exchange rate (US $ per Pak 
Rupees) from July 1981 through April 2013 (the total 
number of observations recorded is 361).  

The dataset was taken from the website 
(http://www.sbp.org.pk/stats/survey/index.asp). 

 The asymptotic p-values of Li-Mak and Mcleod-Li 
tests for testing the hypothesis at lag 5 using the nominal 
rejection probability of 5% are 0.068 and 0.076 
respectively both the tests over reject the hypothesis and 
high difference is observed between the nominal rejection 
probability and the true rejection probability. For testing 
the hypothesis at lag 5 using 5% nominal rejection 
probability  the SBOB (DBOB) bootstrap p-values of Li-
Mak test with the block lengths b = 4, 10 and 20 are 
0.049(0.051), 0.052(0.050), 0.057(0.051) and SBOB 
(DBOB) bootstrap p-values of Mcleod-Li test with the 
block lengths b = 4, 10 and 20 are  0.052(0.048), 
0.055(0.051), 0.060(0.051). The result reveals that the 
difference between the true and nominal significance level 
is reduced by both the tests using the blocks-of-blocks 
bootstrap technique as compared to the asymptotic p-
values of the tests. 

6. Conclusion: 
In this study, we employed blocks-of-blocks 

bootstrap methods for two commonly used diagnostic tests 
for GARCH models. Both the single block-of-blocks and 
double blocks-of-blocks bootstrap method was 
implemented using the three different block lengths of size 
4, 10 and 20 for the bootstrapping of Li-Mak and Mcleod-
Li tests. Using Monte Carlo simulations the power of both 
the tests under the two types of error distributions standard 
normal and student-t was investigated. It was observed that 
the difference between the true and nominal probability of 
rejection was eliminated by the BOB bootstrap method 
than the asymptotic p-values of the tests. The power of the 
Li-Mak test for the GARCH (1, 1) model was observed 
moderately better than Mcleod-Li test. We conclude that 
the tests using the p-values obtained from the bootstrap 
method provided that the method of bootstrapping is 
accurately implemented give us the closest approximation 
to the true level of rejection as compared to the asymptotic 
p-value. 
 

Table 1: Percentage of rejection probabilities of Mcleod-

Li test for the GARCH (1, 1) model with n = 300 

Tests      H1           H5       H10 

  1 5 10  1 5 10  1 5 10 

Normal distribution 

+,-  1.6 7.8 13.5  1.8 7.4 12.9  2.3 8.1 14.5

SBOB	+,- 
b = 4 1.0 5.6 10.7  0.7 5.1 10.4  1.1 4.8 9.9 

b = 10 1.3 6.4 11.5  1.1 5.6 11.0  1.1 5.4 11.1

b = 20 1.9 6.9 12.7  1.3 6.1 12.8  1.2 5.8 13.6

DBOB	+,-    

b = 4 0.9 5.1 10.4  0.6 4.7 9.2  0.8 4.0 8.1 

b = 10 1.1 5.3 10.4  0.9 5.0 10.1  0.7 4.6 9.7 

b = 20 1.0 5.6 10.8  1.1 5.2 10.9  0.8 4.7 10.2

Student-t (3) distribution 

+,-  2.3 7.6 13.8  4.4 13.2 16.9  5.0 13.4 21.5

SBOB +,-    

b = 4 1.5 6.7 11.7  0.9  5.6 11.5  1.2 5.2 10.1

b = 10  1.6 6.9 12.6  1.1  6.6 12.9  1.1 5.4 11.6

b = 20 2.2 7.4 14.4  1.6  7.2 14.6  1.3 6.3 13.4

DBOB +,-     

b = 4 1.0 5.6 10.2  0.6  4.5 9.6  0.8 4.6 8.3 

b = 10 1.0 5.5 10.6  0.7  5.3 10.9  0.8 4.8 9.4 

b = 20 1.3  5.6 11.7  0.8  5.7 11.5  0.9 6.5 10.1

Notes: H1, H5 and H10 the numbers given below represents 
the nominal rejection probabilities. +,- 	is the Mcleod-Li 

test. Implementing the p-values of BOB bootstrap method 

the total replications are 1000 for the	+,-  test. The total 

replications for the asymptotic +,-  test are 25000. 
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Table 2: Percentage of rejection probabilities of Li-Mak 

test for the GARCH(1, 1) model with n = 300 

Notes: H1, H5 and H10 the numbers given below represents 

the nominal rejection probabilities.	+-, is the Li-Mak test. 
Implementing the p-values of BOB bootstrap method the 

total replications are 1000 for the 	+-,  test. The total 

replications for the asymptotic +-, 	test are 25000. 

 

Table 3: Empirical power (percent) of portmanteau tests 

using 0.05 nominal level 

Error  
DG
P EM block H1 H5 H10 

Distribution size  +-, +,-  +-, +,-  +-,  +,- 
N(0, 1) A2 

GARCH
(1, 1) b=4 7.8 6.7 8.8 6.7 10.5 6.5 

   b=10 8.5 7.5 10.2 7.1 10.6 6.7 

   b=20 8.9 8.5 10.9 7.1 11.2 6.6 

 A1 
ARCH 

(2) b=4 5.5 6.5 8.0 6.3 15.6 7.3 

   b=10 3.8 6.7 9.3 6.5 16.1 7.6 

   b=20 5.9 7.0 10.2 6.8 17.3 7.8 

t(3) A2 
GARCH
(1, 1) b=4 7.8 6.2 8.1 6.8 9.2 6.3 

   b=10 8.3 6.5 9.2 6.9 10.4 6.5 

   b=20 8.3 6.8 11.4 6.2 10.8 9.1 

 A1 
ARCH 
(2) b=4 4.8 6.4 8.0 6.1 12.1 7.1 

   b=10 5.5 6.5 8.8 7.1 13.1 7.3 
      b=20 5.6 6.0 9.6 6.8 17.1 7.7 

Note: DGP: data generating process, EM: estimated 
model,+-,   and +,-  are Li-Mak and Mcleod-Li test, 

respectively. 
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