
IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1552 | P a g e

Modified artificial ant colony optimization based approach

for number of fault prediction to assist bug report reverse

engineering
Dhayashankar J M1, Dr. A.V. Ramani2

1Department of Computer Applications, Sri Ramakrishna Mission Vidyalaya College of Arts and Science
2Department of Computer Science, Sri Ramakrishna Mission Vidyalaya College of Arts and Science

 1(E-mail: dayal.jm@gmail.com)

Abstract— In current information technology era most of

the business applications are depending on the software and

their efficiency and quality are main factors. The software

maintenance plays a vital role because there may be a chance

of upgrade or error occurrence during the course of use. In

such cases the details of documentation relevant to the concern

software is very essential for the maintenance group but if it is

not properly maintained then the process undergoes reverse

engineering to recover the design by finding the faults

occurred in the software. Presence of fault not only affects the

software quality in addition it increases the development cost

also. Due to the poor documentation about the software under

investigation often leads to difficult in prediction of faults.

This paper aims at developing a Meta heuristic model using

ant colony optimization for finding faults in the given software

systems. The proposed approach has been validated using

experimental investigation on six software projects which are

available in the tera-PROMISE repository. The performance

of the proposed method is evaluated using different evaluation

metrics and the result shows that modified Ant Colony

Optimizaiton (ACO) model have produced more significant

results in faults prediction accuracy

Keywords—Ant Colony Optimization (ACO), Software

fault prediction, software metrics, tera-PROMISE repository,

T-test analysis

I. INTRODUCTION

Software bug is a major bug in coding

implementation since without correct code it is not possible to

produce correct result. The software engineering team have

bug reports which explains the type of bugs occurred in each

module during the software development phase. If those

documents are not perfectly handled or if those bug reports are

missing then a need arise to develop a prediction system to

find the occurrence of the fault in software to correct the bugs

occurred in the software. The software bug report is known as

problem report which can be identified using the software

fault prediction models. This helps in allocation testing

resources efficiently and economically. According to a survey

[1] detection and removal of software’s faults cover around

50% of the total project budget. Abundant research has been

carried out in the earlier works but there are still issues that

prevent them from becoming widely adopted in practice

because most of the earlier software fault prediction studies

have predicted the fault proneness of the software modules in

terms of fault and non-faulty (binary class classification).

There are several issues with this binary class classification

even if the performance of the prediction model was reported

excellent the interpretation of the finding is hard to put into the

proper usability context i.e. identification of the number of

faults per module.

In order to explain the practical use of the software

fault prediction model this work present an approach to predict

the number of faults in a given software system using Ant

Colony Optimization (ACO). The contribution of this paper is

to explore the abilities of the ant colony optimization for the

number of software fault prediction. This proposed work

developed fault prediction models using modified ACO and

the performance of the constructed model is evaluated using

Error Rate , Recall and completeness measures. This research

work indicates that ACO based fault prediction approach

produces significant results to predict the number of faults in

software system. he rest of the paper is organizes as follows,

Section 2 contains related work, Section 2 consist of overview

of proposed approach, section 4 presents a brief description of

the used software fault datasets, software metrics considered

and dependent variables. In section 5, a detailed explanation of

experimental setup along with the discussion of the evaluation

metrics are considered. The result of the investigation is

presented in section 6 and finally draw the conclusion about

the performance of the proposed method is discussed in

section 7.

II. RELATED WORK
There have been many existing works relevant to

predict fault proneness of software modules in terms of the

modules being faulty or non-faulty. But studies reporting the

fault proneness of software modules in terms of predicting the

fault density or the number of faults in a software module are

very few. Jun Zheng [2] described that the software fault

prediction model can be built with the help of threshold-

moving technique. The motive of the software developer is to

develop the better quality software on time and inside the

financial plan. Software fault prediction model classifies the

modules into two classes: faulty modules and non – faulty

modules. R.Shatnawi [3] states that the majority of the

modules for finding the prediction performance are correct

whereas some modules are defective. They applied technique

to find the number of faults in the particular module. This

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1553 | P a g e

technique is called Eclipse. This technique works well on real

world objects called Object Oriented systems. In this Object

Oriented System, they used the existing defected data for

eliminating the defective modules.

Shepperd, Schofield and Kitchenham [4] discussed

that need of cost estimation for management and software

development organizations and give the idea of prediction and

discuss the methods for estimation. Alsmadi and Magel [5]

discussed that how data mining provide facility in new

software project its quality, cost and complexity also build a

channel between data mining and software engineering.

Runeson and Nyholm [6] discussed that code duplication is a

problem which is language independent. It is appearing again

and again another problem report in software development and

duplication arise using neural language with data mining.

Lovedeep and Arti [7] data mining provide a specific platform

for software engineering in which many task run easily with

best quality and reduce the cost and high profile problems.

Ostrand et al [8] have used negative binomial regression

analysis to predict the fault proneness in software modules. In

their study a NBR model was developed and used to predict

the expected number of faults and the fault density in every

module of the next release of the system. In another study

Afzal et al [9] performed an empirical study to predict the

fault count using the genetic programming. They performed

their experiments over the three industrial projects and

evaluated their results using some goodness of fit and

predictive accuracy parameters. They concluded that GP is

statistically significant and accurate to predict fault counts.

Arvinder and Inderpreet [10] in their work used six

machine learning models for software quality prediction on

five open source software. Varieties of metrics have been

evaluated for the software including C & K, Henderson &

Sellers, McCabe etc. Results show that Random Forest and

Bagging produce good results while Naive Bayes is least

preferable for prediction. Dhyan and Saurabh [11] in their

paper classified and detect software bug by J48, ID3 and

Naïve Bayes data mining algorithms. Comparison of these

algorithms is done to detect accuracy and time taken to build

the model. Rohit et al [12] devised a Bayesian Regularization

(BR) technique has been used for finding the software faults

before the testing process. This technique helps to reduce the

cost of software testing which reduces the cost of the software

project.

This proposed work differs from the previously

mentioned studies in several ways. Firstly, most of the earlier

studies have used industrial datasets. But this work used six

open source datasets. Secondly the existing methods used

change history and LOC metric of the files to determine

number of faults, whereas this work used 20 object oriented

metrics. Most of the prior works have used some hypothesis

testing or goodness of fit parameters to evaluate their results.

While this proposed work used Error Rate, Recall and

completeness measures to perform fair evaluation of the

proposed method results and remained consistent with these

three set of measure for all the used dataset. In comparing the

proposed model with the existing methods, it is found that the

proposed fault prediction model achieved the higher recall

value. The error rate analysis also confirmed the effectiveness

of the proposed modified ACO prediction model.

2.1 EXISTING ANT COLONY OPTIMIZATION
It is a Meta heuristic technique which is based upon

the natural phenomena. ACO is a probalistic technique which

gives solution by using previous results. In this process each

ant follow different path to reach to the destination and secrete

pheromone liquid on the way to destination. The path which

has the highest liquid pheromone is considered as the shortest

path and all other ants follow the same path. So pheromone

liquid is used to attract the other ant and update the latest

information about the path [17. 18]

III. PROPOSED METHODOLOGY OF MODIFIED

ANT COLONY OPTIMIZATION BASED FAULT

PREDICTION MODEL
Ant colony optimization algorithm is a heuristic

algorithm that mimics the behavior of ants to find the best

food sources in this work best possible solution to perform a

user specified task. It is a search based method which search

for optimal solution to perform a given computation task. Ant

Colony optimization algorithm starts with a randomly

generated population of potential space. Subsequently, it

iteratively transforms initial population of potential solutions

into a new generation of the population by applying the fitness

function. These selected individual are close to the goal and

the whole process is continued in this manner until the

termination condition is met, which is generally bound to the

maximum number of generations. After the termination

criterion is satisfied, the single best individual in the

population is chosen as resulting solution.

Figure Overview of the Modified ACO based Fault Prediction

Model

Figure 1 depicts an overview of the proposed modified Ant

Colony Optimization fault prediction model. First requisite

fault data of 6 projects listed in Table 1 are taken from tera-

PROMISE Repository. The data set containing fault

information and twenty software source code metrics are also

included. All source code metrics are normalized over the

range between 0 to 1 using Min-Max normalization technique.

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1554 | P a g e

The normalization of source code metrics is required to adjust

the defined range of metrics. Hence, before applying the

machine learning algorithm and subsequent t-test analysis, the

input metrics are normalized or standardized using min-max

scaling. The conventional ACO algorithm [17] is modified by

using T-test analysis to determine the significance among the

software metrics and those metrics are considered as the best

software metrics which have high impact on determination of

number of faults occurred in each module of the given dataset.

The characteristics of features to select significant sets of

features without involving a learning algorithm T-test has

been employed to remove insignificant features. The objective

of this step is to test the relationship between each source code

metric and fault proneness. In this study, t-test analysis is used

to test the statistical significance between faulty and non-

faulty group metrics. In 2-class problems (faulty class and

non-faulty classes), test of null hypothesis (H0) means that the

two populations are not equal; on other words, there is a

significant difference between their mean value and both

features are different. It further implies that the metrics affect

the fault prediction result. Hence, these metrics have been

considered and those having no significant difference between

their mean values are rejected. Therefore, it is necessary to

accept the null hypothesis (H0) and P −value for each metric

as a measure of how effectively it separates the groups.

Software Metrics which have P - value smaller than 0.05

consist of strong discrimination powers. Based on the highest

significance of each software metrics the artificial ants

determine the best solution in terms of number of faults

prediction.

Figure Flow chart of the proposed Modified ACO Model for

fault prediction

IV. ALGORITHM FOR PROPOSED METHOD OF

MODIFIED ANT COLONY OPTIMIZATION FOR

FAULT PREDICTION

Input: Instance of Tera – PROMISE Repository Fault Dataset

Output: Number of faults predicted in each module

1. Begin Initialize code_mod = cmf1,cmf2, cmf3... cmfn

2. Initialize fault_time = E1, E1, E1,….En

3. Assign start_post pos(p) = rand(x),rand(y)

4. Repeat

5. For k = 1 to m do /* for the m ants*/

6. Ant k randomly selects a node s 1

7. for i = 1 to n-1 do

Start Modified ACO

Determine probabilistically

as to which test case to visit

next

Locate ants randomly in modules

from the project and store the

current modules in a set M

Move to next module and

place this module in set M

Has the

stopping

condition

reached

Have all

Faults been

covered

Determine the best path till now

and update pheromone based on

the significance of software

metrics

Record the significance of each

software metrics obtained using T-

test

Stop the process of

Modified ACO

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1555 | P a g e

8. Ant k selects the next node according to the equation as

follows Where, τ ij is the pheromone

on the edge between nodes v i and v j , η ij is a heuristic

function which is defined as the visibility of the edge

(v i ,v j). Parameters α, β determine the relative influence

of the pheromone and the heuristic information.

9. End for i

10. Calculate the fitness of the path formed by

ant k according to the equation

Q(S)=

Here, Q(S) is quality of path, d(s i)is the degree of the

node s i, C is a positive constant

11. End for k

12. Update the pheromone values according to

 τij(t+1)=ρ⋅ τij(t)+Δτij(t)

13. Until max1 ≤ i,j ≤ n |τij (t+1)−τij (t)| ≤ ε or t > Nc;

14. Score = τ;

15. Output the score matrix Score;

16. Stop (fault cover)

17. End loop

18. End

Working Example of proposed Modified Ant colony

Optimization in number of Software fault prediction

The above figure depicts the process of feature

selection using ACO algorithm in a graph representation. For

assumption let us consider that the dataset consist of 8

attributes the goal of the ants is to select optimal features to

predict the number of faults in a software. In this graph each

vertex represents the feature or attribute of the fault prediction

dataset. The attributes are connected using edges and the

weight of the edges signifies the correlation among attributes

or vertex’s which are obtained using T-test significance. In

this example the attribute1 is connected with three attributes 2,

3 and 4. Now this graph consists of three artificial ants where

each ant selects different edges. Let us assume that ant 1 select

the edge between the attributes 1-2. Ant 2 selects the edge for

traversal is 1-3. The ant 3 chooses the edge between the

attributes 1-4. Now the pheromone trail is calculated based on

t-test between the attributes of the selected edges and they are

assigned as weight

The table above shows the complete calculation of the graph

shown in the figure. Here each ant traverses in three different

directions. The Ant 1 has the probability of choosing 3

different paths of attribute combination 1-2-5-8, 1-2-6-8 and

1-2-7-8. The Ant 2 has the probability of selecting 3 different

paths of attributes 1-3-5-8, 1-3-6-8 and 1-3-7-8. The Ant 3

also has the probability of picking 3 different paths of

attributes 1-4-5-8, 1-4-6-8 and 1-4-7-8. To choose best

combination of attributes the corresponding weights of each

path is calculated as shown in the above table. According to

this example ant 3 produces the optimal features selection with

the highest weight value it means the amount of pheromone

deposited on this path is higher and expose that the potential

prediction of number of faults in a software can be predicted

more optimal using this modified ACO.

It
er

at
io

n
 1

It
er

at
io

n
 2

It
er

at
io

n
 3

 Total

Attributes

selected

Weight

Calculation

Ant

1

1-2

2-5, 5-8 1-2-5-8 4+2+4 =10

2-6, 6-8 1-2-6-8 4+4+2=10

2-7 7-8 1-2-7-8 4+3+1=8

Ant

2

1-3 3-5, 5-8 1-3-5-8 3+1+4=8

3-6, 6-8 1-3-6-8 3+3+2=8

3-7 7-8 1-3-7-8 3+2+1=6

Ant

3

1-4 4-5, 5-8 1-4-5-8 5+3+4=12

4-6, 6-8 1-4-6-8 5+2+2=9

4-7 7-8 1-4-7-8 5+1+1=7

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1556 | P a g e

V. EXPERIMENTAL METHODOLOGY

In this section a brief overview of the software fault

dataset used for simulation comparison, with the information

of independent and dependent variable are discussed. Six

different dataset are used in this simulation in which two of

them belong to PROP project, two are form xerces project and

remaining two are from camel project. PROP dataset is one of

the largest dataset that are available in tera-PROMISE

Repository data repository [13, 14]. This dataset is collect for

a software project that was developed in a commercial

organization and it is written in the java language. Similarly

Xerces is an Apache collection of software libraries used for

parsing, validating and manipulating XML. Camel is rule

based routing and mediation engine that offers the interfaces

for the Enterprise Integration Patterns (EIPS). The Xerces and

Camel both are open source projects. Each of the six fault

dataset used in this work consist of same 20 object oriented

metrics and number of faults information for each software

module. The percentage of faulty modules varies between 9%

- 55% (approx.), which makes them the good candidate for the

experimental study.

VI. SOFTWARE FAULTS DATASET DESCRIPTION

6.1 Dependent and Independent Variables

In this work, the objective is to develop a fault

prediction model using Modified Ant Colony Optimization for

the number of faults prediction in a given software systems.

Therefore in this work source code metrics considered as

dependent variables. The fault proneness of a class is the

probability that a class contains fault, given the metrics for

that class. Since this proposed prediction model assigned an

expected number of faults to each module of software.

Therefore, the number of faults is selected as depended

variable instead of dividing them into two categories of fault

and non-faulty.

Table 1: Detail of the fault Datasets used for the Study

OO Metric Description

Weighted methods per

class (WMC)

Sum of the complexities of

methods defined in class

Depth of inheritance

tree (DIT)

Maximum height of the class

hierarchy

Number of children Number of immediate

(NOC) descendants of the class

Coupling between

object classes (CBO)

Number of classes coupled to a

given class

Response for a Class

(RFC)

Number of different methods that

can be executed when an object of

that class receives a message

Lack of cohesion in

methods (LCOM)

Number of sets of methods in a

class that are not related through

the sharing of some of the class’s

fields

Afferent coupling (Ca) Number of other classes use the

specific class

Efferent coupling (Ce) Number of classes used by the

specific class

Number of public

methods (NPM)

Number of methods in a class that

are declared as public.

LCOM3 Lack of cohesion in methods

Henderson-Sellers version

Lines of code (LOC) Number of lines in the text of the

source code

Data access metric

(DAM)

Ratio of the number of private

(protected) attributes to the total

number of attributes declared in

the class

Measure of aggregation

(MOA)

Number of data declarations,

whose types are user defined

classes

Measure of functional

abstraction (MFA)

Ratio of the number of methods

inherited by a class to the total

number of methods accessible by

member methods of the class

Cohesion among

methods (CAM)

Sum of number of different types

of method parameters in every

method divided by a

multiplication of number of

different method parameter types

in whole class and number of

methods

Inheritance coupling

(IC)

Number of parent classes to

which a given class is coupled

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1557 | P a g e

Coupling between

methods (CBM)

Number of methods to which all

the inherited methods are coupled

Average method

complexity (AMC)

Average method size for each

class.

Maximum McCabe’s

cyclomatic complexity

(M ax − CC)

Maximum cyclomatic complexity

of methods defined in a class

Average McCabe’s

cyclomatic complexity

(Avg–CC)

Average cyclomatic complexity

of methods defined in a class

TABLE 2: List of projects used in our experiments,

number of modules and percentage of faulty classes

Project No. of

modules

No. of

Faulty

modules

Faulty

(%)

prop-3 10274 1180 11.49

prop-4 8718 840 9.64

xerces-1.2 440 71 16.14

xerces-1.3 453 69 15.23

camel-1.0 339 13 3.83

camel-1.2 608 216 35.53

From the table 2 it is observed that the project prop

consist is the largest dataset whose prop-3 consist of 10274

classes and prop 4 consist of 8718 classes with faulty modules

1108 and 840 respectively. Xerces project with release of 1.2

and 1.3 consist of 440 and 453 modules respectively and they

contain fault modules of 71 and 69. The Camel project with

the version 1.0 and 1.2 has 339 and 608 modules respectively

with 13 and 216 faulty modules.

For each module its percentage of fault is calculated as

follows:

Faulty (%) =

6.2 Evaluation Measure

To find the performance of the proposed Modified

ACO based fault prediction model this work used three types

of performance evaluation measure. To measure the deviation

between the predicted and actual fault values this work used

Error rate parameters. The prediction accuracy is measure by

using Recall and Completeness of the model is measure by

using completeness measure. The description of each of the

aforementioned measures is as follows:

6.3 Error Rate

 The difference among the actual fault values and

predicted fault values is measured using the average relative

error (ARE) is defined as

ARE =

Where is the predicted value of the number of faults in a

software model and Yi is the corresponding actual value. N is

the number of modules. In the case of ARE, as the actual

value of the faults may be zero, one is added to the

denominator to make the definition always well-defined [15].

6.4 Recall

Recall shows the fraction of relevant instances that

are retrieved. It measures the ability of the classifier to identify

a condition correctly. A classifier with high recall value

insures that a high number of positive examples will be

identified. It is defined as

Recall = True Positive / (True Positive + False Negative)

The used fault data is imbalance in nature. It contains

a large number of non-fault modules compared to faulty

modules. The main goal of the proposed Modified ACO based

fault prediction model is to identify faulty modules as much as

possible. So that the processes for software reverse

engineering to recover the correctness of the software can be

done more optimally. IF a fault remained unidentified, then it

will require lots of resources and efforts for identification at

later stages or may be remain unidentified and cause the sever

effect on software performance later. For this reason, this

proposed work select recall value as the measure to assess the

performance of the proposed fault prediction model.

6.5 Completeness

Completeness measure is defined as the number of

faults found in the modules classified as fault-prone divided

by the total number of faults in the software system [16]. This

parameter tells how complete the proposed fault prediction

model is.

Completeness =

6.6 Results

This section discusses about the result of the various

evaluation parameters and assesses the accuracy and

completeness of the fault models. For each of the dataset this

work used 10 fold cross validation in which 90% of the

involved training and remaining 10% is used for testing the

model. Likewise ten iterations are performed for the whole

dataset to train and test.

Table 3 Error rates Produced by existing Genetic

Algorithm, Decision Tree, Ant colony Optimization and

proposed Modified Ant colony optimization for all six

Datasets

Data

set

Genetic

Algorith

m

Decisio

n Tree

Ant Colony

Optimizatio

n

Modifie

d ACO

PROP

-3
0.11

0.27 0.19 0.09

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1558 | P a g e

PROP

-4
0.35

0.48 0.37 0.25

xerce

s-1.2
0.39

0.52 0.4 0.24

xerce

s-1.3
0.32

0.43 0.38 0.26

camel

-1.0
0.19

0.27 0.23 0.12

camel

-1.2
0.45

0.59 0.48 0.32

Figure Average Error Rate Analysis for six different Datasets

Table 3 and figure shows the values of Average Error

Rate (AER) errors for each of the used dataset. Naturally, the

mean absolute error has been widely used in the past to report

the errors. However, if the difference between the absolute

value and predicted values is large, the relative error rate

provides the much useful information. Therefore, this work

reported the results in terms of relative error measurement

unit. And from the obtained result it is observed that among

the existing approaches the proposed modified ACO has

produced low error results. For PROP 3 and prop 4 datasets,

Modified ACO based fault perdition produced low error rate

0.09 and 0.27 respectively. But for camel 1.2 and Xerces 1.3

error rate is much higher which is 0.32 and 0.26 respectively.

These result confirmed the predictive capability of the fault

models based on the modified ACO System.

Table 4 Recall Value analysis of existing Genetic

Algorithm, Decision Tree, Ant colony Optimization with

proposed Modified Ant colony optimization for all six

Datasets based

Data

set

Genetic

Algorith

m

Decisio

n Tree

Ant Colony

Optimizati

on

Modifie

d ACO

PROP-

3

65 58 60 73

PROP-

4

46 32 42 58

xerces-

1.2

28 20 25 45

xerces-

1.3

40 29 36 62

camel-

1.0

32 28 30 45

camel-

1.2

30 25 28 37

Figure Recall value Analysis of Six Dataset with four different

fault prediction models

Table 4 and figure illustrates the obtained recall value for all

the four fault prediction models applied on six different

datasets. Since proposed fault prediction model assigned an

expected number of faults to each module of the given

software. It is also observed that lowest recall value is

obtained by Xerces 1.2 varies within the range of 28% to 45%

approximately. These results also confirmed the proposed

model predictive accuracy is higher than the other existing

methods.

Table 5 Completeness analysis of Existing Genetic

Algorithm, Decision Tree, Ant colony Optimization and

proposed model for all six Datasets.

Data set Genetic

Algorithm

Deci

sion

Tree

Ant Colony

Optimization

Modified

Ant Colony

Optimization

PROP-3 75 60 68 96

PROP-4 90 78 86 98

xerces-
1.2

96 78 85 97

xerces-

1.3

86 72 80 99

camel-1.0 92 80 86 100

camel-1.2 89 80 85 99

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1559 | P a g e

Figure Completeness Analysis of Six Dataset with four

different fault prediction models

Table 5 and figure depicts the completeness values of the four

fault models for all the six datasets used in this work. It is

perceived that for most of the used datasets, the proposed

modified ACO algorithm achieved the completeness close to

100%. The proposed model achieves more completeness than

the other existing approaches.

Running Example

Table 6 Example of T-test based Significance Determination among Software Metrics

Attribute Coefficient Std

Error

Std

Coefficient

Tolerance t-stat p-

Value

Code

wmc 0.179 0.924 0.208 0.967 0.194 0.848

cbo 13.942 2.849 25.169 0.983 4.894 0.000 ****

lcom -3.162 0.435 -13.766 0.917 -7.263 0.000 ****

ca -13.640 2.749 -48.166 0.983 -4.962 0 ****

ce -3.252 0.513 -3.358 0.993 -6.336 0.000 ****

npm 1.602 0.792 2.065 0.961 2.024 0.051 *

loc -0.714 0.235 -0.951 0.940 -3.039 0.003 ***

mfa 0.050 0.035 0.051 0.997 1.400 0.212

max_cc 1.012 0.213 1.142 0.997 4.743 0.00 ****

From the table 6 it is observed t − test on each

software metric is applied and compared with their

corresponding P -value for each metric as a measure of how

effectively it separates the groups. In this Software metrics

which are having P - value smaller than 0.05 have strong

discrimination powers.

TABLE 7: Sample Modules with software metrics selected to

predict the number of faults.

From the table 7 depicts the input to the modified ACO

assumes a priori knowledge of the number of faults detected

for each module based on the software metrics selected

Table 8: RESULTS AFTER SAMPLE RUN

Modules/

Software

Metrics

S

1

S

2

S

3

S

4

S5 S

6

S

7

N0.of Faults

determined

M1 X X X X X 5

M2 X X X X X X 6

M3 X X 2

M4 X X X 3

M5 X X X X X X 6

M6 X X X X X 5

M7 X X X X X 5

M8 X X X 3

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1560 | P a g e

In this table 8, for each run the best path of all iterations are

reported. Also the final weight on the edges and the path

found in that run is shown. Though different paths were

explored by artificial ants in all he runs, still they could

converge to the optimal path.

VII. CONCLUSION AND FUTURE WORK

This paper shows the results of modified ACO based

fault prediction model to predict the number of faults in given

software. The experimental study was applied over six

software fault datasets taken from the tera-PROMISE

repository. The modified ACO determines the significance

among the software metrics using T-test to choose the optimal

metrics for prediction number of faults in the selected project.

The results have been evaluated in terms of average error

rates, recall and completeness measure. The resulting statistics

shows that proposed fault prediction model is able to predict

the number of faults with significant accuracy. In future, the

work will be extended by applying Different methodologies

will also be considered for further detailed investigation.

VIII. REFERENCES

1. Glenford J, Myers, Corey Sandler, The art of software testing,
John Wiley and sons, 3rd edition 2011, 240 pages.

2. Zheng, J. Cost-sensitive boosting neural networks for software
defect prediction. J. Expert Systems with Applications: An
international Journal, ACM digital Library, proceedings of sixth
International symposium on Software Metrics, 1999; 242-249.

3. Shatnawi, R. Improving software fault-prediction for
imbalanced data. IEEE Proceedings of International Conference
on Innovations in Information Technology, 2012; 54-59.

4. M. Shepperd, C. Schofield, and B. Kitchenham, ”Effort
estimation using analogy,” in of the 18th International
Conference On Software Engineering, pp.170- 178. Berlin,
Germany, 1996.

5. Alsmadi and Magel, “Open source evolution Analysis,” in
proceeding of the 22nd IEEE International Conference on
Software Maintenance (ICMS’06), Philadelphia, USA, 2006.

6. Runeson and Nyholm, “Detection of duplicate Defect report
uses neural network processing”, in Proceeding of the 29th
international conference on Software engineering 2007.

7. Lovedeep and Varinder Kaur Arti, “Application of Data mining
techniques in software engineering” International journal of
electrical, electronics and computer system(IJEECS) Volume-2
issue-5, 6. 2014.

8. T.J Ostrand, E.J Weyuker, R.M Bell, Prediction the location and
number of faults in large software systems. IEEE Transactions
on software engineering 2005, 31(4) p 340-355.

9. W. Afzal, R. Torkar, R.Feldt, Prediction of fault count data
using genetic programming, in proceedings of the 12th IEEE
International Multitopic conference, 2008, p 23-24.

10. Arvinder Kaur, Inderpreet Kaur, An empirical evaluation of
classification algorithms for fault prediction in open source

projects Journal of King Saud University – Computer and

Information Sciences (2018) 30, 2–17

11. Dhyan Chandra Yadav , Saurabh Pal , Software Bug Detection
using Data Mining, International Journal of Computer
Applications (0975 – 8887) Volume 115 – No. 15, April 2015

12. Rohit Mahajana, Sunil Kumar Gupta, Rajeev Kumar Bedi,
Design Of Software Fault Prediction Model Using BR
Technique, International Conference on Information and
Communication Technologies (ICICT 2014), Science Direct,
Procedia Computer Science 46 (2015) 849 – 858

13. http://openscience.us/repo/defect/

14. http://openscience.us/repo/

15. T.M. Khoshgoftaar ; J.C. Munson ; B.B. Bhattacharya ; G.D.
Richardson, Predictive modeling techniques of software quality
from software measures, IEEE Transactions on Software
Engineering (Volume: 18, Issue: 11, Nov 1992)

16. L Briand, J. Wust, Empirical studies of quality models in object
oriented systems. Advances in computers journal, 2002, 56(1), p
97-166

17. M. Dorigo and T. Stutzle. The ant colony optimization
metaheuristic: Algorithms, applications, and advances, 2002

18. Blum C. Theoretical and practical aspects of Ant colony
optimization. Dissertations in Artificial Intelligence. Berlin:
Akademische Verlagsgesellschaft Aka GmbH; 2004

AUTHOR PROFILE

J. M. Dhayashankar, Assistant Professor,
Department of BCA, Sri Ramakrishna Mission Vidyalaya
College of Arts and Science,

Dr. A. V Ramani, Head and Associate Professor,
Department of Computer Science, Sri Ramakrishna
Mission Vidyalaya College of Arts and Science.

RUN Iteration ANT Best

Path

Weight on edges

after all the

iterations

1,5 : 0.421441

3,4 : 5.12349

3,7 : 1.121931

4,5 : 5.12349

5,7: 0.421441

Rest all edges

have 0 weight.

Best Path is

found to be :

3,4,5

1

 1 A1 1,5,7,3

2 A8 7,3,4,5

3 A5 3,4,5

4 A3 3,4,5

2

1 A5 5,1,3 Weight on edges

after all the

iterations

1,3 : 6.801621

1,5 : 6.801621

Best Path is

found to be :

3,1,5

2 A3 3,1,5

3 A5 5,1,3

4 A3 3,1,5

http://openscience.us/repo/defect/
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.T.M.%20Khoshgoftaar.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.J.C.%20Munson.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.B.B.%20Bhattacharya.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.G.D.%20Richardson.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.G.D.%20Richardson.QT.&newsearch=true
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4477

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1561 | P a g e

