Math 3331 — ODEs — Sample Final Solutions

Yy

1. dy _ (lny—lnx—{—l);.

dx

Solution: The equation is homogeneous. We re-write it as

d_y: (lny—Fl) z

dx x x
dy du
Ifwelety—xusoa—xa—kuthen
xj—i—ku:(lnu—kl)u,
which separates
du_ _ dx = Inlnu=Inx+Inc = u=-¢e"
ulnu X
Therefore,
z: cx — epCX
L= ¢ or y=xc,
dy _ 2,2
2. x%+2y—x v

Solution: The equation is Bernoulli, so we put in standard form

dy _ 2.2
xdx+2y = x7Y°,
dy 2 _ 2
ax XV TV
1dy 21
- < - — X
y2dx  xy



Welet u = ; SO Z—z = —% Z—Z and substituting gives
du 2
T TEd T E
du 2 , _ . 1
=N (the integrating factor is y = E)

df1 N _ 1
dx \ x? o x

Integrating gives

1
2l = c—Inj|x]|,
u = x*(c—1In|x]),
L. X (c—In|x|),
Yy
1
y =

x2(c—1In|x])

Ay o _
3.E—y—26, y(0) = 3.

Solution: The equation is linear and already in standard form. The integrating factor is

u =e *. Thus,
d , _
LTy =2
e 'y = 2x+¢, fromthelCc =3,
ey = 2x+3,
y = (2x+3)e".
d_y_l—ny2 (1) =1
Cdx 1+ 2x%y’ A

Solution: The equation is exact. The alternate form is

(2xy? — 1)dx + (2x*y +1)dy = 0,



and it is an easy matter to verify

so z exists such that

g—i = M=2xy’ -1 = z=x%>—x+Ay),
g—; = N=2x*y+1 = z=x*>+y+B(x),

so we can choose A and B giving z = x?y> — x + y and the solution as x?y> — x +y = c.
Since y(1) = 1, this give ¢ = 1 and the solution x?y? — x +y = 1.

2. Solve the following
(i) y'-5/+6y=0 y0) =1 y(0) = 0

Soln: The CE is m?> —5m +6 = 0so (m —2)(m — 3) = 0 giving m = 2, m = 3. The solution
is

y = 16 + e
The IC’s gives c1 + c2 = 1,2c1 + 3c2 = 0. Solving gives ¢; = 3,cp = —2 leading to the
solution

y = 3¢*¥ — 2%

(ii) y'+2y'+10y = 0, y(0)=-1, y'(0) =4
Soln: The CEism?2 +2m+10=0 giving m = —1 + 3i. The solution is

y = c1e *cos3x + cpe” * sin3x

The IC’s gives c; = —1,—c1 + 3c2 = 4. Solving gives c; = —1,c2 = 1 leading to the
solution
y=—e *cos3x+e *sin3x

(iii) 4y"—4y'+y =0, y(0)= 0, y'(0)=1
Soln: The CE is 4m?> —4m +1 = 0so (2m —1)(2m — 1) = 0 givingm = 1/2,m = 1/2.

The solution is

1/2x 1/2x

Yy =cie + coxe
The IC’s gives c; = 0, c; = 1 leading to the solution

y = xe1/2x



3. (i) Solve
(xz — 2x> y' - (x2 - 2) Y +2(x—1)y=0,

2 is one solution.

given that y; = x

2usoy = x*u’ +2xu and y" = x*u” + 4xu’ + 2u. Substituting and

Soln: Lety = x
simplifying gives

x(x —2)u" — (x* —4x +6)u’ =0

Letting ' = vso 1" = v’ gives
(x(x —=2))0' — (x> —4x +6)v = 0.

Separating gives
dv x> —6x+4

v x(x=2) "

which integrates to

S|
I

2

and since y = x“u we obtain the second solution y = e*. Thus the general solution is

y = c1x% 4 cpe”

5. (ii) Solve
xy' — (x+1)y +y =0,

given that y; = e* is one solution.
Soln: Lety = e*usoy = e*u' +e*u and vy’ = e*u’ + 2x*u’ + e*u. Substituting and

simplifying gives
xu + (x+1)u' =0

Letting u’ = vso u” = v/ gives
xv' 4+ (x —1)v = 0.

Separating gives




which integrates to
v=xe

Since 1’ = v this integrates once more giving
u=—(x+1)e"
and since y = ¢*u we obtain the second solution y = —(x + 1). Thus the general solution
is
y=cie* +cp(x+1)

noting that we absorbed the —1 into c;.

4. Solve using any method (reduction of order, method of undetermined coefficients or
variation of parameters)

(i) y// . 6]// + 9]/ — eSx,
The homogeneous equation is
y' =6y +9y =0

The characteristic equation for this is m? — 6m + 9 = 0 giving m = 3, 3. Thus, the comple-
mentary solution is

y = 16> + cpxe®.
If we were to use variation of parameters
y = ued* 4 vxe®, (1)

If we were to use reduction of order,

ued*. (2)

<
I

We will do both.

Variation of parameters
Taking the first derivative, we obtain

y = ' 4 3ue’™ + v'xe® + (3x + 1)ve>,
from which we set

u/e3x 4+ U/xEBx — 0’ (3)



leaving
y = 3ue’ + (3x + 1)ve®, (4)
Calculating one more derivative gives
y' = 3u'e® +9ue + (3x +1)v'e> + (9x + 6)ve®™. (5)

Substituting (1), (4) and (5) into the original ODE and canceling gives

3u'e+ ue™ + (3x + 1)v/e +W
— 18ue®™ — 6(3x+1)pe™

+ 9ue”* + 9xve™™ = ¢ (6)
or
3u'e3* 4 (Bx +1)0'e¥ = &%, (7)

Equations (3) and (7) are two equations for 1’ and v' which we solve giving

Integrating each respectively gives

1
u=—=x% v=x
2

and from (1) we obtain the particular solution

_ 123x
y = ;xe

This then gives rise to the general solution

1
y= c16¥ + cpxe®* + §x2e3x.

Reduction of Order
Taking the first derivative of (2), we obtain
y = u'e’ + 3ue>, (8)
and one more derivative
v’ = u"e3* 4 6u'e¥ + 9ue’”, 9)



Substituting (2), (8) and (9) into the original ODE and canceling gives

w3 1 61T + QueST
— 61" — 18ue”

bt = (10)

or
u'"e = &% (11)

. Lo 1 . .
After we cancel the ¢3%, we integrate twice giving u = Exz leading to the solution

1
y= §x263x, (12)

and the general solution as given before.
4. (ii) Solve using any method (reduction of order, method of undetermined coefficients
or variation of parameters)

(i) y' —y = 2x—3x°

Soln: The homogeneous equation is 4" — i’ = 0 The associated CE is m?

—m = 0 giving
m = 0,1. The two independent solutions are y; = ¢ = 1 and y, = e*. Thus, the
complementary solution is

Yy =c1+ce*

Here we will use the method of underdetermined coefficients. One would guess a par-
ticular solution of the form y, = Ax?+ Bx + C but since y = 1 is a part of the com-
plementary solution we need to bump the particular solution up by one. Thus, we try
yp = Ax® + Bx? 4 Cx. Substituting into the DE and comparing coefficients gives

x?) —3A=-3
x) 6A—2B= 2
1) 2B-C= 0
Solving gives A = 1,B =2 and C = 4 givingy, = x>+ 2x? + 4x and the general solution

as
y =y +coe” +x° +2x% + 4x,

5()

"o (13)s



then the characteristic equation is

1-A 1 | _ oy
' ) _)\‘—A—A—Z—(A—i—l)()\ 2)=0,
from which we obtain the eigenvalues A = —1and A = 2.

Case1l: A = —1
In this case we have

(21)(52)=(0):

from which we obtain upon expanding 2c; + ¢, = 0 and we deduce the eigenvector

so one solution is

Case2: A =2
In this case we have

(2 ) (2)-(9)

from which we obtain upon expanding c¢; — c; = 0 and we deduce the eigenvector

(3

from which we obtain the other solution

The general solution to (13) is then given by

X:cl(_;>e_t+cz(})e2t.

gz(i_;)x, x(o):<_g) (14)

then the characteristic equation is

2(ii)
Consider

‘1—/\ -1

_ 22 _ _ 9\2 __
) 3_A‘_A AN+9=(1—2)2=0,



from which we obtain the eigenvalues A = 2 and A = 2 — repeated. As in problem 2(i)
we find the eigenvector associated with this

Casel: A =2
-1 -1 C1 - 0
1 1 Co o 0 !

In this case we have
from which we obtain upon expanding c; + c; = 0 and we deduce the eigenvector

so one solution is

X1 = ( _1 )eZt.

For the second independent solution we seek a second solution of the form
%, = ate?t + gt (15)

As shown in class, i1 = ¢ and ¥ satisfies

(7 )(e)=(4) 9

or —vp — vy = 1. Here, we'll choose

Therefore, the second solution is

— 1 -1
> ( 1 ) €2t ( > eZt
and the general solution

f:cl(_i >€2t-|—C2 K _1 )t62t+< _é)eﬂ,

Imposing the initial condition gives

() (5o)=(2)

This gives ¢y —c; = 5 and —c; = —2so ¢; = 2 and ¢ = —3. The general solution then

()2l ()]

becomes



2(iii)
§=(§ _}l)x. (17)

‘6—/\ -1

The characteristic equation is

— 2 _ —
54_/\‘_/\ 104 429 = 0.

Using the quadratic formula, we obtain A = 5+ 2i (sox = 5 and = 2). For the eigen-
vectors, we wish to solve

(75 ek ) (0 )= (o)
(5 ) (0

or

I
VR
o O
N~

which means solving

One solution is
So here

With « = 5and B = 2 gives

o 1 2 . 5t = 1 ) 2 5
1 {(5)cos2t—<0)s1n2t}e , Xp = [(5>sm2t—i—<o)c052t}e .

The general solution is just a linear combination of these two

X=rc [( é )cos2t— ( 3 ) sinZt} e + ¢y {( é ) sin 2t + ( 3 )cosZt} e,

6. Let A = A(t) be the amount of salt at any time. Initially the tank contains pure water

so A(0) = 0. The rate in is r; = 5 gal/min and rate out r, = 10 gal/min meaning the
volume in the tank is decreasing so

V =Vo+ (ri —ro)t =500+ (5 —10)t = 500 — 5¢
The change in salt at any time is given by

dA

ar = tiCi — ToCo

10



where ¢; and ¢, are concentrations in and out. Since we are given that ¢; = 2 Ib/gal and
co = A(t)/V(t) then we have

dA A
T T,
2A
- 10—
0 100 — ¢
This is linear so
dA 2A
el =1
dt + 100 — ¢ 0

) = exp (—2In[100 — t|) = 1/(100 — t)?

2
The integrating factor is u = exp ( 100 = tdt

SO

d A _ 10
dt \ (100 — )2 )~ (100 — ¢t)2
Integrating gives

A 10 e
(100 — t)2 (100 — ¢)

The initial condition A(0) = 0 gives ¢ = —1/10 and finally giving the amount of salt at
any time
1
A =10(100 —t) — E(100 — )2

When the tank is empty V = 0 which happens at t = 100 and A(100) = 0.

7. Let P = P(t) be the population of rabbits. The differential equation is

ap
T kP(1000 — P)
Separating gives
ap
———— = kdt
P(1000 — P)

or

1 /1 1
a4 - \4p=
1000 <P " 1000 - P) AP = kit
and multiplying by 1000

1 1

(ﬁ + 10()0——P> dP = 1000kdt

11



We can absorb the 1000 into the k. Integrating gives
In P +In(1000 — P) = kt +Inc

or

Pk
1000—p 18)

Using the initial condition gives P(0) = 100 gives ¢ = 1/9 and further P(1) = 120 gives
k = .204794. Solving (18) for P gives

10008'204794t
T 204794t L g

To answer the questions P(2) = 143.36 so after two weeks there are 143 rabbits and the
value of t when P = 900 is t = 21.46 or roughly 21 and a half weeks.

8. Assuming Newton's law of cooling we have

at _
dt
subject to T(0) = 160 and T(20) = 150. Here T, = 70. Separating the DE gives

k(To — T)

dT
0T — kdt
which we write as
ar_ _ —kdt
T—70

as T is greater than the room temperature 70. Integrating gives
InT —70 = —kt +1Inc

or
T=70+ ce Kt

Using T(0) = 160 gives ¢ = 90 and using T(20) = 150 gives k = .005882. Thus, the
temperature at any time is given by

T = 70 4 90e~ 0%,

12



