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1 INTRODUCTION

Recent research using matched student-teacher data has confirmed that teaching quality plays

an important role in producing student test score improvement in elementary and middle schools

(Rockoff [2004]; Hanushek et al. [2005]; Harris and Sass [2006]; Aaronson, Barrow, and Sander

[2007]; Kane, Rockoff, and Staiger [2008]; Lockwood and McCaffrey [2009]). Furthermore,

Chetty, Friedman, and Rockoff (2011) show that estimated teacher effects correspond to substan-

tial impacts on adult earnings and other long-run outcomes. These findings have intensified con-

cerns about the ability of underperforming schools to recruit and retain good teachers. One fears

that the students who are already saddled with the least supportive parents, the most dangerous

neighborhoods, and the most rundown schools will also be taught by the least effective teach-

ers. However, the existing research has struggled to demonstrate convincingly the extent to which

access to quality teaching is unequal.

This paper answers two questions: (1) How much does teaching quality vary across public

high schools and across teachers within high schools? (2) To what extent are students who are

otherwise disadvantaged more likely to attend the schools and the classes within schools with

ineffective teachers?

The key challenge to characterizing inequality in the allocation of teacher quality has been

isolating average teacher quality at a school from the effects of student sorting, principal qual-

ity, school facilities, and the surrounding neighborhood. Much of the early literature on teacher

value-added focused only on within-school variation in teacher quality.1 Other papers that do con-

sider differences in teacher quality across schools generally either estimate an upper bound on

the variance in teacher quality that also reflects differences in other school-level inputs,2 or suffer

from limited identifying variation (either small samples of schools or small samples of transferring

teachers connecting each school).3 In parallel work, Sass et al. (2010) do employ large samples of

elementary-level teachers and schools in both North Carolina and Florida in an effort to determine

whether high-poverty schools generally employ inferior teachers. However, they do not attempt

to identify average teacher quality separately from other school-level inputs. They do test for the

confounding influence of superior school-level inputs at low-poverty schools using differences in

estimated effectiveness for teachers who move between high- and low-poverty schools. However,

1. See e.g. Rockoff (2004); Rivkin, Hanushek, and Kain (2005).
2. See e.g. Hanushek et al. (2005).
3. See e.g. Aaronson, Barrow and Sander (2007).
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as demonstrated below, the validity of their test requires that an exogenous mobility condition

be met, which they do not verify.4 The only paper which provides a rigorous treatment of the

conditions necessary for identification and precise estimation of school average teacher quality is

parallel work by Kirabo Jackson (2013), whose focus is on teacher-school match effects rather

than the impact of teacher allocation on student performance inequality.

One strand of the literature investigates the extent to which schools serving disadvantaged stu-

dents hire teachers with inferior credentials.5 Another examines whether such schools dispro-

portionately lose their best teachers.6 The analysis below combines the effects of both types of

between-school teacher sorting along with within-school sorting into a comprehensive account of

the contribution of the existing mechanism of teacher allocation to disparities between the perfor-

mances of the least-prepared and best-prepared students. While other research has highlighted the

potential bias in estimates of teacher quality that stems from non-random classroom assignment7,

this paper is the first to examine the extent to which students’ classroom assignments contribute to

the variation across students in average test performance over a high school career.8 It also consid-

ers the impact of classroom assignments on the relative performance of disadvantaged students, to

the extent that they are systematically assigned to classes with their schools’ less effective teachers.

Furthermore, to this point nearly all of the attempts to examine the impact of teacher quality

have used elementary or middle school test scores.9 However, there are a number of advantages

to using high school performance data to study the impact of teaching quality. First, we still

have limited knowledge of how much the quality of teaching matters at the high school level.

While a few studies have considered teacher quality in a high school context, they have either

considered only Algebra 1 and English (e.g. Aaronson et al. [2007] and Jackson [2012]), or have

focused only on the impact of particular observable teacher credentials (e.g. Clotfelter, Ladd and

Vigdor [2007] and Xu, Hannaway, and Taylor [2011]). Second, teacher shortages tend to be far

more severe at the high school level than at the elementary school level, and the subject-specific

knowledge needed to be an effective teacher is greater. Thus, we have more reason to be concerned

4. Sass et al. (2010) also focus much of their effort on differences in the levels and marginal impacts of teacher
experience and other observable teacher credentials across low- and high-poverty school environments.

5. See e.g. Lankford, Loeb, and Wyckoff (2002); Steele, Murnane, and Willet (2010).
6. See e.g. Hanushek et al. (2005); Boyd et al. (2007); Jackson (2009).
7. See e.g. Clotfelter, Ladd, and Vigdor (2006); Rothstein (2010).
8. Koedel (2010) does examine the collective effect of high school teachers on the probability of graduating high

school.
9. These include: Hanushek et al. (2005); Boyd et al. (2007); Goldhaber, Gross, and Player (2007); Kane, Rockoff,

and Staiger (2008); Kane and Staiger (2008); Lockwood and McCaffrey (2009); Jackson (2013); Rothstein (2010);
and Sass et al. (2010).
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about positive assortative matching that places inferior teachers in schools with the least-supported

students. Third, high school teachers often teach four or five different classrooms each year, so

that teachers may teach over 100 students per year. Hence, teacher impacts can be more precisely

estimated.

I exploit administrative data from the North Carolina Education Research Data Center that per-

mits high school students in the universe of North Carolina public high schools to be matched to

their teachers and test scores in up to ten high school courses from 1997-2007. Such rich data

permit identification and estimation of a flexible education production function that features both

school-subject-specific intercepts and teacher-specific intercepts. Non-parametric identification of

the joint distribution of teacher quality and school quality stems from a large network of nearly

3,500 teacher transfers, coupled with testable exogenous mobility and conditional random assign-

ment assumptions. Such tests fail to reject the assumption of exogenous mobility, while tests for

conditional non-random assignment of students to teachers find evidence of limited dynamic track-

ing, though not enough to introduce large biases into estimates. Given estimates of each teacher’s

quality, I then characterize the way quality teaching is currently being allocated. The next two

paragraphs summarize my answers to the two questions posed above.

First, consistent with previous studies, I find considerable variation in teacher quality among

North Carolina public high school teachers: a one standard deviation increase in teacher quality

increases a student’s expected test score by .18 student test score standard deviations, enough to

move an average student from the 50th test score percentile to the 57th percentile. This estimate is

generally consistent across subjects and fields (except for English I, where the estimated standard

deviation in teacher quality is only about half as large). While 9% of the variation in student test

scores is between schools, nearly all of this can be attributed to student sorting. Only about 1% of

the total test score variation is potentially explainable by variation across schools in either school

quality or average teacher quality. In fact, attending a school whose average teacher quality is

one standard deviation better than the average school only increases expected test scores by .06

student test score standard deviations, holding other school-level inputs fixed. This is only enough

to move an average student from the 50th test score percentile to the 52nd percentile. Moreover,

variation in teacher experience across schools contributes almost nothing to across-school test

score gaps. My analysis of the allocation of teachers to classes within schools indicates that most

students tend to receive a mix of their schools’ good and bad teachers across the courses they take,

so that differences in quality among teachers from the same school only minimally contribute to
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differences in average test score performance across students over their high school careers.

Second, I find that students whose observable background would predict low achievement do

generally attend schools with lower average teacher quality, but that the magnitudes of these dif-

ferences are fairly modest. Similarly, I find that such disadvantaged students are only slightly more

likely to take classes with the relatively ineffective teachers at their schools. Overall, I find that

students among the bottom (top) decile of a regression index of student background are taught by

teachers who are, on average, at the 41st (57th) percentile of the value-added distribution. This

gap, combined with smaller gaps in effective teacher experience, accounts for 3.0% of the high

school performance gap between the top and bottom deciles.

The remainder of the paper is structured as follows. Section 2 presents the educational achieve-

ment production function I estimate. Section 3 discusses identification of the parameters of the

function. Section 4 describes the data. Section 5 presents the estimation strategy. Section 6

presents the estimated distributions of teacher quality and school average teacher quality, both

pooled across subjects and disaggregated by subject. Section 7 tests the conditional random as-

signment assumption and examines the model’s out-of-sample predictive power. Section 8 exam-

ines how quality teaching is allocated within schools and quantifies its impact on the distribution

of average test scores over students’ high school careers. Section 9 examines the contribution to

achievement inequality of the existing allocation of teachers to students. Section 10 interprets the

findings and concludes.

2 THE EDUCATION PRODUCTION FUNCTION

Let Yict represent the standardized test score of student i in course c in year t. To minimize

the impact of different choices of scales for exams taken in different subjects, Yict has been stan-

dardized relative to the appropriate course-year-specific state distribution. Let s(i, t) represent the

school that student i attended in year t, and let r(i, c, t) represent the teacher who taught student i in

course c at time t. I estimate the following specification of the production function for standardized

achievement:

Yict = Ỹt−1
i αc +Xictβc + δs(i,c,t)c + d(exr(i,c,t)t) + µr(i,c,t) + εict(1)
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The parameters of interest in this specification are those relevant to evaluating the contribution

of high school teacher inputs to student inequality: the set of persistent teacher qualities {µr} and

the profile of teacher growth with experience d(∗).
In recognition of research indicating considerable persistent unobserved heterogeneity in teach-

ers’ performance, each teacher is assumed to have his/her own baseline ability to impact test scores,

captured by µr(i,c,t). Note that a teacher’s ability to increase test scores is assumed to be common

across courses. This restriction is necessary for pooling the information about school quality ob-

tained from teachers of different subjects who transfer between schools. It will be discussed in

further detail in the next section.10 To the extent that a teacher’s quality is subject-specific (i.e.

the teacher is better at teaching Algebra 1 than Algebra 2), we can interpret our estimates of a

teacher’s quality as capturing the teacher’s average ability to increase test scores across the sub-

jects taught during the sample period, weighted by the frequency with which the teacher actually

taught those subjects. µr(i,c,t) is treated as a parameter to be estimated (one for each teacher), and

I will generally refer to µr(i,c,t) as teacher quality.

The function d(exr(i,c,t)t) captures predictable growth in teacher effectiveness with experi-

ence, exr(i,c,t)t. The function is assumed to be common across teachers and courses. In practice,

d(exr(i,c,t)t) will be flexibly parametrized using indicators for narrow ranges of experience.

δs(i,t)c captures the collective impact of all persistent inputs or conditions that are specific to the

school-course combination that affect student learning independently of teacher quality. It reflects

school-wide factors such as principal quality, safety of the neighborhood, and the quality of school

facilities, as well as school-course-specific inputs like the quality of the textbook the school uses

to teach a particular course. δs(i,t)c will be estimated using a full set of school-course fixed effects.

As discussed in Section 3, δs(i,t)c may also reflect non-random sorting of students into schools and

courses driven by unobserved student characteristics.

This specification for the contribution of school and teacher inputs to achievement offers a

couple of desirable features. First, the joint distribution of unobservable persistent teacher quality

(µ) and unobservable persistent school-course effects (δ) is left unrestricted, allowing for arbitrary

sorting of teachers into schools and courses within schools.

Second, persistent teacher skill is captured by a single dimension, which enables a tractable

discussion of the distribution of teacher quality across students. However, the ability of a teacher

10. Note that certification in North Carolina is specific to the field (i.e. math or science) and not to the course
(i.e. geometry or chemistry), suggesting that the state believes teachers can teach different courses within a field
interchangeably.
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to raise test scores is nonetheless allowed to vary over time as experience accumulates.

Ỹt−1
i is a vector of English and math test scores from 7th and 8th grade and their squares.

This vector of prior test scores is intended to serve as a proxy for the impact of prior inputs on

student test scores. Similarly, I use a vector of observable student, family, and classroom charac-

teristics, denoted Xict, as a proxy for current student, family, and peer inputs. Other research using

achievement in multiple subjects has exploited cross-course student fixed effects to control for stu-

dent selection into classrooms (e.g. Clotfelter, Ladd, and Vigdor (2010) or Xu, Hannaway, and

Taylor (2011)). The use of both teacher fixed effects and school-course fixed effects rendered this

approach computationally infeasible. Note, though, that the coefficients on both past test scores

and student and classroom characteristics are course-specific. This allows the weight given to an

8th grade math score to be greater for a high school math course than an English course, thus

allowing the pattern of past test scores to reveal comparative advantages of particular students for

particular subjects.11 Neither {βc} nor {αc} represent parameters of interest in this specification.

They are included as a control function to partially purge the remaining parameters of the model of

the impact of student sorting among teachers within a school. The impact of using proxies for the

contributions of current and past student, family, and peer inputs is discussed further in the next

section.

The error term, εict, is assumed to be composed of the sum of three components:

(2) εict = φs(i,t)t + νr(i,c,t)t + eict

The first error component, φs(i,t)t, represents the transient component of school inputs. It cap-

tures fluctuations in principal quality, crime waves, renovations of school facilities, etc. Idiosyn-

cratic shocks to school quality are assumed to be common to all courses within the school.

The second error component, νr(i,c,t)t, captures idiosyncratic year-specific deviations in a teacher’s

performance from the path defined by his/her baseline ability and experience. Such deviations

might be caused by fluctuations in teacher health, personal obligations, or even the extent to which

the standardized test in a given year happens to focus on the content the teacher covers most effec-

tively or intensively.

11. One possible concern is that the control set of demographics and past math and reading test scores may do a
poor job in predicting student preparation and talent in a particular subject. In practice, the standard deviation in the
regression index of observables Xictβc + Ỹ t−1

i αc is between .6 and .78 of a test score standard deviation across all
10 subjects. Overall, past test scores account for 57% of the variation in high school achievement, which suggests that
such scores are capturing the bulk of persistent student ability.
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Finally, eict captures both (1) the component of the combined impact of past and current student,

parent, and peer inputs that could not be predicted given the observable proxies, Ỹ t−1
i and Xict,

and (2) idiosyncratic student-course-specific measurement error in test scores (i.e., the extent to

which the student’s performance on the day of the exam fails to capture the student’s underlying

mastery of the content the exam is designed to test).

Standard errors are adjusted for the existence of both φs(i,t)t and νr(i,c,t)t, and tests of conditional

random assignment and endogenous teacher mobility presented in Section 6 and Section A5 of the

Web Appendix will address potential biases that could result from failure to explicitly model how

teacher assignments respond to φs(i,t)t, νr(i,c,t)t and eict.

3 IDENTIFICATION

As emphasized by Todd and Wolpin (2003) and Meghir and Rivkin (2010), among others,

endogenous choice of inputs by students, parents, and schools represents a formidable obstacle

to identifying the parameters of an education production function. The first potential issue is the

parents’ endogenous choice of school. In the likely scenario that there is some degree of positive

assortative matching between unobservably superior students and superior schools, the school-

subject fixed effect parameters, δ̂sc, will capture a combination of true school quality and student

quality, and will have no causal interpretation. Similarly, students’ endogenous choice of courses

(for those courses which are optional) implies that variation in δ̂sc among courses within a school

will likely reflect both true subject-specific variation in school quality (e.g. textbook choice) and

variation in average (unobserved) student quality among subjects. Importantly, however, since µr

is identified purely from comparisons among teachers while they are teaching in the same course

at the same school, student selection into schools and courses will not bias estimates of teacher

quality and the teacher experience profile. The school-course fixed effects thus effectively act as

a flexible control function that eliminates bias from any persistent patterns of student sorting into

schools and courses.

The second potential endogeneity problem is that students may not be randomly assigned to

teachers within schools, so that the average test scores of a given teacher’s students may partly re-

flect deviations in student inputs from school averages. Rothstein (2010), in particular, has argued

that this problem is severe at the elementary school level. In order to recover unbiased estimates of

persistent teacher quality, µr, we need the identity of a student’s teacher to provide no further infor-
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mation about the student’s unobservable current or prior inputs, given the information contained

in observable prior test scores, observable current inputs, and the school-course combination in

which the student is enrolled:

Assumption 1: Conditional Mean Independence of

Students’ Unobserved Inputs and Teacher Identity

E[εict|r(i, c, t) = r′, (s(i, t), c) = (s′, c′), Ỹt−1
i ,Xict] =

E[εict|(s(i, t), c) = (s′, c′), Ỹt−1
i ,Xict] ∀ r′ ∈ R, (s′, c′) ∈ SC,(3)

where εict is the composite error term defined in (2), R is the set of all teachers, and SC is the set

of all school-course combinations.

At the high school level, constructing students’ schedules is an onerous task performed by

schedule-making computer programs, making it difficult for principals to assign individual students

to teachers, and for students to target particular teachers. However, principals must still assign

teachers to difficulty levels, and students may be choosing whether to take an honors class based

on private information about deviations in their own expected inputs from past levels. Thus, the

validity of Assumption 1 depends critically on the extent to which the sorting of students into

levels is captured by prior test scores and observable current inputs. Indeed, research by Jackson

(2012) shows that failure to control for track may generate non-trivial bias in teacher value-added

estimates.

While the full set of observed inputs is presented when I discuss the data in Section 4, it is worth

noting here that I include in Xict the average prior test scores and average demographic character-

istics of the other students in student i’s class and an indicator for whether the class is designated

as honors/AP. These measures are likely to serve as effective proxies for the difficulty level of a

class, thereby mitigating bias stemming from violation of conditional random assignment of stu-

dents to teachers.12 Nonetheless, because dynamic sorting of students to teachers has been such a

major concern in the literature, I also test Assumption 1 directly in Section 7 using the procedures

introduced by Chetty et al. (2011) and Jackson (2012). The results of these tests do suggest some

limited dynamic sorting even after controlling for classroom characteristics and track; however, as

12. Note that the classroom characteristics and track indicators are allowed to have subject-specific coefficients,
which permits heterogeneity in sorting on student unobservables across subject-difficulty level combinations.
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I describe below, dynamic sorting of this magnitude is unlikely to be an important source of bias

for characterizing the contribution of teacher allocation to student achievement inequality.

A third potential endogeneity problem is also ruled out by Assumption 1. Even if students are

conditionally randomly assigned to teachers, students (and parents) may respond to the quality

of teaching they receive by adjusting their own current inputs. For example, a student saddled

with an ineffective teacher may be more likely to study the textbook harder or pay for tutoring

services. Indeed, Pop-Eleches and Urquiola (2011) document that parental effort toward student

achievement in Romania declines when a student obtains access to a better school environment.

Such input compensation would cause estimates of teacher quality to be muted in magnitude, and

the variance in teacher quality to be underestimated.13 However, we may have less reason to be

concerned that parental inputs compensate for teacher quality at the high school level than at the

elementary and middle school levels. For example, if a first grade teacher fails to teach a child to

read, the child’s parents can probably teach the child to read at home. In contrast, most parents

are likely to be far less comfortable explaining physics concepts. In this case, their only option

would be to pay for costly professional tutoring. Furthermore, since such input compensation is

caused by the teacher’s quality, for some questions the parameter of interest is the raw teacher

contribution combined with the average compensation component of eict for the teacher.14 We

could formalize this by decomposing eict = e1ict + e2ict, where e1ict represents the component of

student/parent inputs that would be delivered regardless of the teacher assigned, and e2ict represents

the component of student/parent inputs that is contingent on the identity of the student’s teacher.

Then we could weaken Assumption 2 above by replacing εict with ε1ict, where ε1ict contains all

the components of εict except e2ict, and reinterpret the estimated teacher effects as capturing µ̃r′ =

µr′ + E[e2ict|r(i, c, t) = r′].

A fourth potential endogeneity problem stems from the possibility that teachers choose the

effort they make or the content they teach. I do not explicitly model teacher effort. Instead, I

13. The assumption of additive separability of teacher inputs from student inputs implies that the two are substitutes.
However, if in fact teacher inputs and student inputs are complements, students might increase their inputs in response
to a particularly effective teacher, and the bias would be reversed.

14. For example, if we were interested in predicting what would happen to the relative achievement of two class-
rooms of students if we swapped their teachers, then the estimates that include input compensation might be ap-
propriate. If, on the other hand, we were interested in predicting the performance of the same two teachers in an
alternative school environment where students had very little time at home, then we might prefer estimates that ex-
clude input compensation, since the degree of input compensation among a teacher’s students is less likely to remain
stable across very different contexts. Previous versions of this paper featured specifications with parameters capturing
school-average sensitivity to teacher quality that made estimated teacher effects robust to variation in input compensa-
tion across schools, and yielded very similar results for the contribution of teacher allocation to student performance
inequality.
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assume that teachers do not systematically adjust effort in response to school, student, or peer

inputs. With this assumption, persistent differences in effort across teachers will simply represent

an important component of persistent quality µr, and idiosyncratic deviations in effort from a

teacher’s norm will be captured by νrt. A related concern is that persistent differences in teacher

performance may be reflecting the extent to which teachers adhere to the state curriculum rather

than differences in ability to foster learning. Fortunately, several aspects of the context surrounding

the data help allay these fears.15

Notice that since the school-year idiosyncratic deviation φs(i,t)t is a component of εi,c,t, As-

sumption 1 also rules out the possibility that certain teachers teach a disproportionate fraction of

their career during the period in which their school is experiencing its relatively ineffective years

compared to its full-sample average quality. Clearly, some teachers will happen to teach more in

their schools’ down years, so that their relative quality will be underestimated compared to the

school average. If disadvantaged subpopulations of students are disproportionately present during

their schools’ less effective years, I could underestimate the quality of the teachers they receive.

Consequently, in Section 8 I explicitly account for the set of teachers that were actually present

when examining whether such subpopulations are systematically being assigned their schools’ rel-

atively ineffective teachers.

Note, however, that the average value of φst experienced among all teachers ever teaching at

the school in the sample is zero by construction, since the δsc parameters will capture the mean

quality of the school (and course). Thus, if the set of teachers who transfer across schools is

not systematically related to year-specific deviations in average quality of the schools they leave or

arrive at, then if there are enough transferrers connecting a given school to the network, the average

bias among transferring teachers will tend to zero, and the estimate of the average quality of the

school’s teachers will be unbiased.

Indeed, the same point can be made with respect to non-random sorting of students to teachers

within schools. The average bias in µ̂r among all teachers teaching the same course at the same

school must be zero by construction, since school-course averages of unobserved student-level in-

puts will be captured by the school-course-specific intercept, δsc, and every student must have been

15. First, in recent years No Child Left Behind legislation has put pressure on principals to ensure that teachers
teach the standard curriculum, since schools that fail to meet state standards are subject to sanctions and possible
closure. Second, the North Carolina end-of-course exam scores I use as outcome measures must comprise 25% of
the student’s year-end grade in a given subject, so that parents are likely to complain about teachers that ignore the
standard curriculum. Finally, during the sample period in North Carolina, teacher bonuses of up to $1,500 were linked
to average test scores of the students in the school at which they teach. Thus, teachers are under considerable pressure
to teach the tested material.
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taught by some teacher. Consequently, if transfer decisions are unrelated to the bias in transferring

teachers’ quality estimates,16 violations of Assumption 1 driven by non-random student sorting

within schools will not bias estimates of average teacher quality.

More generally, if we are only interested in consistently estimating average teacher quality at

each school (or, more specifically, each school-course combination), we can replace Assumption 1

with a weaker exogenous mobility condition.

Assumption 2: Exogenous Mobility

E[εict|r(i, c, t) ∈ R̃(s′,c′), (s(i, t), c) = (s′, c′), Ỹt−1
i ,Xict]

= E[εict|(s(i, t), c) = (s′, c′), Ỹt−1
i ,Xict] ∀ (s′, c′) ∈ SC

E[εict|r(i, c, t) ∈ R̃(s′,c′), (s(i, t), c) ∈ SC \ (s′, c′), Ỹt−1
i ,Xict]

= E[εict|(s(i, t), c) ∈ SC \ (s′, c′), Ỹt−1
i ,Xict] ∀ (s′, c′) ∈ SC,(4)

where SC denotes the set of all school-course combinations, and R̃(s,c) denotes the set of teachers

observed transferring either into or out of school-course combination (s, c). The first condition in

Assumption 2 states that teachers who transfer into or out of any particular school-course combina-

tion (s′, c′) on average do not teach students with above or below average unobserved inputs while

at (s′, c′), conditional on the identity of the school, the course, and the level of observable student

inputs. The second condition states that the same set of transferring teachers are also not dispro-

portionately assigned to students with above or below average unobserved inputs while teaching at

the alternative school-course combination they taught at before or after (s′, c′), conditional on the

identity of the alternative school and course, and the level of observable student inputs.

The intuition behind the need for exogenous mobility is as follows. A teacher’s persistent

quality, µr, can be identified relative to the other teachers teaching her course at her school by

comparing the average residuals of her students’ test scores with those of the other teachers, after

removing the predicted impact of student- and classroom-level inputs.17 If a teacher has taught at

multiple schools, then she can be placed in the distribution of within-school teacher quality in both

schools. Likewise, a teacher who has taught multiple subjects within a school can be placed in the

16. The two would be related, for example, if teachers who consistently received unobservably bad students at a
school became disgruntled and thus more inclined to transfer.

17. This assumes that all teachers have taught a large number of students, so that sampling error from measurement
error and average levels of unobserved student-level inputs is minimal.
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distribution of within-school teacher quality in both subjects. With only one teacher linking schools

(subjects), we would need to assume that her ability to increase test scores is the same across the

two schools (subjects) in order to infer relative school (subject) quality from her students’ relative

performance at the two schools (subjects). Once relative school and subject qualities are known,

we can shift the within-school distributions of average student residuals appropriately to place the

performance of teachers from all school-subject combinations in a neutral teaching environment.

However, with many linking teachers, relative school quality is identified by differences in the

average performance of transferring teachers across the two schools. Similarly, a school’s com-

parative advantange in a particular subject is identified by differences in the average performance

of transferring teachers across the two subjects. Thus, Assumption 2 only requires that transfer-

ring teachers are not systematically more productive at one of the schools (or subjects), so that

the difference in the average performance of students taught by transferring teachers still identifies

relative school (or subject) quality.

Note that several obvious forms of systematic teacher mobility do not constitute violations of

Assumption 2. These include systematic transfer of teachers to better schools (or to a school’s

relatively good subjects), increased probability of transfer among inferior or superior teachers, or

a combination of relatively good teachers being disproportionately likely to move to good schools.

This is because the average performance among students taught by transferring teachers at each

school and subject under such mechanisms is predictable given knowledge of the teacher and

school-subject combination. Knowing that the teacher who teaches a given student transferred to

the school or the subject does not provide any further information about any component of the

composite error in these contexts.

There are, however, several mechanisms by which the exogenous mobility assumption could be

violated. Substituting the components in (2) for εict in (4), we observe that a systematic relationship

between a teacher’s transfer decision and any of these components would violate Assumption 2. In

Web Appendix Section A5, I discuss an array of such mechanisms, and I devise and perform tests

for the two that are most plausible.

The first mechanism, related to φst, is that teachers systematically transfer toward or away

from schools that are about to get better or worse, relative to the school’s average quality over the

sample period. This might occur, for example, if teachers follow a particularly effective principal

when he or she moves from school to school. I test for this mechanism by estimating a model

with school-year fixed effects and observing whether schools are disproportionately likely to have
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their relatively bad years after transferrers leave or their relatively good years after new transferrers

arrive. I do not find evidence that teachers are fleeing declining schools or are flocking to improving

schools (see Web Appendix Section A5.1).

The second mechanism, related to the findings of Jackson (2013), is that teachers may sys-

tematically transfer toward schools or courses where they are idiosyncratically well-matched. The

model presented in Section 2 does not allow for school-teacher or subject-teacher match effects.

However, a likelihood ratio test rejects the hypothesis that variation in teacher quality can fully

account for the variation in teacher-school match effects, suggesting this scenario could be a con-

cern. For example, a teacher who is adept at using classroom technology may move to a school

that provides high-tech classrooms. However, I test for movement toward better school-teacher

matches using a subset of schools exhibiting balanced mobility (offsetting flows of teacher trans-

fers in and out), where movement toward better matches is unlikely to bias parameter estimates

even if it occurs (see Web Appendix Section A5.2 for further intuition). I find no evidence of such

targeted mobility.18

Finally, Kramarz, Machin, and Ouazad (2008) show that in a model with both student and

school fixed effects, identification also requires that schools and student transfers form a connected

graph (with schools as vertices and transferring students as edges). My specification is isomorphic

to that of Kramarz, Machin and Ouazad (2008), except that teachers take the place of students,

and school-course combinations take the place of schools. Hence, in addition to Assumption 1 (or

Assumption 2), identification requires that school-course combinations and teacher transfers form

a connected graph, meaning that any two school-course combinations in the network can be linked

by some chain of transferring teachers. The existence of a large number of teacher transfers across

schools, combined with a substantial fraction of teachers who teach multiple courses or switch

courses during the sample, ensures that this rank condition is easily satisfied for a large network

of teachers and school-course combinations in the data. Discussion of the connectedness of the

18. In theory, similar concerns could be raised about violations of Assumption 2 among teachers switching subjects
within schools. For example, if the only U.S. History teachers observed teaching English 1 at a given school are
those pressed into service after a rash of quits among English teachers, these teachers might perform badly relative to
the remaining English teachers (compared to their performance among other U.S. History teachers). In this case, we
might overestimate the average quality of English teachers at the school and underestimate the average quality of U.S.
History teachers (the school-course quality estimates (δ̂sc) for English and U.S. History would be underestimated and
overestimated, respectively, so that average test scores in each subject would be fit by the model). In practice, such
violations, even if they were to exist, are likely to have minimal impact on estimates of the importance of the allocation
of teacher quality for explaining student achievement disparities. First, many such episodes will be offset by teachers
switching subjects in the opposite direction (i.e. English teachers being pressed into service in U.S. History in other
years). Second, and more importantly, since students are required to take nearly all of these subjects, any biases in the
relative quality of teachers teaching different subjects within the school will sum to zero for nearly every student.
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network of school-course combinations takes place in Section 4.2. As I will discuss presently, the

extent of teacher mobility is important for the precision of parameter estimates.

4 DATA

4.1. Overview

The data, provided by the North Carolina Education Research Data Center, consist of the stan-

dardized test scores of all public high school students in North Carolina from 1997-2007 in up to

ten subjects, along with a host of student, teacher, and school characteristics.19 During the sample

period, North Carolina offered a standard curriculum with mandatory end-of-course tests for the

following subjects: English 1, Econ/Law/Politics, U.S. History, Algebra 1, Algebra 2, Geometry,

Biology, Chemistry, Physics, and Physical Science.20

The data contain a large number of observable current student21 and peer22 inputs that together

comprise Xict. Observed prior inputs, Ỹt−1
i , include the student’s test scores in 7th and 8th grade

math and English (standardized by subject-year), along with squares of these test scores, and in-

dicators for missing test scores. Observations were dropped from the sample if fewer than two

prior test scores existed. Recall from above that the coefficient associated with each characteristic

is allowed to vary with the subject being tested, so that, for example, the impact of a student’s 8th

grade math test score is allowed to depend on whether the subject currently tested is Algebra 1 or

English 1.

To allow a flexible experience profile, teacher experience indicators are created for 6 cells: 0

years of experience, 1 year, 2 years, 3-5 years, 6-11 years, and 12 or more years of experience.

d(x) is assumed to equal d(x′) for x, x′ in the same experience cell.

19. I also use data from 2008-2009 for out-of-sample tests in Section 7.
20. Tests in Physics, Geometry, Chemistry, Physical Science, and Algebra 2 were not introduced until 1999. Also,

Econ/Law/Politics was discontinued in 2004, and replaced by Civics and Economics in 2006. U.S. History was not
tested in 2004 or 2005.

21. Observable student inputs include the student’s race and gender; indicators for parents’ education categories,
limited English proficiency status, learning disabilities in writing, math, and reading, whether the student is gifted in
math or English, grade level (9-12), whether the student is old for his grade, and whether the student is taking the
course a year later than his peers at the school. They also include indicators for whether the student intends to attend
community college, attend four-year college, or work after high school, as well as indicators for participation in a
sport, vocational club, academic club; service club, or arts club.

22. Observable peer/classroom inputs consist of class size, track (honors vs. non-honors), the fraction of the class
in each race-gender cell, the fraction of the class in each grade level, the number of gifted students in the class, and
class averages of 7th and 8th grade math and reading test scores and their squares.
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My empirical strategy requires that student test scores be matched to the teacher who taught

the class. Unfortunately, the raw data do not provide an exact match between a test score and

the identity of the teacher that taught the class. However, unique classrooms of test scores can

be constructed in the test-score-level data, and a list of the classes taught by each teacher in each

semester is available in the teacher-level data. Thus, I use a fuzzy matching algorithm to match

each teacher-class to a student-class. Since the grade level, race, and gender of each student in

the student-class is observed, grade totals and race-gender cell totals can be constructed for the

classes in the student-level data and compared to the corresponding grade totals and race-gender

cell totals of the classes in the teacher-level data.23 Test scores from student-level classes whose

race, gender, and grade distributions do not closely approximate any teacher-level class in that

course in that school are excluded from the analysis that follows. Web Appendix Section A1

describes the implementation of the fuzzy matching algorithm in detail, and provides summary

statistics regarding its efficacy. The dataset contains 4.9 million test scores associated with 23,000

teachers in 1,000 public high schools (with 10,000 potential school-subject combinations).

4.2. Connectedness of Schools and Subjects

Recall that identification requires a connected graph of school-course combinations and trans-

ferring teachers. Furthermore, estimates are more precise if there are many transferring teachers

and if the number of students per teacher is large. Fortunately, the long panel features nearly 3,500

teachers who transfer across schools, and the observed teachers have often taught hundreds of stu-

dents. I limited the sample of teachers to those who taught at least 20 students. To restrict attention

to schools where there is sufficient mobility to plausibly distinguish school and teacher contribu-

tions, I impose the following restrictions: (1) each school feature at least 5 teacher transfers, and

(2) the final network of school-courses must be two-edge connected, so that any two school-course

combinations can be connected using two distinct chains of transfers that do not share any links.24

These restrictions leave 386 remaining schools and 3,357 remaining school-subject combinations.

In fact, the majority of the 386 schools are quite well-connected: 266 of them are connected to

the rest of the network by at least 10 transfers. Figure 1a shows the distribution across schools

of the number of connecting transfers. Figure 1b shows the distribution of exams administered

23. Students seem to skip ahead or fall behind their grade in one subject fairly often, so that students representing
different grades are often observed in the same class.

24. A transferring teacher is defined for these purposes as one who has taught at least 15 students at two different
schools.

15



across teachers in the sample. Figure 1c shows the number of students taught by each transferring

teacher at the school at which he/she taught fewer students. The latter figure illustrates that while

some teachers have only taught one class at a second school, many others have taught at least

100 students at multiple schools. Table 1 presents a transition matrix describing the patterns of

mobility across schools serving different parts of the student background distribution. The rows

and columns represent quintiles of the school-level distribution of average student background (as

measured by the regression index Xiβ + Ỹiα). The top entry in the (i, j)-th cell displays the num-

ber of teachers observed teaching in a school in the i-th quintile who moved to a school in the j-th

quintile. The bottom entry displays the fraction of teachers ever observed teaching at a school in

the i-th quintile who are also observed moving to a school in the j-th quintile. The table shows that

while teachers disproportionately move among schools serving similar student populations, there

is nonetheless a considerable flow of teachers between schools serving the best- and least-prepared

students.25 Web Appendix Table A3 presents an analogous transition matrix describing the consid-

erable mobility of teachers across subjects. The table reveals that a large fraction of teachers teach

multiple courses within their license (i.e. 2-3 distinct science courses, or 2-3 distinct math courses),

and that a substantial number even teach courses in multiple fields (e.g. math and history). The fact

that switching subjects is so widespread implies that the precision of my teacher quality estimates

at a particular school is limited primarily by how well-connected different schools are rather than

by the connectedness of subjects within schools.

After dropping students with missing test scores, teachers who only taught at unconnected

school-subject combinations, and test scores from classes that were unmatchable, the data still

contain 4,016,964 test scores from 822,830 students and 19,826 teachers. Web Appendix Section

A2 discusses issues surrounding the choice of test score scale. The raw test scores display no

evidence of floor or ceiling effects, and results are robust to applying moderate convex and concave

monotonic transformations to the raw scores before standardizing.

25. 37% transfers in the dataset are among schools within the same district. Most districts have a formal procedure
by which teachers can request a transfer to a vacancy at another school within the district, so that some of the within-
district moves are voluntary. However, superintendents generally reserve the right to trigger involuntary transfers in
order to maintain a balance of experience across schools. The data do not indicate whether a transfer was voluntary
or not. Because my tests of the exogenous mobility assumption (such as movement away from declining schools or
movement toward better school matches) will detect violations regardless of whether the move is triggered by the
teacher or the district, I do not further investigate who makes the decision to move. Transfers across districts, like
most employer changes, require the mutual agreement of the teacher and the new district.
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5 ESTIMATION

From Section 2, the model to be estimated is:

Yict = Ỹi
t−1

αc +Xictβc + δsc + d(exrt) + µr + εict(5)

One common approach to estimation taken in the literature is the two-step Empirical Bayes

method exemplified by Kane and Staiger (2008). Test scores are regressed on a vector of student

observable characteristics in the first stage, then average residuals are formed for each teacher. In

the second stage, the year-to-year within-teacher covariance in average student residuals is used as

an estimate of the true variance in teacher quality, and each teacher’s average residuals are shrunk

toward zero using the reliability ratio (where the estimated true variance is used as the signal).

However, a key disadvantage of the two-step residual method is that any covariance between stu-

dent observable characteristics and true teacher quality will necessary load onto the student-level

coefficients estimated in the first stage. To the extent that observably superior students dispropor-

tionately select superior teachers or good teachers are rewarded with observably superior students,

the true variance in teacher quality will be understated.

Because the extent to which already advantaged students receive higher quality teachers is a

key focus of the paper, I instead estimate equation (5) in one step via ordinary least squares. While

there are over four million test score observations and over twenty thousand parameters, the ex-

treme sparsity of the design matrices makes computation feasible. Between-teacher differences

in mean test scores can always be fit perfectly with a full set of teacher effects for any choice

of student-level characteristics, school-course effects, and experience effects. Consequently, least

squares residuals are minimized by choosing the coefficients on student-level and classroom-level

observable characteristics (β̂ and α̂) to best fit the within-teacher variation in performance. Simi-

larly, experience effects will adjust to fit the within-teacher growth in performance over time, and

school-course effects will adjust to fit the variation in performance across school-subject combina-

tions of teachers who teach in multiple schools or subjects. The teacher effects (µ̂) then adjust to fit

the between-teacher variation that remains after removing the predicted regression index of student

performance, Xiβ̂ + Ỹiα̂ + δ̂sc + d̂(exprt). Because the student-level coefficients, the experience

effects, and the school-course effects are only identified using within-teacher variation, they will

not reflect any covariance between teacher quality and average student quality, average experience,
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or average school-course quality.26 Thus, the estimated teacher effects will capture the full impact

of the teacher’s quality, rather than merely the component of teacher quality that could not have

been predicted on the basis of student composition, teacher experience, or the school-course in

which a teacher teaches.

Analytical asymptotic standard errors are calculated for all parameters. In order to make esti-

mation of the variance-covariance matrix computationally feasible, the calculation is broken down

into several pieces and a parametric error components form is imposed in which there are idiosyn-

cratic error components at the test, teacher-year and school-year levels (as specified in (2)). Web

Appendix Section A3 describes the details of standard error computation.

Given a limited number of teachers and a limited number of students per teacher, the variance

in the estimated distribution of persistent teacher quality, V ar(µ̂), will reflect both true variation

in µ and variation due to test score measurement error and the other unobserved error components

that make up εict. To distill the true variance in teacher quality, I follow the approach of Aaronson,

Barrow, and Sander (2007). I first use the distribution of fixed effect standard errors to estimate the

error variance. Then, I subtract the error variance from the estimated fixed effect variance to obtain

an estimate of the true variance in µr, under the assumption that the true teacher quality and the

sampling error are independent. I use the same technique to estimate the true variance in school

average teacher quality µs. Web Appendix Section A4 describes the procedure in detail.

6 RESULTS

6.1. Variance Decomposition

Table 2 contains a decomposition of the variance in student test scores into within-school and

between-school components. While only 8.8% of the test score variance is between schools (Row

6, Column 3), the difference in average test scores between a school at the 5th percentile and one

at the 95th percentile is nearly a full student-level standard deviation (32nd percentile vs. 68th

percentile of the test score distribution). Thus, substantial performance disparities across schools

do exist that require explanation.

A closer look at Table 2, however, reveals that average teacher quality and even school quality

26. A symmetric argument made from the perspective of the school-subject effects implies that the teacher effects
will be identified using only comparisons within school-subject combinations, with multi-subject teachers acting as
bridges to compare teachers from different school-subject combinations, as suggested in Section 3.
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in fact have very limited scope to explain average test score differences across schools. Rows 2

and 5 show that the lion’s share (90.7%) of the total variance in test scores is due to differences

in observable and unobservable student and classroom characteristics and test score measurement

error, while Row 7 shows that observable differences in student and classroom characteristics ex-

plain three-quarters of the between-school variance. Row 3 indicates that unexplained variation

between school-teacher-course-experience category cells accounts for 5 percent of the total vari-

ance, suggesting that there is still scope for teacher quality to matter. However, Row 8, labeled

“Total School Quality,” shows that only 1 percent of the total variance in student test scores is po-

tentially explainable by differences across schools in school quality, average teacher quality, and

average teacher experience.

While this may seem surprisingly small, two points are worth noting. First, considerable dif-

ferences may exist in the quality of the elementary and middle schools attended by students, but

these differences will be reflected in differences in average prior test scores α̂. High school may

be too late to close test score gaps built up through years of unequal family, school, and teacher

inputs. Second, comparisons of variances exacerbate differences in the relative importance of var-

ious inputs, since variances are measured in units comparable in magnitude to squares of student

test scores. Although differences in δs + µs + d(ex)s across schools explain only 1 percent of the

variance, moving from the 5th percentile school to the 95th percentile school in this distribution

increases test scores by .33 student-level standard deviations, enough to shift an average student

from the 43th percentile to the 57th test score percentile.

6.2. Teacher Experience

The estimated values of the teacher experience profile, d̂(ex), are presented in Table 3. First-

year teachers are on average .060 student-level standard deviations worse than second-year teach-

ers, .088 worse than third year teachers, .105 worse than teachers in their fourth through sixth years,

.108 worse than teachers in their seventh through twelfth years, and .104 worse than teachers with

more than twelve years of experience. This experience profile matches up fairly well with existing

estimates from the literature (see Rivkin et al. [2005] or Clotfelter, Ladd, and Vigdor [2007]).

These numbers, combined with the large differences in average teacher experience across

schools,27 may give the false impression that variation in average teacher experience across schools

27. Teachers at a school at the 5th percentile of the average teacher experience distribution have on average eight
fewer years of experience than do teachers at a school at the 95th percentile.
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has the potential to explain the remaining between-school variation in student test scores. How-

ever, the teacher experience differentials across schools are driven in part by differences in the

fraction of extremely experienced teachers, for whom the extra few years of experience have little

marginal effect on their performance. To account for this, I calculate the average value of effective

experience for each school, d(ex)s, weighting each teacher-year within the school by the num-

ber of students the teacher taught at that school in that year. Panel B of Table 3 displays various

quantiles of the distribution of d(ex)s. The standard deviation is just .008, and even at the school

whose value of d(ex)s puts it at the 1st quantile among schools, the average effective experience

of teachers only decreases the average student test score by .020 student level standard deviations,

relative to the mean school. This corresponds to a move from the 50th to the 49th percentile for an

average student. Simply put, while the first few years of experience do have a significant impact on

teacher effectiveness, differences in average teacher experience do not explain the test score gaps

we observe across schools in North Carolina. These results may not be surprising when one con-

siders that many school districts have explicit policies allowing involuntary transfers of teachers

when one school has too few experienced teachers.

6.3. The True Variance of Teacher Quality

The first row of Table 4 display the raw variances, true variances, and true standard deviations

of teacher quality (µr) and school average teacher quality (µs) obtained by pooling across all

subjects. These estimates weigh teachers by the number of students taught in the sample, so the

standard deviation reported is the standard deviation in teacher quality experienced by randomly

selected student-course combinations. While the standard deviation of µ̂r is .212, correcting for

sampling error leaves an estimate of the true standard deviation in teacher quality of .178 student-

level standard deviations. An average student who is assigned a teacher at the 75th percentile of

teacher quality can expect to move from the 50th percentile to the 55th percentile, while one who

is assigned a teacher at the 95th percentile can expect to move up to the 62th percentile, assuming

test scores are distributed normally.28 This is substantial, and generally in line with most estimates

found in the literature at the elementary and middle school level.29

I calculate average teacher quality at each school s, denoted µ̂s, by weighting each teacher by

28. This assumption is supported by plots of the data. See Supplementary Figures 1-3
29. Hanushek et al. (2005), for example, find a within-school standard deviation of .22 test score standard deviations.

For Kane and Staiger (2008), the standard deviation for English teachers is .17, while the standard deviation for math
teachers is .22.
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the number of students he/she taught at the school. Applying an analogous measurement error

correction, I obtain an estimate of the true between-school standard deviation of teacher quality of

.059.30 The estimate indicates that attending a school whose average teacher quality is in the 75th

(95th) percentile moves an average student from the 50th percentile to the 52nd (54th) percentile

of the state test score distribution. So while average teacher quality does not vary dramatically

across schools, attending a school whose mean teacher quality is well above average can still put

a student at a meaningful advantage. Clearly, though, eliminating differences in average teacher

quality across high schools would not come close to eliminating test score gaps across schools.

Rows 2-11 of Table 4 present estimates of the variance in teacher quality by subject. By and

large, the estimated true standard deviation of teacher quality is fairly consistent across subjects.

Specifically, the estimated true standard deviation of teacher quality is .18 in Algebra 1, .18 in

Algebra 2, .17 in Geometry, .17 in Biology, .22 in Chemistry, .22 in Physical Science, .20 in

Physics, .17 in Econ/Law/Politics, .20 in U.S. History, and only .09 in English. Note, however,

that I cannot distinguish the true variation in pedogogical skill from the ability of the test to detect

such skill.

Note that much more of the variation in subject-specific teacher quality is between schools than

in the estimates that pool across subjects. In other words, much of the between-school variation in

teacher quality within each subject seems to be idiosyncratic rather than common to all subjects at

the school.

7 TESTING FOR THE EXISTENCE OF DYNAMIC TRACKING

Dynamic tracking of students to teachers represents a key threat to the validity of teacher quality

estimates. While my estimates of the variation in average teacher quality across schools should not

be sensitive to violations of Assumption 1,31 estimates of the within-school student-level variation

in teacher quality over the span of a high school career could be threatened. Thus, I adapt the

30. I use the delta method to account for correlation in sampling error in µ̂r across teachers in the same school when
calculating sd(µs).

31. As discussed in Section 3, the average bias from non-random sorting to teachers within schools is zero by con-
struction at the school level, and thus should approach zero among transferring teachers as the number of transferrers
gets large, unless teachers transfer because they are assigned students who are unobservably likely to experience a
decline in performance. Furthermore, even if they did so, selection on (negative) value added bias would mean that
teachers should have higher average student test-score residuals at the school they move to than the one they left. This
is indistinguishable from movement toward higher match quality, which I test and reject in Web Appendix Section
A5.2.
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test for dynamic tracking within schools introduced by Chetty et al. (2011) to the high school

context. The essential insight underlying the test is that every student taking a particular subject

in a given year must be taught by some teacher, so non-random sorting among teachers within

a subject produces biases that sum to zero within a school-subject combination. Consequently,

bias from non-random student sorting can be eliminated by aggregating to the school-subject-year

level. As a result, if the estimated variation in teacher effects primarily reflects student sorting

on unobservable potential gains rather than true ability to improve student performance, average

estimated teacher quality at the subject level should have very little predictive power out of sample.

Since the test scores from the years 1997-2007 form the original estimation sample, I use data

from the years 2008-2009 to construct estimates of student-weighted average teacher quality for

each school-course-year combination, µ̂sct =
1

Nsct

∑
i∈SCT µ̂r(i,c,t), as well as estimates of average

student test score residuals for each school-course-year combination: Zsct = 1
Nsct

∑
i∈SCT Yi −

Xictβ̂c− Ỹiα̂c− δ̂s(i,t)c− d̂(exp(r(i, c, t))). As Chetty et al. (2011) point out, a univariate regression

of the form

(6) Zsct = ψ0 + ψ1µ̂sct + ξsct

yields an OLS estimate of ψ̂1 that converges in probability to Cov(µ̂sct,Zsct)

V ar(µ̂sct)
= V ar(µsct)

V ar(µ̂sct)
= V ar(µsct)

V ar(µsct)+V ar(ν
µ
sct)

under the assumptions of the model (where νµsct is sampling error in the estimated average teacher

quality for teachers teaching course c in school s at time t). To allow direct comparison of my

estimates to the estimates of Chetty et al. (2011) from the middle school level, before running the

regression in (6) I shrink the µ̂sct estimates toward zero to form empirical Bayes estimates of µ̂sct
via µEBsct =

ˆV ar(µsct)
ˆV ar(µ̂sct)

µ̂sct
32. Shrinking the estimated school-course-year averages leads to biased but

more precise estimates of µ̂sct. More importantly, the OLS coefficient on µEBsct in a regression of

32. Note that for the OLS estimated coefficient to converge to 1 under the assumptions of the model, the EB shrink-
age procedure must be performed after averaging among teachers (rather than averaging EB estimates for individual
teachers), and must reflect the reliability of estimates of school-course-year averages of teacher quality. Note further
that different school-course-years consist of different numbers of teachers whose quality estimates vary in precision
depending on the number of students they taught between 1997 and 2007, so that the appropriate shrinkage factor
is specific to the school-course-year. Calculating the signal-to-noise ratio for a given school-course-year requires 1)
estimating the variance of the true distribution from which µsct can be considered a draw (denoted V ar(µsct)), and
2) estimating the variance in the sampling error associated with school-course-year (student-weighted) averages of
teacher quality estimates (the precision of each of which depends on the number of students they taught). Both of
these estimates require care, and are discussed in Web Appendix Section A4.2.
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the form:

(7) Zsct = ψ0 + ψ1µ
EB
sct + ξsct

should now converge in probability to 1 if my estimates of teacher quality are unbiased.

Note that in order to form µEBsct for a given school-course-year combination in equation (7), I

need existing teacher quality estimates µ̂r from the 1997-2007 period for each teacher that taught in

the chosen school-course-year. Observations associated with new teachers cannot be omitted, since

new teachers may systematically be assigned students likely to gain or decline, so that the aggregate

bias need not sum to zero among previously observed teachers. Removing all school-course-year

combinations from 2008-2009 that feature previously unobserved teachers leaves 1,154 school-

course-year observations.33

Column 1 of Table 5 displays the results of estimating equation (7). The point estimate of ψ̂1

is .832, with a standard error of .087. While the aggregated teacher quality estimates clearly have

very good predictive power out-of-sample, a t-test rejects equality with 1 at the 10 percent level

(though not at the 5 percent level).

To verify that dynamic sorting of students unobservably likely to improve to particular teachers

is indeed what is driving ψ̂1 below 1, I follow Jackson (2012) and exploit the fact that out-of-sample

differences in student residuals among teachers teaching in the same school-subject-year should

reflect both differences in true quality as well as persistent patterns of dynamic sorting within

schools and courses. Specifically, let Z̃rsct represent deviations in teacher r’s average student

residuals in school s and course c at year t relative to the mean student residuals in that school-

course-year combination:

(8) Z̃rsct =
1

Nrsct

∑
i∈RSCT

Yi −Xictβ̂c − Ỹiα̂c − δ̂s(i,t)c − d̂(exp(r(i, c, t)))− Zsct

Similarly, let ˜̂µsctr represent deviations in teacher r’s estimated quality from the estimated (student-

weighted) average among all teachers from the same school-course-year:

(9) ˜̂µsctr = µ̂r −
1

Nsct

∑
i∈SCT

µ̂r(i,c,t)

33. Note that many of the previously unobserved teachers are not novice teachers, but merely teachers that have not
previously taught in a course for which there was a statewide standardized test.
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Consider regressing Z̃rsct on the appropriately shrunken empirical Bayes estimate34 of ˜̂µsctr , de-

noted µ̃EBrsct:

(10) Z̃rsct = ζ0 + ζ1µ̃
EB
rsct + ξ̃rsct

If the differences in performance among teachers from the same school-course-year are driven

by a combination of persistent differences in true teacher quality and persistent differences in

ability to attract students whose performance is likely to exceed what could be predicted based on

observables, then ζ̂1 →p 1.

Column 2 of Table 5 displays the results of estimating equation (10). The point estimate of ζ̂1 is

1.10, with a standard error of .082, which is not statistically significantly different than 1 at either

the 5% or 10% level. These results confirm that some degree of dynamic tracking is likely to be oc-

curring. However, as discussed in Section 3, while dynamic tracking may be slightly inflating my

estimates of the true within-school variance in teacher quality, it is unlikely to affect my estimates

of the true between-school variance in teacher quality. Furthermore, dynamic tracking need not

bias the estimates presented below of the extent to which disadvantaged students are receiving the

relatively inferior students within their schools. It will only do so if observably disadvantaged stu-

dents are systematically more or less likely to be assigned to the teachers within their schools who

are relatively effective at receiving students who are unobservably more likely to improve. Thus,

the basic results regarding the contribution of teacher allocation to student test score inequality are

unlikely to be substantially affected by the moderate amount of dynamic tracking suggested by the

out-of-sample regression results.

8 STUDENT-LEVEL VARIANCE IN AVERAGE TEACHER

QUALITY

While the results indicate that differences in overall average teacher quality across schools

are modest, the sizable within-school variance in teacher quality may still contribute substantially

to inequality if some students are consistently assigned to poor teachers in course after course,

relative to their school’s average. This could be the result of pure bad luck, but could also occur

34. See Web Appendix Section A4.2 for a description of the shrinkage procedure for this specification.

24



systematically if students are choosing course tracks and the best teachers within a school tend

to be assigned to the honors track.35 On the other hand, if each student is taught by offsetting

combinations of good and bad teachers, even a substantial amount of variation in teacher quality

at a school need not lead to sizable differences across students in the quality of teaching they

receive. To examine the variation in student-level teaching quality within schools, I first calculate

the average estimated teacher quality across courses for each student who took tests in at least five

different courses, relative to the overall average teacher quality at the student’s school. I denote this

measure by µ̂i−µ̂s.36 Using the delta method to calculate standard errors for each student’s average

teacher quality, σµi , I can estimate the variance in student-level teacher quality within schools as:

V ar(µ̃i) = V ar(µi − µs) = V ar(µ̂i − µ̂s)− (1/I)
∑
i

(σµi )
2.(11)

Among students who took at least five tests, a one standard deviation increase in average teacher

quality (relative to the overall school average) corresponds to an increase in average teacher quality

of .048 test score standard deviations. In other words, a student whose average teacher is at the 10th

(90th) percentile of the student-level average teacher quality distribution will have his expected

test scores in each course reduced (increased) by an average of .062 standard deviations, solely by

virtue of the teachers he was assigned at his school. This is enough to shift an average student from

the 50th to the 48th (52rd) test score percentile. Thus, assignment of teachers to students within

schools contributes nearly as much to the test-score variation across students as does variation in

average teacher quality across schools.

However, to the extent that this variation in student-level teacher quality is attributable to simple

good and bad luck, it seems difficult to remedy. Thus, I also estimate what the student-level

variance in teacher quality would be if students were randomly assigned to their teachers, subject

to the important constraint that all students have to take each subject. After all, in the extreme case

of a small school with only one biology teacher, one chemistry teacher, and one physics teacher,

there may be considerable variation in the quality of science instruction across these teachers, but

each student at this school will have the same three science teachers.37

35. Note that such non-random assignment of students to teachers need not bias the estimates of teacher quality if
the students assigned to the best teachers are predictably superior based on prior test scores and the average prior test
scores of those in their classes.

36. The results are similar if I condition on six or seven tests.
37. Note that “across-subject variation” in this context refers to schools who have, say, relatively good algebra

teachers compared to the state’s average algebra teacher, but relatively poor biology teachers compared to the state’s
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For each student I construct a set of feasible paths of teachers that the student could have ex-

perienced, given the sets of teachers that were teaching the subjects the student took when he took

them at his school. Then, I randomly select a path of teachers for each student from these student-

specific sets of feasible paths, and calculate the variance in average simulated within-school teacher

quality across students. After repeating this simulation 100 times and averaging across simulated

samples, I find that the across-student standard deviation in teacher quality under random assign-

ment is .046 test score standard deviations.38 Thus, within-school variation in the average teacher

quality experienced across students does contribute to performance heterogeneity, but the variance

in average teaching quality we observe is essentially equal to what we would expect under random

assignment.

9 THE IMPACT OF TEACHER INPUTS ON ACHIEVEMENT

INEQUALITY

Given knowledge of the underlying distribution of teacher quality, in this section I examine the

extent to which the existing allocation of students to teachers is harming disadvantaged students.

First, I look at whether disadvantaged students are more likely to receive their schools’ relatively

ineffective teachers. Second, I consider the extent to which the average teaching quality is lower

at schools that disproportionately serve underprivileged students. Finally, I provide an aggregate

measure of the contribution of teacher inputs to achievement gaps between advantaged and disad-

vantaged students.

average biology teacher.
38. I actually use two different methods for constructing feasible paths of teachers for each student. The first method

includes any permutation of teachers that taught the appropriate subjects at the appropriate times at the appropriate
high school. However, this may overestimate the range of teaching possibilities available to the student if there are
scheduling conflicts (i.e. the student took English and chemistry in the same year, and one of the English teachers
taught at the same time as one of the chemistry teachers, making this combination of teachers infeasible). Thus, to get
a lower bound on the variance in average teacher quality across students under random assignment, I also performed
the analysis using only paths of teachers that were actually experienced by some student who took the same sequence
of courses in the same years as the student in question. This clearly understates the variance under random assignment
because some feasible combinations of teachers may not have been actually chosen by any one student. The results
were not sensitive to the method chosen, suggesting that either scheduling conflicts were rare, or most feasible paths
were taken by some student.
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9.1. Are Underprivileged Students Systematically Assigned to Classes with In-

ferior Teachers?

One way to interpret the results from Section 8 is that the existing mechanisms for allocating

teachers to classes are not contributing to inequality in test score performance. However, it is still

possible that students in lower tracks are systematically receiving lower quality teachers, and that

the impact of such an imbalance on the student-level variance that I estimated is being masked by

some other feature of the teacher allocation mechanism that is reducing variance in average teacher

quality among students on the same track.

Consequently, I also examine more directly whether students with observable characteristics

that predict lower performance tend to receive their schools’ relatively ineffective teachers over

the course of their high school careers. More specifically, I first form an index of student back-

ground, (Xictβ̂ + Ỹiα̂), by weighting student characteristics by how well they predict high school

test score performance.39 Then, for each student among the bottom 10% of this index, I compare

the average estimated quality of the teachers that actually taught the student with the average esti-

mated quality among the set of teachers who taught the subjects the student took in the years they

took them in their schools. I find that such students received teachers that were .025 test score

standard deviations less effective than the average teacher across the set of feasible paths of teach-

ers available to them. Students in the top 10% of the index received teachers that were .025 better

than the average teacher they could have expected under random assignment, given the teachers

teaching in their subjects at the time. I find that black students received teachers who were .014 test

score standard deviations less effective then they could have expected under random assignment.

If instead I use as the baseline the average teacher along only those feasible paths of teachers that

some other student at their school actually took during the years each student was taking his/her

respective courses, students in the bottom 10% of the background index received teachers who

were .013 test score standard deviations below the average among feasible paths. Students in the

top 10% receive teachers who are .013 above the mean among feasible paths satisfying this re-

striction, while black students receive teachers who are .011 worse than the mean among feasible

paths. Thus, I do find modest evidence that disadvantaged students are systematically more likely

to be taught by the relatively ineffective teachers at their schools.

39. Note thatXict also includes the average prior test scores of a student’s classmates, so that this index also partially
reflects the kinds of peers they interact with.
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9.2. What Kinds of Teachers Teach at Schools that Disproportionately Serve

Underprivileged Students?

The estimated parameter distributions presented in Section 6 allow us to examine whether the

schools disproportionately serving underprivileged students generally offer inferior teaching. To

this end, Table 6 provides the average values of µ̂s among schools in the top quartile and bottom

quartile of a set of salient measures of average student background. The signs for school average

teacher quality (Columns 3 and 4) generally conform to expectations: schools whose students

have low prior test scores have below average teacher quality, as do schools with a high percentage

of students who are eligible for free lunch, and schools with a high fraction of black students.

However, the magnitudes are small, in keeping with the general finding that very little of the

variance in teacher quality is between schools. These small differences also mirror the findings of

Sass et al. (2010) at the elementary school level.

The last row presents results for my most comprehensive measure of average student back-

ground, the average value of the index Xictβ + Ỹiα. I find that high schools whose average indices

across students place them in the bottom quartile of schools have teachers who are .049 student

level standard deviations below average, while those in the top quartile have teachers who are .027

standard deviations above average. Thus, much of the between-school variation in teacher quality

can be predicted based on the composition of schools’ student bodies: -.049 is at the 20th per-

centile of the school average teacher quality distribution, while .027 is at the 67th percentile of the

school average teacher quality distribution (assuming normality).

9.3. The Aggregate Contribution of Teacher Inputs to Inequality of Opportu-

nity

While Table 6 provides a good sense of the inputs provided by the schools most heavily pop-

ulated by disadvantaged students, even these schools serve a mix of under-supported and well-

supported students. Thus, to address more directly the contribution of unequal teacher inputs to

disparities in achievement, I examine the typical allotments of these inputs received by particular

subpopulations of students. The subpopulations I consider are black students, white students, and

students in the bottom and top deciles and quartiles of the student background index, Xictβ + Ỹiα.

Table 7 displays for each subpopulation the average values of school-average teacher quality and
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effective teacher experience along with within-school deviations in teacher quality and effective

experience from the school mean.

I find that students in the bottom decile of the student background index attend schools where

teachers are on average .011 test score standard deviations below the state mean. They are also

assigned to classrooms with teachers that are on balance .029 test score standard deviations below

their schools’ averages. Below-average teacher experience among their teachers reduces their test

scores by an additional .003 test score standard deviations. The combined teaching environment

they experience (as measured by µi + d(ex)i) lowers their test scores by .044 standard deviations,

relative to a typical teaching environment in North Carolina. Students in the top decile go to

schools where teacher quality is on average .008 above the state mean. They are assigned teachers

that are .023 standard deviations above their schools’ averages. Once teacher experience has been

factored in, the teaching environment they enjoy raises their test scores by .035 standard deviations.

However, the cumulative difference in the teacher inputs the two groups receive can only account

for .079 of the 2.58 standard deviation difference in their test scores (3.1%). Thus, the way teacher

inputs are allocated in North Carolina is only making a marginal contribution to what was already

a massive difference in high school achievement between the least supported and best supported

students.

The comparison between races reveals a similar pattern. Black students attend schools with

slightly below average teachers and receive slightly below average teachers within those schools, so

that the overall high school teaching environment they face lowers their test scores by .022 standard

deviations relative to the average student. Differences in typical high school teaching environments

can account for 4.2% of the .75 standard deviation black-white test score gap. Thus, teacher

allocation in North Carolina high schools is making a modest but non-negligible contribution to

racial achievement inequality.

10 CONCLUSION

In contrast to the horror stories recounted in the popular media in which the least privileged

students attend disorganized schools with ineffective teachers, I find instead that quality teaching is

fairly equitably distributed within and across public high schools in North Carolina. Disadvantaged

students, whether indicated by race, free lunch eligibility, or low values of the predictive index

Xitβ+ Ỹiα, do tend to be exposed to slightly inferior high school teachers across several measures
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of student disadvantage. However, the contribution of this source of inequality to overall test score

achievement gaps is small, suggesting that high school may be too late to intervene on behalf of

underprivileged students.

Why don’t we see stronger sorting of teachers to schools? One explanation may be the limited

financial incentive a good school can offer, since the bulk of public school teachers’ salaries are

funded by the state in North Carolina, and all teachers in the same district with the same credentials

and experience are paid the same salary. Alternatively, the limited assortative matching of effective

teachers to desirable schools may partly reflect inadequate information by such schools at the time

of hiring, since previous research suggests that teacher characteristics that are easily observable

at the time of hiring are weak indicators of teacher quality (Clotfelter, Ladd, and Vigdor [2007];

Rockoff et al. [2008]). Such information scarcity is exacerbated by the notorious difficulty admin-

istrators have in firing underperforming teachers (even in a state without collective bargaining), so

that hiring mistakes may be difficult to rectify.

Since transfer patterns provide only faint evidence of an underlying job ladder (see Web Ap-

pendix Section A6), a third possibility is that teachers hold weak or horizontal preferences among

schools, so that the notion of universally “desirable” schools is inaccurate, even if preferences for

particular school characteristics may be vertical (e.g. neighborhood crime rates).40

Another explanation may lie in the fact that teachers are hired by districts rather than schools, so

that for the 37% of transfers that are occurring within districts, transfer patterns may more closely

reflect the preferences of district administrators than those of teachers. In this case, within-district

job desirability would not be reflected in teacher transfers. Moveover, if administrators value

equality of opportunity and have sufficient knowledge of experienced teachers’ relative qualities

when transfer opportunities arise, their teacher reallocation decisions may actually be contributing

to the relative teaching equality across schools (at least within districts).

While differences in average teacher quality explain a small fraction of performance gaps across

schools, I do find that teachers matter, even at the high school level. Within-school variation in

teacher quality accounts for a non-trivial fraction of the within-school test score variance. Assign-

ment to a teacher who is one standard deviation above average raises a student’s expected test score

by .178 student-level standard deviations, enough to shift an average student from the 50th to the

40. Research by Boyd et al. (2005) suggests that distance from home is perhaps the strongest factor in teacher
location decisions. If teachers are drawn from all over the state, this finding may partly explain disagreement among
teachers in preferences over schools. Evidence that teachers’ quit rates and location decisions do respond systemati-
cally to some school characteristics can be seen in Goldhaber, Gross and Player (2007) and Jackson (2009).
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57th percentile of the state test score distribution.

Given the sizable variation in teacher quality within schools, I explore the contribution of vari-

ation in the average teacher quality experienced across courses in high school to performance

differences among students attending the same schools. While I find that which teachers a given

student happens to receive has a modest but non-negligible impact on his overall performance in

high school, the variation in average teaching quality experienced across students only barely ex-

ceeds what would be produced by random assignment of students to teachers within a school. I find

that disadvantaged students are only slightly less likely to receive the relatively effective teachers

at their high schools.

A caveat merits mention. The distribution of teacher quality characterized by this paper reflects

the equilibrium that existed in North Carolina between 1997 and 2007. If we change the mecha-

nisms by which teachers are recruited and evaluated, the content of the curricula upon which the

subject tests are based, or the manner in which parents and students sort into schools, we should

expect to move to a new equilibrium that exhibits a distinct joint distribution of school, student,

and teacher quality. For this reason, we must be cautious about generalizing these results to other

states, grade levels, or outcomes.
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11 TABLES AND FIGURES

TABLE 1: THE PATTERN OF TEACHER MOBILITY BETWEEN SCHOOLS IN DIFFERENT

QUINTILES OF THE DISTRIBUTION OF AVERAGE STUDENT BACKGROUND (AS MEASURED

BY Xitβ + Ỹiα)

School Quintiles
1st 2nd 3rd 4th 5th

1st 228 195 175 146 121
0.052 0.044 0.040 0.033 0.027

2nd 121 146 196 214 159
0.027 0.032 0.043 0.047 0.035

3rd 93 153 171 213 169
0.020 0.033 0.036 0.045 0.036

4th 75 138 193 209 210
0.014 0.026 0.036 0.039 0.039

5th 61 83 114 171 229
0.013 0.017 0.024 0.036 0.048

Note: Rows and columns are quintiles of the school-level
average of the predictive index of student performance
across schools.
The top entry is the number of teachers who moved from
schools in the row quintile to schools in the column quin-
tile of school-average student predicted quality.
The bottom entry is the fraction of teachers who ever
taught in a school in the row quintile who moved to a
school in the column quintile.
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TABLE 2: VARIANCE DECOMPOSITION OF STUDENT TEST SCORES

Variance
Standard Fraction of
Deviation Total Var.

Variance Component (1) (2) (3)

(1) Total: V ar(Yist) .941 .970 –

Components:

(2)
Student Background

.560 .748 .596
V ar(Xictβc + Ỹ t−1

i )

(3)
Effective School and Teacher Quality

.052 .228 .055
V ar(λsrcj)

∗

(4)
Cov(Stu. Background, Eff. Sch./Tch. Qual.)

.034 – .037
2 ∗ Cov(Xictβc + Ỹ t−1

i , λsrj)

(5)
Idiosyncratic Test Score Error

.291 .540 .310
V ar(εict)

(6) Between School Total: V ar(Y s) .083 .288 .088

Components:

(7)
School Average Student Background

.062 .249 .066
V ar(Xsβc + Ỹ

t−1

s )

(8)
Total School Quality

.010 .099 .010
V ar(λs)

∗∗

(9)
Cov(Avg. Stu. Background, Total Sch. Qual.)

.012 – .013
2 ∗ Cov(Xsβc + Ỹ

t−1

s , λs)

Note: ∗λsrcj is the mean unpredicted test score of students taught by teacher r in school s in course
c while the teacher was in experience cell j. λsrcj = δsc+µr+d(exrt))+ωsrcj . Thus, V ar(λsrcj)
consists of the combined contributions of school-course quality, teacher quality, teacher experience,
and the component of the idiosyncratic error that is between school-teacher-course-experience cells.
Note that “Student Background” includes the impact of classroom peers, since average observable
characteristics of classmates are elements of Xict.
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TABLE 3: THE IMPORTANCE OF TEACHER EXPERIENCE FOR IMPROVING TEST SCORES AND

FOR EXPLAINING STUDENT PERFORMANCE GAPS ACROSS SCHOOLS

Panel A: The Impact of Teacher Experience on Student Standardized Test Scores

Years of Experience

Ex 0 1 2 3-5 6-11 12+

d̂(Ex)
0 .060 .088 .105 .108 .104
(0) (.004) (.004) (.004) (.005) (.007)

Panel B: The Distribution of Average Teacher Effective Experience (d̂(ex)s) Across Schools

Quantile of d̂(ex)s

1st % 5th % 25th % 75th % 95th % 99th %

Test Score SDs -0.020 -0.010 -0.003 0.004 0.009 0.011

Test Score Percentile
49.2% 49.6% 49.9% 50.2% 50.4% 50.5%

(Avg. Student)

Note: The distribution of d̂(ex)s has been re-normalized to have a median of zero, so that the table
entries in Row 1 of Panel B reflect the impact on expected test scores of attending a school whose
average teacher effective experience places it at the k-th quantile, relative to attending a school with
median effective experience among its teachers. Row 2 displays the test score percentile that the
median student (50th percentile) would obtain if they instead experienced the teacher experience
distribution of the k-th quantile school.
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TABLE 4: RAW AND ERROR-ADJUSTED VARIANCES IN TEACHER QUALITY AND

SCHOOL-AVERAGE TEACHER QUALITY (µr , µs): AGGREGATE AND SUBJECT-SPECIFIC

Total (µr) Between-School (µs)

Parameter
Raw True True Raw True True
Var. Var. Std. Var. Var. Std.

All Subj. (Stu. Wgt)
.045 .031 .178 .006 .003 .059

(.002) (.002) (.006) (.001) (.001) (.004)

Algebra 1
.045 .034 .184 .016 .011 .102

(.001) (.001) (.003) (.001) (.001) (.006)

Algebra 2
.043 .034 .184 .017 .012 .107

(.002) (.002) (.004) (.002) (.002) (.007)

Geometry
.037 .028 .166 .017 .011 .104

(.001) (.001) (.004) (.002) (.002) (.007)

Biology
.042 .029 .170 .021 .012 .111

(.001) (.001) (.004) (.002) (.002) (.009)

Chemistry
.063 .048 .220 .033 .022 .149

(.003) (.003) (.007) (.004) (.004) (.012)

Physical Science
.060 .046 .215 .039 .028 .168

(.005) (.005) (.012) (.006) (.005) (.016)

Physics
.072 .039 .196 .024 .016 .125

(.002) (.002) (.005) (.002) (.002) (.008)

Civics/ELP
.045 .030 .172 .024 .014 .117

(.002) (.001) (.004) (.003) (.002) (.009)

U.S. History
.057 .041 .202 .030 .019 .139

(.002) (.002) (.005) (.003) (.003) (.012)

English 1
.024 .008 .092 .015 .005 .070

(.001) (.001) (.005) (.002) (.002) (.013)

Note: “All Subj. (Stu. Wgt)” weights each subject by its fraction of all observed
student-subject combinations.
Approximate standard errors are in parentheses. They were obtained using boot-
strap samples from the combinations of {µ̂, sd(µ̂)} or {µ̂, sd(µ̂)} estimates. They
are likely to be underestimates, since the individual parameter estimates are held
fixed across bootstrap samples. Re-estimating the model (along with calculating
analytical standard errors for individual parameters) for each bootstrap sample
was computationally infeasible.
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TABLE 5: OUT-OF-SAMPLE TESTS FOR PERSISTENCE OF TEACHER QUALITY AND

DYNAMIC TRACKING USING DATA FROM 2008-2009

Specification/Level of Observation

School-Course-Year Averages
Teacher-Specific Deviations from

School-Course-Year Averages
(1) (2)

ψ̂1
.832

–
(.087)

ζ̂1 –
1.10

(.082)

N 1154 1206

Note: “School-Course-Year Averages” refers to a specification in which school-
course-year averages of student residuals from the years 2008-2009 are regressed
on school-course-year averages of predicted teacher quality (based on shrunken esti-
mates from the years 1997-2007): Zsct = ψ0 + ψ1µ

EB
sct + ξsct

“Teacher-Specific Deviations from School-Course-Year Averages” refers to a spec-
ification in which teacher-school-course-year specific deviations of average student
residuals from school-course-year means from the years 2008-2009 are regressed
on teacher-school-course-year specific deviations of predicted teacher quality from
school-course-year means (based on shrunken estimates from the years 1997-2007):
Z̃rsct = ζ0 + ζ1µ̃

EB
rsct + ξ̃rsct
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TABLE 6: AVERAGE TEACHER QUALITY AMONG SCHOOLS IN THE TOP QUARTILE VERSUS

BOTTOM QUARTILE OF VARIOUS STUDENT CHARACTERISTICS

Mean Student Mean Teacher
Characteristic Quality (µ̂s)

Bottom Top Bottom Top

Mean 8th Grade
-.444 .427

-.027 .031
Math Score (.007) (.007)

Fraction Black .051 .600
.020 -.042

(.008) (.008)

Fraction Eligible
.139 .542

.020 -.044
for Free Lunch (.005) (.010)

Stu. Backgr. Index
-.393 .368

-.049 .027
(Xiβ̂ + Ỹ t−1

i α̂) (.009) (.006)

Note: Mean Student Characteristic is the average value of the
student characteristic associated with a given row among the
schools in either the bottom or top quartile of schools sorted by
their values of that characteristic.
Mean Teacher Quality is the average value of estimated average
teacher quality (µ̂s) among schools in either the top or bottom
quartile of schools sorted by their values of the student back-
ground measure associated with a given row.
Stu. Backgr. Index is an index of student background composed
of the predicted test score based solely on the student’s current
observable characteristics and test scores collected prior to high
school.
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TABLE 7: AVERAGE SCHOOLING INPUTS AND OUTCOMES AMONG SELECTED

SUBPOPULATION OF STUDENTS, IN TEST SCORE STANDARD DEVIATIONS (BASELINE

SPECIFICATION)

Average Value of Input or Outcome Among Subpopulation

Within Between Within Between Total
Test Sch. Tch. Sch. Tch. Sch. Tch. Sch. Tch. Teacher

Student Score Qual. Qual. Exper. Exper. Contribution

Subpopulation (Y i) (µ̂i − µ̂s) (µ̂s) (d̂(ex)i − d̂(ex)s) (d̂(ex)s) (µ̂i + d̂(ex)i))

Student Background
Index (XitB + Ỹ t−1

i α)

Bottom 10% -1.25 -.029 -.011 -.002 -.001 -.044

Bottom 25% -.935 -.020 -.008 -.002 -.001 -.032

Top 25% .975 .019 .007 .003 .000 .029

Top 10% 1.33 .023 .008 .004 .000 .035

Race

White .224 .004 .005 .000 .001 .010

Black -.522 -.009 -.010 -.001 -.002 -.022

Note: “Bottom 10%” refers to the set of students whose value of the background index XitB +
Ỹ t−1
i α places them below the 10th quantile of the distribution of the index among all students.

“Total Teacher Contribution” consists of the combined contributions of assignments to higher/lower
quality teachers within schools, higher/lower average teacher quality at the schools attended by
the chosen subpopulation, assignments to more/less experienced teachers within schools, and
higher/lower average teacher experience at the schools attended by the chosen subpopulation:
(µ̂i + d̂(ex)i).
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FIGURE 1: A GRAPHICAL DEPICTION OF THE NETWORK OF TEACHER TRANSFERS

(a) DISTRIBUTION OF THE NUMBER OF TRANSFERRERS ACROSS
SCHOOLS

(b) DISTRIBUTION OF THE NUMBER OF EXAMS ADMINISTERED
ACROSS TEACHERS

(c) DISTRIBUTION OF
MIN(TOTAL STUDENTS1, TOTAL STUDENTS2) FOR

TRANSFERRING TEACHERS
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