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Abstract: Cloud computing offers a powerful abstraction that 

provides a scalable, virtualized infrastructure as a service 

where the complexity of fine-grained resource management is 

hidden from the end-user.Running data analytics applications 

in the cloud on extremely large data sets is gaining traction as 

the underlying infrastructure can meet the extreme demands of 

scalability. Typically, these applications(e.g., business 

intelligence, surveillance video searches) leverage the 

MapReduce framework that can decompose a large 
computation into a set of smaller parallelizable computations. 

More often than not the underlying storage architecture for 

running a MapReduce application is based on an Internet-

scale filesystem, such as GFS, which does not provide a 

standard (POSIX) interface. In this paper we revisit the debate 

on the need of a new non-POSIX storage stack for cloud 

analytics and argue, based on an initial evaluation, that it can 

be built on traditional POSIX-based cluster filesystems. In the 

course of the evaluation, we compare the performance of a 

traditional cluster file system and a specialized Internet file 

system for a variety of workloads for both traditional and 
MapReduce-based applications. We present modifications to 

the cluster filesystem’s allocation and layout information to 

better support the requirements of data locality for analytics 

applications. We introduce the concept of a metablock that 

can enable the choice of a larger block granularity for 

MapReduce applications to coexist with a smaller block 

granularity required for traditional applications. We show that 

a cluster file system enhanced with metablocks can not only 

match the performance of specialized Internet file systems for 

MapReduce applications but also outperform them for 

traditional applications. 
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I. INTRODUCTION 

Cloud computing is a compelling new paradigm that provides 

a scalable, virtualized infrastructure as a service, 
thereby,enabling the end-user to exploit supercomputing 

power ondemand without investing in huge infrastructure and 

management costs. This potential for unlimited scaling has 

made possible a plethora of cloud-based data analytics 

applications that can process extremely large sets of data. 

These include newer applications for business intelligence, 

semantic web searches, video surveillance search, medical 

image analysis along with traditional data-intensive scientific 

applications such as satellite image pattern matching. A 

common feature in all these applications is that they are 

extremely parallel and their data access bandwidth 

requirements dominates other resource requirements. Such 

data-intensive applications where the computation can be 

easily decomposed into smaller parallel computations over a 
partitioned data set are a perfect match for Google’s 

MapReduce framework [5] that provides a simple 

programming model using map and reduce functions over 

key/value pairs that can be parallelized and executed on a 

large cluster of machines. More recently, an open source 

version of MapReduce developed under the Apache Hadoop 

project is becoming a popular platform for building cloud data 

analytics applications.The underlying architecture for cloud 

computing typically comprises of large distributed clusters of 

low-cost servers in concert with a server virtualization layer 

and parallel programming libraries. One of the key 
infrastructure elements of the cloud stack, for data analytics 

applications, is a storage layer designed to support the 

following features: (1) scalable – to store petabytes of data, (2) 

highly reliable – to handle frequently-occurring failures in 

large systems, (3) low-cost – to maintain the economics of 

cloud computing, and (4) efficient – to best utilize the 

compute, network and disk resources. 

The prevailing trend is to build the storage layer using an 
Internet scale filesystem such as Google’s GFS [6] and its 

numerous clones including HDFS [1] and Kosmix’s KFS [2]. 

The essential aspect of these filesystems is that they provide 

extreme scalability with reliability by striping and replicating 

the data in large chunks across the locally attached storage of 

the cluster servers, but simplify design and implementation by 

not providing a POSIX interface or consistency semantics. 

Thus, they work well for MapReduce applications but cannot 

support traditional applications. We refer to such MapReduce 

focused file systems as specialized in the rest of the paper. In 

this paper, we revisit the debate on the need of a new non-

POSIX storage stack for cloud analytics and argue, based on 
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an initial evaluation, that it can be built on traditional POSIX-

based cluster filesystems. Existing deployments of cluster file 

systems such as Lustre [7], PVFS [3], and GPFS [8] show us 

that they can be extremely scalable without being extremely 

expensive. Commercial cluster file systems can scale to 

thousands of nodes while supporting 100 GBps sequential 
throughput. Furthermore, these file systems can be configured 

using commodity parts for lower costs without the need for 

specialized SANs or enterprise-class storage. More 

importantly, these file systems can support traditional 

applications that rely on POSIX file API’s and provide a rich 

set of management tools. Since the cloud storage stack may be 

shared across different classes of applications it is prudent to 

rely on standard file interfaces and semantics that can also 

easily support MapReduce style applications instead of being 

locked in with a particular non-standard interface. 

To this end, we address the challenges posed by the access 

characteristics of cloud analytics applications to traditional 

cluster file systems. First, we observe that MapReduce-based 

applications can co-locate computation with data, thus 

reducing network usage. We present modifications to the 

cluster filesystem’s data allocation and data layout 

information to better support the requirements of data locality 

for analytics applications. Next, we observe that using large 

stripe unit sizes (or chunks) benefits MapReduce applications 
at the cost of other traditional workloads. To address that, we 

introduce a novel concept called metablock that can enable the 

choice of a larger block granularity for MapReduce 

applications to coexist with a smaller block granularity 

required for pre-fetching and disk accesses for traditional 

applications. While most analytics applications are read-

intensive, we also enable write affinity that can better the 

performance of storing intermediate results by writing data 

locally. We compare the performance of both an Internet scale 

filesystem (Hadoop’s HDFS) with a commercial cluster 

filesystem (IBM’s GPFS) over a variety of workloads. We 

show that a suitably optimized cluster filesystem can match 
the performance of HDFS for a MapReduce workload (ideal 

data access pattern for HDFS) while outperforming it for the 

data access patterns of traditional applications. Concurrent to 

our work, researchers at CMU have undertaken an effort to 

provide support for Hadoop’s MapReduce framework with 

PVFS [9]. It should be noted that we don’t report HDFS 

performance for traditional file benchmarks since these 

benchmarks cannot be run on HDFS (even running with a 

FUSE layer only provides a subset of the POSIX interface). 

II. CHALLENGES 

In this section, we evaluate the suitability of cluster file 

systems for cloud analytics applications. In our study, we 

selected for comparison the HDFS (Hadoop 18.1) filesystem 

which is the de-facto filesystem for Apache’s Hadoop project 

and IBM’s GPFS cluster filesystem which is widely deployed 

in high-performance computing sites and whose source was 

readily available to us for modification. The hardware 

configuration we used is based on the IBM iDataPlex modular 

hardware architecture consisting of a single iDataPlex system 
with 42 nodes in two racks, where each node has 2 quad-core 

2.2 GHz Intel Core2Duo CPUs, 8 GB RAM and 4 750 GB 

SATA drives. The nodes are connected by 2 Gigabit Ethernet 

switches (one per rack) with a 1 Gbps inter-switch link. The 

switch is Blade Network Technologies G8000 RackSwitch 

with 48 1 Gbps ports. The software running on each of these 

nodes in Linux 2.6.18 (CentOS 5.3) with two disks dedicated 

to the ext3 file system for storing intermediate results from 

computations and the remaining two disks dedicated to either 

GPFS or HDFS. We use 16 nodes in  the experiment with 8 

nodes on either rack. 

2.1 Function shipping 

The first drawback we found of cluster file systems is that 

they do not support shipping computation to data, a key 

feature exploited by the MapReduce class of applications [5]. 
In addition, the default block sizes are small which leads to a 

high task overhead for MapReduce applications that  schedule 

one task per data block. To evaluate the effect of function 

shipping, we measured performance of a simple MapReduce 

grep application with GPFS and HDFS. The input to the grep 

application is a 16 GB text file. The Hadoop implementation 

did not take advantage of any block location information in 

GPFS and function shipping was not enabled as a result. 

Furthermore, we used the default block size of 64 MB in 

HDFS, whereas for GPFS we used a block size of 2 MB with 

pre-fetching turned on by default. The lack of co-location of 

computation with data, and the use of small blocks, are the 
main reasons for the slow-down in GPFS. The table shows 

that GPFS transfers several orders of magnitude more data 

over the network. In fact, the total amount of data transferred 

exceeds the input data size because of the default pre-fetching 

in GPFS. The filesystem sees 2 MB of data being read 

sequentially and pre-fetches multiple data blocks to satisfy 

expected reads.However, the map task for the next block may 

be scheduled on another node and thus most of the pre-fetched 

data is not used. High Availability. Another key requirement 

for data intensive applications is the ability to mask the 

failures of commodity components. Programs should be able 
to recover and progress in the event of multiple node and disk 

failures. This requires the data to be replicated across multiple 

nodes such that in the event of a node or disk failure, the 

computation can be restarted on a different node. Specialized 

file systems are designed based on this philosophy, and are 

able to tolerate multiple failures in the infrastructure.In 

comparison, cluster file systems have traditionally been 
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designed to use underlying data protection techniques (such as 

RAID) in shared storage to circumvent failures. However, the 

clusters that run data intensive applications typically do not 

use shared storage due to concerns regarding cost and 

bandwidth limitations, and instead attach local storage to each 

node in the cluster. While cluster file systems will run on 
nodes with locally attached storage (without replication or 

shared storage), the file systems will suffer data loss in the 

event of node or disk failures.Some cluster file systems (like 

GPFS) do provide data and meta-data replication as a means 

to survive node failures. The mechanism of replication can 

vary across file systems.GPFS, for example, uses a single 

source replication model,with the writer forwarding copies to 

all replicas. Specializedfile systems, in contrast, use pipelined 

replication due to twoimportant considerations: first, the out-

bound bandwidth at the writer is not shared across multiple 

streams unlike the single-source model; second, write data can 

be pipelined in sequence from a node to the next node in the 
pipeline while the data is being written in the node. 

For traditional applications, cluster file systems allow 

the use of concurrent writers to the same file, enabling the 

sharing of write bandwidth across multiple nodes. MapReduce 

applications usually have multiple simultaneous writers (to 

different files), so we don’t expect the benefits of single-

source replication to be significant. We hypothesize that it is 
possible for cluster file systems to match the write 

performance of specialized file systems and validate that in 

the experimental evaluation in Sections 4 and 5. However, we 

are continuing to explore the use of pipelined replication in 

cluster file systems 

III. METABLOCKS 

Clearly, the grep application in the previous section 

demonstrated that running a MapReduce based application on 

a specialized file system has much better performance. In this 

section, we first attempt to mimic the basic properties of a 

specialized file system in GPFS and show the limitations of 

this approach. Next, we introduce the concept of a metablock, 

highlight the challenges in implementing the concept and 

demonstrate that GPFS is able to match the read performance 

of HDFS for MapReduce applications. 

Large blocks. One approach would be to mimic the properties 

of specialized file systems as attempted in [9]. To achieve this, 

we increase the block size to a large value (16 MB) so that the 

map task and disk seek overhead is reduced (as one map task 

is assigned to each data block and will fetch the entire block 

for processing). Furthermore, we expose GPFS’s block 

location information to the MapReduce layer in Hadoop so 

that tasks could be scheduled on the node where the data 
resides. In addition, we align the records in the input file with 

block boundaries, because a lack of alignment could result in 

the fetch of a large data block just to read a partial record that 

straddles a block boundary. Finally, we turned pre-fetching off 

to avoid the network traffic of transporting large data blocks. 

This particular version of GPFS is referred to as 

GPFS lb (GPFS with large blocks). To validate whether the 

approach would work, we use the same experimental setup as 

in Section 2 but with an input size of 80 GB. Figure 1 shows 

the relative performance of GPFS lb and HDFS in the 

experimental setup. The execution time of GPFS lb is almost 

the same as that of HDFS, but the network overheads of GPFS 

lb and HDFS are 2 GB and 1.4 GB of data transferred over the 

network during the duration of the experiment. 

However, the performance parity with HDFS comes 

at a price. Turning off pre-fetching and making the unit of 

caching  large in GPFS lb is detrimental to the performance of 

traditional filesystem workloads. Pre-fetching has been 

demonstrated to be extremely beneficial for sequential 

workloads and small block sizes are ideal for random 

workloads. To verify these effects, we compared unmodified 

GPFS to GPFS lb using the popular Bonnie filesystem 

benchmark [4]. The results of the experiment are shown in 
Table 2 and show a marked performance degradation for 

random workloads with the optimizations used in this section. 

There is an improvement for sequential workloads due to the 

large block size but the scale is not commensurate to the 

extent of the previously mentioned degradation. Bonnie also 

output other results that were consistent with the conclusions 

from the experiment. 

3.1 Metablocks: The results of the evaluation indicate an 
interesting tradeoff in optimizing for data intensive and 

traditional applications. While a large block size is needed to 

minimize seek overheads and create a reasonable number of 

tasks in MapReduce applications, a small block size is needed 

for effective cache management and to reduce the pre-fetch 

overhead particularly when application records could span 

multiple blocks on different disks. Ideally, we need the best of 

both worlds where both seeks and pre-fetching are optimized 

so that both MapReduce and traditional applications can be 

supported. If the cluster file system could expose a large node-

local block size to the MapReduce application and use a 

smaller block size for internal book-keeping, data transfer and 
pre-fetching, we can achieve the tradeoff. To better 

understand how we can manage this, we first describe the 

block allocation strategy used by GPFS. 

GPFS implements wide-striping across the file 

system where large files are divided into equal sized blocks, 

and consecutive blocks are placed on different disks in a 

round-robin fashion. An allocation map keeps track of all disk 
blocks in  the file system. To enable parallel updates to the 

allocation bit map, the map is divided into a large number of 
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lock-able allocation regions, with at least n regions for an n 

node system. 

Each region contains the allocation status of 1=nth of 

the disk blocks on every disk in the file system. This bitmap 

layout allows GPFS to allocate disk space properly striped 

across all disks by accessing only a single allocation region at 

a time. This approach minimizes lock conflicts because 

different nodes can allocate space from different regions. The 

allocation manager is responsible for keeping the free disk 

space statistics loosely- up-to-date across the cluster. To 

balance the block size selection tradeoff, we define a new 

logical construct called a metablock. A metablock is basically 

a consecutive set of blocks of a file that are allocated on the 

same disk. For example, 64 blocks of size 1 MB could be 
grouped into a 64 MB metablock. The GPFS round-robin 

block allocation is modified to use a metablock as the 

allocation granularity for the striping across the disks. 

Consequently, the block location map returned to the 

MapReduce application is also at the metablock granularity 

with the guarantee that all blocks in the metablock are in the 

same disk. Internally for all other pre-fetching and accesses, 

GPFS uses the normal block size granularity (which is 1 MB 

in our example).However there are two important challenges 

in implementing metablocks in GPFS – contiguity and 

fragmentation. First, it may not be possible to get a region 
with a set of blocks that is able to satisfy the contiguity 

requirement of a metablock.  

In such a situation, the node trying to allocate a 

metablock will need to request a region with a contiguous set 

of blocks that can be used to build a metablock. However, a 

request to the allocation manager may incur network latency 

and affect the performance of a MapReduce application. To 

remedy the situation, a node prefetches a pool of contiguous 
regions ahead of time and requests new regions when the 

cardinality of the pool drops below a threshold. This means 

that a node will always have a ready pool of contiguous 

regions and will not incur network latency in the path of an 

I/O request. Second, allocating contiguous sets of blocks can 

lead to fragmentation in the allocation map, with skews in the 

free space of the regions in the allocation map depending on 

the nature of requests to the allocation manager. To address 

this  issue, we relax the requirement for contiguity and only 

allocate sets of blocks which are contiguous only around 1 

MB.This level of contiguity is reasonable for maintaining 
optimal sequential read and write performance, provides node-

level locality, and minimizes the fragmentation problem. We 

evaluate the effectiveness of the metablock allocation scheme 

for the MapReduce grep application. The experimental setup 

and the input data size (80 GB) is identical to that in the 

previous experiment. Here, we experiment with HDFS (as 

described before) and GPFS enhanced with a 16 MB 

metablock size and 512 KB block size, and no prefetching. 

The results demonstrate that the execution time of 

GPFS with metablocks (referred to as GPFS mb) is within 

10% of that of HDFS, while the network traffic is 2 worse 

than that of HDFS1. Further, when we enabled controlled 

prefetching in GPFS (by specifying prefetch percentage), we 

incurred additional network traffic proportional to prefetch 

percentage. 

A possible cause for concern is that the metablock 
optimization, which changes GPFS’s allocation scheme, could 

have affected the performance of traditional applications. To 

confirm this hypothesis, we compared unmodified GPFS to 

GPFS mb. The results of the experiment are shown in Table 2 

and show no marked difference between the two file systems. 

The other results from Bonnie were also consistent with this 

result. Consequently, we conclude that metablocks do not hurt 

the performance of GPFS for traditional applications. It is 
important to note that this change to the allocation policy of 

the cluster file system does not impact the interface to the 

applications, and preserves the POSIX semantics provided by 

the unmodified system. 

IV. MAPREDUCE FRAMEWORK 

MapReduce is a framework for processing parallelizable 

problems across large datasets using a large number of 

computers (nodes), collectively referred to as a cluster (if all 

nodes are on the same local network and use similar 

hardware) or a grid (if the nodes are shared across 

geographically and administratively distributed systems, and 

use more heterogeneous hardware). Processing can occur on 

data stored either in a filesystem (unstructured) or in a 

database (structured). MapReduce can take advantage of the 

locality of data, processing it near the place it is stored in 
order to minimize communication overhead.A MapReduce 

framework (or system) is usually composed of three 

operations (or steps): 

Map: each worker node applies the map function to the local 

data, and writes the output to a temporary storage. A master 

node ensures that only one copy of redundant input data is 

processed. 

Shuffle: worker nodes redistribute data based on the output 

keys (produced by the map function), such that all data 

belonging to one key is located on the same worker node. 

Reduce: worker nodes now process each group of output data, 
per key, in parallel. 
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MapReduce allows for distributed processing of the 

map and reduction operations. Maps can be performed in 

parallel, provided that each mapping operation is independent 

of the others; in practice, this is limited by the number of 

independent data sources and/or the number of CPUs near 

each source. Similarly, a set of 'reducers' can perform the 
reduction phase, provided that all outputs of the map operation 

that share the same key are presented to the same reducer at 

the same time, or that the reduction function is associative. 

While this process can often appear inefficient compared to 

algorithms that are more sequential (because multiple 

instances of the reduction process must be run), MapReduce 

can be applied to significantly larger datasets than a single 

"commodity" server can handle – a large server farm can use 

MapReduce to sort a petabyte of data in only a few hours.[13] 

The parallelism also offers some possibility of recovering 

from partial failure of servers or storage during the operation: 

if one mapper or reducer fails, the work can be rescheduled – 
assuming the input data are still available.Another way to look 

at MapReduce is as a 5-step parallel and distributed 

computation: 

Prepare the Map() input – the "MapReduce system" 

designates Map processors, assigns the input key K1 that each 

processor would work on, and provides that processor with all 

the input data associated with that key.Run the user-provided 
Map() code – Map() is run exactly once for each K1 key, 

generating output organized by key K2."Shuffle" the Map 

output to the Reduce processors – the MapReduce system 

designates Reduce processors, assigns the K2 key each 

processor should work on, and provides that processor with all 

the Map-generated data associated with that key.Run the user-

provided Reduce() code – Reduce() is run exactly once for 

each K2 key produced by the Map step.Produce the final 

output – the MapReduce system collects all the Reduce 

output, and sorts it by K2 to produce the final outcome.These 

five steps can be logically thought of as running in sequence – 

each step starts only after the previous step is completed – 
although in practice they can be interleaved as long as the 

final result is not affected. 

In many situations, the input data might already be 

distributed ("sharded") among many different servers, in 

which case step 1 could sometimes be greatly simplified by 

assigning Map servers that would process the locally present 

input data. Similarly, step 3 could sometimes be sped up by 
assigning Reduce processors that are as close as possible to 

the Map-generated data they need to process. 

V. DATA ANALYTICS IN CLOUD COMPUTING 

Businesses have long used data analytics to help direct their 

strategy to maximize profits. Ideally data analytics helps 

eliminate much of the guesswork involved in trying to 

understand clients, instead systemically tracking data patterns 

to best construct business tactics and operations to minimize 

uncertainty. Not only does analytics determine what might 

attract new customers, often analytics recognizes existing 

patterns in data to help better serve existing customers, which 

is typically more cost effective than establishing new 
business. In an ever-changing business world subject to 

countless variants, analytics gives companies the edge in 

recognizing changing climates so they can take initiate 

appropriate action to stay competitive. Alongside analytics, 

cloud computing is also helping make business more effective 

and the consolidation of both clouds and analytics could help 

businesses store, interpret, and process their big data to better 

meet their clients’ needs.The best uses of data analytics in 

cloud computing are: 

5.1 Social Media: A popular use for cloud data analytics is 

compounding and interpreting social media activity. Before 

cloud drives became practical, it was difficult processing 

activity across various social media sites, especially if the data 

was stored on different servers. Cloud drives allow for the 

simultaneous examination of social media site data so results 

can be quickly quantified and time and attention allocated 

accordingly. 

5.1 Tracking Products: Long thought of as one of the kings 

of efficiency and forethought, it is no surprise Amazon.com 

uses data analytics on cloud drives to track products across 

their series warehouses and ship items anywhere as needed, 

regardless of items proximity to customers. Alongside 

Amazon’s use of cloud drives and remote analysis, they are 

also a leader in big data analysis services thanks to their 

Redshift initiative. Redshift gives smaller organizations many 

of the same analysis tools and storage capabilities as Amazon 

and acts as an information warehouse, preventing smaller 
businesses from having to spend money on extensive 

hardware.  

5.3 Tracking Preference: Over the last decade or so, Netflix 

has received a lot of attention for its DVD deliver service and 

the collection of movies hosted on their website. One of the 

highlights of their website is its movie recommendations, 

which tracks the movies users watch and recommends others 

they might enjoy, providing a service to clients while 
supporting the use of their product. All user information is 

remotely stored on cloud drives so users’ preferences do not 

change from computer to computer. Because Netflix retained 

all their users’ preferences and tastes in movies and television, 

they were able to create a television show that statistically 

appealed to a large portion of their audience based on their 

demonstrated taste. Thus in 2013, Netflix’s House of Cards 

became the most successful internet-television series ever, all 

thanks to their data analysis and information stored on clouds. 
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VI. CLOUD ANALYTICS SERVICES 

We can make fast, accurate data based decisions with 
analytics services.IBM Cloud provides data and AI services 

and tools. It features embedded intelligence capabilities 

through machine learning. The services provided by the cloud 

are the cloud is used to collaborate in teams across functions 

to access all trusted data and best-in-class technologies.IBM 

cloud use multiple analytics technologies to learn from the 

data and quickly get new answers for the business.IBM cloud 

used to deliver new insights to the business quickly and 

continuously improve them through rapid iteration. 

VI. FUTURE OPTIMIZATIONS 

The most important was trying to make writes as network 

efficient in GPFS as they are in HDFS (due to the first replica 

being written to the local node). We designed an extension to 

metablocks which has allowed GPFS to potentially match the 

performance of HDFS for writes as well. The extension 

involves adding an ioctl call to GPFS which lets an 
application specify the set of hosts to be used by the 

metablock allocation scheme for a particular file. This allows 

Hadoop applications to specify that the first copy of data 

should reside on the local host, which is the policy used by 

HDFS.This technique reduces the network traffic during 

writes, and significantly improves write performance (up to a 

factor of 5). True to our theme, we use GPFS with pre-

fetching enabled to benefit traditional as well as MapReduce 

workloads. This, however, exposes two interesting questions 

we are currently exploring: (1) Can we design an adaptive 

prefetching scheme such that it only consumes spare network 
bandwidth, and does not contend with critical network traffic? 

(2) Can any MapReduce workloads benefit from such 

prefetching, thereby outperforming HDFS?Similarly, we are 

also pursuing use cases of MapReduce workloads where 

GPFS, can in fact, outperform HDFS by leveraging features 

unique to a true file system such as ability to cope with client-

side caching, and simultaneously support random and 

sequential workloads. 

VII. CONCLUSION 

This paper evaluates the debate whether cluster file systems 

can potentially match the performance of Internet scale 

filesystems for cloud-based analytics applications. We 

examine the requirements of data intensive applications and 

show that cluster file systems are deficient in support for large 

block sizes and exposing block location information to 
MapReduce applications. To remedy this, we introduce the 

concept of metablocks that provide the illusion of large blocks 

for MapReduce applications, while providing the benefits of 

small blocks for traditional applications at the same time. We 

show that a cluster file system enhanced with metablocks can 

provide the best of both worlds performance. 
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