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ABSTRACT. In the 1970’s, Serre exploited congruences between g¢-
expansion coefficients of Eisenstein series to produce p-adic families
of Eisenstein series and, in turn, p-adic zeta functions. Partly through
integration with more recent machinery, including Katz’s approach to
p-adic differential operators, his strategy has influenced four decades
of developments. Prior papers employing Katz’s and Serre’s ideas
exploiting differential operators and congruences to produce families
of automorphic forms rely crucially on g-expansions of automorphic
forms.

The overarching goal of the present paper is to adapt the strategy to
automorphic forms on unitary groups, which lack g-expansions when
the signature is of the form (a,b), a # b. In particular, this paper
completely removes the restrictions on the signature present in prior
work. As intermediate steps, we achieve two key objectives. First,
partly by carefully analyzing the action of the Young symmetrizer on
Serre-Tate expansions, we explicitly describe the action of differen-
tial operators on the Serre-Tate expansions of automorphic forms on
unitary groups of arbitrary signature. As a direct consequence, for
each unitary group, we obtain congruences and families analogous to
those studied by Katz and Serre. Second, via a novel lifting argu-
ment, we construct a p-adic measure taking values in the space of
p-adic automorphic forms on unitary groups of any prescribed signa-
ture. We relate the values of this measure to an explicit p-adic family
of Eisenstein series. One application of our results is to the recently
completed construction of p-adic L-functions for unitary groups by
the first named author, Harris, Li, and Skinner.
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1 INTRODUCTION

1.1 MOTIVATION AND CONTEXT
1.1.1 INFLUENCE OF A KEY IDEA OF SERRE ABOUT CONGRUENCES

J.-P. Serre’s idea to exploit congruences between Fourier coefficients of Eisen-
stein series to construct certain p-adic zeta-functions continues to have a
far-reaching impact. His strategy has led to numerous developments, partly
through integration with more recent machinery. For example, his approach is
seen in work on the Iwasawa Main Conjecture (e.g. in [SUI4]). Emblematic of
the reach of Serre’s idea to interpolate Fourier coefficients of Eisenstein series,
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DIFFERENTIAL OPERATORS AND FAMILIES 3

his p-adic families of Eisenstein series also occur even in homotopy theory, as
the Witten genus, an invariant of certain manifolds [Hop02] [AHR10].

Serre’s idea in [Ser73] has been employed in increasingly sophisticated settings.
J. Coates and W. Sinnott extended it to construct p-adic L-functions over real
quadratic fields [CS74], followed by P. Deligne and K. Ribet over totally real
fields [DR80]. Developing it further, N. Katz handled CM fields K (when p
splits in K), using congruences between Fourier coefficients of Eisenstein series
in the space of Hilbert modular forms [Kat78|. Using Katz’s Eisenstein series,
H. Hida produced p-adic L-functions of families of ordinary cusp forms [Hid91],
leading to A. Panchishkin’s p-adic L-functions of non-ordinary families [Pan03].

The p-adic families of Eisenstein series on unitary groups of signature (n,n)
in [Eis15l [Eisld] [Eis16] and related families of automorphic forms for arbi-
trary signature in Theorem of this paper play a key role in the recent
construction of p-adic L-functions for unitary groups [EHLS16]. (The related
approach proposed in [HLS06], on which [EHLSI6] elaborates, also inspired
work in [Boul4, [EW16, [Hsil4) [Liul6l [Wan15].) These p-adic families also con-
jecturally give an analogue of the Witten genus, at least for signature (1,n)
[Beh9).

1.1.2 AN INSPIRATION FOR FOUR DECADES OF INNOVATIONS AND THE NE-
CESSITY OF MORE

Most of the four decades of developments in Section [1.1.1| require increasingly
sophisticated methods, even though the overarching strategy (“find a family
of Eisenstein series, observe congruences, relate to an L-function”) is well-
established. The devil is in the details. We now highlight three ingredients
from the above constructions most relevant to the details of the present work:
(1) g-expansions; (2) differential operators; (3) Eisenstein series.

(1) ¢-EXPANSIONS. All prior papers employing Serre’s idea to exploit congru-
ences between Eisenstein series rely crucially on the g-expansions of automor-
phic forms. The key goal of the present paper is to extend the aforementioned
strategies to automorphic forms on unitary groups, which lack g-expansions
when the signature is not (n,n). In their place, we use Serre-Tate expansions
(or t-expansions), expansions at ordinary CM points (whose structure leads
to a natural choice of coordinates, Serre—Tate coordinates) and the Serre-Tate
Expansion Principle [CEF*16, Theorem 5.14, Proposition 5.5, Corollary 5.16].

(2) DIFFERENTIAL OPERATORS. A key innovation of Katz in [Kat78] is the con-
struction of p-adic differential operators (generalizing the Maass—Shimura oper-
ators studied extensively by Harris and Shimura [Har81], [Shi97), [Shi00l [Shi84])
and a description of their action on g-expansions, when p splits in the CM
field. Lacking g-expansions, we compute the action of differential operators on
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4 E. EiscHEN, J. FINTZEN, E. MANTOVAN, & 1. VARMA

Serre-Tate expansions and, as a consequence, produce congruences and fami-
lies of p-adic automorphic forms. Our work builds on [Eis09, [Eis12, [EFMV16|
Kat81], Brol3|] and requires careful analysis of the action of Schur functors (in
particular the Young symmetrizer) on Serre-Tate expansions. (In a different
direction, E. Goren and E. de Shalit recently constructed p-adic differential
operators for signature (2,1) with p inert [dSGI16].)

(3) EISENSTEIN SERIES. The constructions in Section [I.1.1]rely on congruences
between g¢-expansion coefficients of Eisenstein series. For unitary groups of
arbitrary signature, we compensate with explicit computation of the action
of the Young symmetrizer on Serre-Tate coordinates. Also applying a novel
lifting argument to the Eisenstein series on unitary groups of signature (n,n)
constructed in [Eis15l [Eis14] independently of Serre-Tate coordinates, we also
construct explicit p-adic families for arbitrary signature.

1.2 THIS PAPER’'S MAIN RESULTS, INNOVATIONS, AND CONNECTIONS WITH
PRIOR WORK

As noted above, a key accomplishment of this work is that it produces families
without needing g-expansions and thus is applicable to unitary groups of all
signatures. The results and techniques in this paper carry over to the auto-
morphic forms in other papers extending Serre’s strategy (i.e. Siegel modular
forms, Hilbert modular forms, and modular forms) but are unnecessary in those
settings (since they have g-expansions).

As a consequence of the work in the first sections of this paper, we finish the
problem of constructing p-adic families sufficient for the p-adic L-functions in
[EHLS16], completely eliminating conditions on signatures. We also expect our
results on Serre—Tate expansions to have applications to the extension to the
setting of unitary groups of the results of A. Burungale and Hida on u-invariants
[BH14].

1.2.1 THREE MAIN RESULTS

Main Results 1, 2, and 3 below rely on a careful application of a combination
of arithmetic geometric, representation theoretic, and number theoretic tools.
We denote by V the space of p-adic automorphic forms (global sections of a
line bundle over the Igusa tower, as defined by Hida in [Hid04]) on a unitary
group G.

MaIN RESULT 1 (summary of Theorem and Corollary . For each
classical or p-adic weight k (viewed as a character) meeting mild conditions,
there is a p-adic differential operator ©F acting on V', with the property that if
the weight of f € V is w, then the weight of ©F f is w-k, and if kK = k' mod p® for
some e, then O~ f = @”"f mod p®. As a consequence, one can use the operators
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DIFFERENTIAL OPERATORS AND FAMILIES 5

to obtain p-adic families of forms (which are closely related to certain C*-
automorphic forms, e.g. those appearing in Main Result@.

MAIN RESULT 2 (summary of Theorem [5.1.3|and Corollary[5.2.10). While con-
structing and explicitly describing the action of ©" on Serre—Tate expansions
(also called t-expansions), we compute the precise polynomials (in the proof of
Proposition by which the coefficients in the expansion are multiplied upon
applying the differential operators.

MAIN RESULT 3 (summary of Theorem|7.2.4)). There is a p-adic measure taking
values in' V' and providing an explicit family of p-adic automorphic forms closely
related to the C™ Eisenstein series studied by Shimura in [Shi97].

1.2.2 METHODS

The construction of the differential operators builds on earlier results on p-adic
differential operators in [Kat78] (for Hilbert modular forms), [Eisl12l [Eis16]
(for unitary groups of signature (n,n) and pullbacks to products of definite
unitary groups), and [Pan05] (for Siegel modular forms). Unlike in those ear-
lier cases, though, the lack of g-expansions in the case of unitary groups not of
signature (n,n) necessitates modifying the approach of those papers. Instead,
we take expansions at ordinary CM points (Serre—Tate expansions) and apply
the Serre-Tate Expansion Principle [CEF*16, Theorem 5.14, Proposition 5.5,
Corollary 5.16]. Also, unlike earlier constructions, by employing Hida’s den-
sity theorem, we extend the action of the operators to p-adic (not necessarily
classical) weights.

Our ability to establish congruences among differential operators depends on
appropriately choosing the p-adic integral models for the algebraic representa-
tions associated with dominant weights. In particular, our models are slightly
different from those considered in the work of Hida [Hid04], and our construc-
tion relies on the theory of Schur functors and projectors. The congruences
follow from a careful analysis of the action of Schur functions (and especially
the generalized Young symmetrizer) and rely on the description in Main Result

In Section [6] we also extend Main Results [I] and [2] to the case of pullbacks
from a Shimura variety to a subvariety. While Main Results [I] and [2] focus
on the description of the operators on Serre—Tate expansions, the precision
with which we work out details for Serre-Tate expansions allows us also to
transfer some of our results to devise a novel lifting argument (in the proof of
Theorem concerning only g-expansions that produces explicit families of
automorphic forms, summarized in Main Result|3] (The key idea is to apply a
lifting argument, together with the description of the action of the differential
operators and pullbacks developed in Section [6] and in the proof of Proposition
to the Eisenstein series constructed in [Eis15l [Eis14].) These families feed
into the machinery of p-adic L-functions in [EHLS16].
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6 E. EiscHEN, J. FINTZEN, E. MANTOVAN, & 1. VARMA

Remark 1.2.1. Although there are no g-expansions in the setting of unitary
groups of arbitrary signature, these operators can naturally be viewed as the
incarnation of Ramanujan’s operator qdi in this setting. The families that can
be obtained by applying such operators are broader than what can be obtained
by tensoring with powers of a lift of the Hasse invariant, since our construction
allows, for example, non-parallel weights.

Remark 1.2.2. It would also be beneficial to have a p-adic Fourier—Jacobi ex-
pansion principle for unitary groups of arbitrary signature (which appears to
be possible to state and prove - via a lengthy, technical argument - building on
recent arithmetic geometric developments, e.g. [Lanl3]). This would provide
an alternate but ultimately more direct route (modulo the necessity of first
proving such an expansion principle) to the construction of families. On the
other hand, we also expect our work with the Serre-Tate expansions themselves
to be useful in other applications, e.g. an extension of Burungale and Hida’s
work in [BHT4].

1.3 STRUCTURE OF THE PAPER

Section |2 introduces our setup and recalls key facts about unitary Shimura
varieties, the Igusa tower, and p-adic and classical automorphic forms (following
[CEE™16l Sections 2 and 3]). It also provides necessary results on t-expansions
from |CEF™16] and an overview of Schur functors, on which our computations
rely crucially.

Sections [3| and [4] give global and local descriptions, respectively, of the dif-
ferential operators. In particular, Section [3| discusses differential operators of
integral (classical) weights that act on the automorphic forms introduced in
Section 2} Using Schur functors, we build these operators from the Gauss—
Manin connection and the Kodaira—Spencer morphism. In Section {4l via a
careful computation of the action of the Young symmetrizer, we describe the
action of the differential operators on Serre—Tate coordinates.

In Section [B] we use the description of the action of the differential operators on
t-expansions, and Hida’s density theorem, to prove the operators extend to the
whole space of p-adic automorphic forms. We then establish congruences among
operators of congruent weights, which we interpolate to differential operators
of p-adic weights on the space of p-adic automorphic forms, leading to Theorem

5.2.6| and Corollary (summarized in Main Result [I| above) and Theorem
5.2.10 t

5.1.3 and Corollary (summarized in Main Result |2 above).

Section [6] describes the behavior of the differential operators with respect to
restriction from one unitary group to a product of two smaller unitary groups.
Restrictions of p-adic automorphic forms play a crucial role in the construction
of p-adic L-functions in [EHLS1E].

Section [7] constructs p-adic families of automorphic forms on unitary groups
of arbitrary signature, by applying a novel lifting strategy and our p-adic dif-
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DIFFERENTIAL OPERATORS AND FAMILIES 7

ferential operators to restrictions of p-adic families of Eisenstein series from
[Eis1®l [Eis14]. Theorem (summarized in Main Result [3| above) produces
a p-adic measure taking values in the space of p-adic automorphic forms of
arbitrary signature related to the given family of Eisenstein series. This result
is in turn used in the construction of p-adic L-functions in [EHLST6].

1.4 NOTATION AND CONVENTIONS

Fix a totally real number field K* of degree r and an imaginary quadratic
extension Ky of Q. Define K to be the compositum of K* and Ky. Additionally,
we will fix a positive integer n, and a rational prime p > n that splits completely
in K/Q. If K is an imaginary quadratic field, we put further restrictions when
n =2 (see Remark 2.3.2).

The above assumptions ensure the following:

e Our unitary group at p is a product of (restrictions of scalars of) general
linear groups

e The Shimura varieties of prime-to-p level we consider have smooth inte-
gral models (with moduli interpretations) after localizing at p

e Sections of automorphic bundles on open Shimura varieties coincide with
those on their compactifications, by Koecher’s principle.

e The ordinary locus of the reduction modulo p is not empty

e We can p-adically interpolate our differential operators (see Proposition

and Theorem [5.2.6]).

We now discuss some notation used throughout the paper. For any field L, we
denote the ring of integers in L by Op. We use A to denote the adeles over Q,
and we write A* (resp. A*?) to denote the adeles away from the archimedean
places (resp. the archimedean places and p). For our CM field K, let ¢ denote
complex conjugation, i.e. the generator of Gal(K/K*). We denote by 3 the set
of embeddings of K* into @p, and we denote by X the set of @p—embeddings
of K. Additionally, fix a CM type of K, i.e. for each 7 € ¥ choose exactly
one K-embedding 7 extending 7, and abusing notation, identify the set of 7
with . Under this identification, note that ¥ u X¢ = ¥ . Additionally, fix an
isomorphism 1, : C 5 @p, and let Yo, = z;lZ and Yk o = z;lZK. We will often
identify Y. with ¥ and Y g o with Y via the above isomorphism without
further mentioning.

The reflex field associated to our Shimura varieties will typically be denoted by
E (with subscripts to denote different reflex fields in Section 6). Additionally,
define the primes above p using the decomposition of pOx = [Ti_; PP where
p; =P P5 are the primes above p in Ok+.
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8 E. EiscHEN, J. FINTZEN, E. MANTOVAN, & 1. VARMA

We denote the dual of an abelian scheme A by AY. We also denote the dual
of a module M by MY. Given schemes S and T over a scheme U, we denote
the scheme S xyy T by Sr. When no confusion is likely to arise, we sometimes
use the same notation for a sheaf of modules and a corresponding module (e.g.
obtained by localizing at a point).

For any ring R, we denote by M,,«,(R) the space of n xn matrices with entries
in R, and we denote by Herm, (K) the space of Hermitian matrices inside
My (K).

2 BACKGROUND AND SETUP

In this section, we recall facts about Shimura varieties, automorphic forms,
and p-adic automorphic forms that will play a key role in the rest of the paper.
Most of this material is covered in detail in [CEF*16, Sections 2.1 and 2.2].
Like in |[CEEF*16], the definitions of the PEL data and moduli problems follow
[Kot92], Sections 4 and 5] and [Lanl3, Sections 1.2 and 1.4].

2.1 UNITARY GROUPS AND PEL DATA
By a PEL datum, we mean a tuple (K, ¢, L, (,),h) consisting of

e the CM field K equipped with the involution ¢ introduced in Section

o an Og-lattice L, i.e. a finitely generated free Z-module with an action of

OK7

e a non-degenerate Hermitian pairing (-,-) : Lx L — Z satisfying (k-vy,vs) =
(v1, k¢ - vg) for all vi,v9 € L and k € O,

an R-algebra endomorphism
h:C— End@K®ZR(L ®z R)

such that (vi,vs) ~ (v1, h(i) - v2) is symmetric and positive definite and
such that (h(z)vy,vs) = (v1, h(Z)ve).

Furthermore, we require:

e L, := L ®zZ, is self-dual under the alternating Hermitian pairing (-,-),
on L ®z Q.

Given a PEL datum (K,c,L,(,),h), we associate algebraic groups GU =
GU(L,{,}), defined over Z, whose R-points (for any Z-algebra R) are given
by

GU(R) :={(g9,v) € Endo,e,r(L ®z R) x R* | (g-v1,9v2) = v{v1,v2)}
U(R):={g €Endoye,r(L®z R) [{(g-v1,9 v2) = (v1,v2)}
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DIFFERENTIAL OPERATORS AND FAMILIES 9

Note that v is called the similitude factor. Additionally, we can define the
R-vector space equipped with an action of K :

Vi=LezR.

The endomorphism h¢ = h xg C gives rise to a decomposition Vg =V @g C =
Vi @ V2 (where h(z) x 1 acts by z on V; and by z on Va). The reflex field E of
(V,(,),h) is the field of definition of the GU(C)-conjugacy class of V;.

We have further decompositions Vi = @,cx, V1,» and Vo = @,cx, Vo - induced
from the decomposition of K ®g C = ®,ex,C, where only the 7-th C acts
nontrivially on V; = Vi ; @ V5 -, and it acts via the standard action on Vi ,
and via conjugation on V, ;. The signature of (V,{(,),h) is the tuple of pairs
(a+T,a,T)T€EK where a,, = dimc V1 > and a_, = dimg Vo, for all 7€ ¥ . The
sum a,, + a_, is independent of 7 € Yk, and so we define

ni=a,, +a_,.
(Note that a,,c = a_,.) Finally, we define an algebraic group

H := H GL,, xGL,__

TEX

over Z. Note that H(C) can be identified with the Levi subgroup of U(C)
that preserves the decomposition V¢ = V5 @ V. Additionally, we will denote
the diagonal maximal torus of H by T, and the unipotent radical of the Borel
subgroup of upper triangular matrixes by N.

2.2 PEL MODULI PROBLEM AND SHIMURA VARIETIES

We now introduce the Shimura varieties associated to a given PEL datum
(K,c,L,{,),h). We will restrict our attention to the integral models (defined
over Op ® Z(y)) of such PEL-type unitary Shimura varieties that have prime-
to-p level structure and good reduction at p.

Let U ¢ GU(A*) be an open compact subgroup. We assume U = UPU,, is neat
(as defined in [Lanl3, Definition 1.4.1.8]) and that U, c GU(Q,) is hyperspe-
cial. Consider the moduli problem (5,s) — {(A,i,\,«)/ ~} which assigns to
every connected, locally noetherian scheme S over O ® Z(,) together with
a geometric point s of S, the set of equivalence classes of tuples (4,1, A, @),
where:

e A is an abelian variety over S of dimension g := nr=n[K*:Q],
o i: Ok (p) = (End(A)) ®z Zp) is an embedding of Z,)-algebras,

e \: A — AV is a prime-to-p polarization satisfying X o i(k¢) = i(k)Y o X for
all ke Ok,
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o «isam(S,s)-invariant UP-orbit of K ®g AP**-equivariant isomorphisms
Loz AP® 5 VPA,

which takes the Hermitian pairing (-,-) on L to an (AP”*)*-multiple of
the A\-Weil pairing (+,-)» on VP A (the Tate module away from p).

In addition, the tuple (A, 4, A, &) must satisfy Kottwitz’s determinant condition:

detc(Ok|V1) = detoy (Ok|LieA).

Two tuples (4,7, A, ) ~ (A',i', N, ") are equivalent if there exists a prime-to-p
isogeny A — A’ taking ¢ to i’, A to a prime-to-p rational multiple of A" and «a
to .

This moduli problem is representable by a smooth, quasi-projective scheme
My over Op ® Zp. (See [Lanl13, Corollary 7.2.3.10].) If we allow U” to vary,
the inverse system consisting of My, has a natural action of GU(A®?) (i.e.,
g € GU(A™P) acts by precomposing the level structure o with it). For any
scheme S over Spec(Og ® Zp)), we put

Muy,s = Mu o, ) S-

When S = Spec(R) for a ring R, we will often write My r instead of
MZ/{,Spec(R)-

We denote by M7/ the complex manifold of C-valued points of My, and by
My (C*°) the underlying C'*°-manifold. Given a sheaf F on My, we denote
by F (C*) the sheaf on My (C*) obtained by tensoring F with the C'*-
structural sheaf on My (C*). In the sequel, we fix the level U and suppress it
from the notation.

2.3 AUTOMORPHIC FORMS

Let W := W(F,) denote the ring of Witt vectors; note that Frac(W) contains
all embeddings of K < (@p, due to our assumptions on p. Let 7 : Auniv =

(A,i, A\, a)™" - Myy denote the universal abelian scheme. Define WA /M =
Taldyg /M as the pushforward along the structure map of the sheaf of relative
differentials. It is a locally free sheaf of rank nr, equipped with the structure
of an Ok ® W-module induced by the action of Ok on A,,iv. Hence, we obtain
the decomposition:

gAuniv/M - Qé:(gjauniv/MvT ®g:4uniV/Ma7—) (1)
TE

where giumv M has rank a., and an element x € O acts on @;lumv /M (resp.
W hmie /M ) via 7(x) (vesp. 7¢(x)). We can then define &, = £ as the sheaf:

&= g%lsﬂoM ((OM)a”ﬂ;\umv/M,r) ® %mOM ((OM)Q_T&)MW/M,T) :
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DIFFERENTIAL OPERATORS AND FAMILIES 11

Note there is a (left) action of H on & arising from the action of GL
Isom (((’)M)a“ ,gjuniv/MyT) for all K-embeddings 7€ X.

on

Arr

Consider an algebraic representation p of H (over W) into a finite free W-
module M,. For any such p, we define the sheaf £, = &, , := £ x? M, i.e. for
each open immersion Spec R & M, set £,(R) = (E(R) x M, ®w R) [ ({,m) ~
(92, p("g~")m).

An automorphic form of weight p defined over a W-algebra R is a global section
of the sheaf £, on Mp.

Remark 2.3.1. Usually, automorphic forms are defined as sections on a com-
pactification of Mp,. By Koecher’s principle the two definitions are equivalent,
except when ¥ consists only of one place 7 and (ay-,a_,) = (1,1). For the re-
mainder of the paper, we exclude this case.

2.4 STANDARD REPRESENTATION, HIGHEST WEIGHTS, AND SCHUR FUNC-
TORS

We briefly recall some useful facts about H from the theory of algebraic (ra-
tional) representations of linear algebraic groups.

2.4.1 HIGHEST WEIGHTS OF AN ALGEBRAIC REPRESENTATION OF H

The irreducible algebraic representations of H = [,y GL,, xGL,__ over any
algebraically closed field of characteristic 0 (up to isomorphism) are in one-
to-one correspondence with the dominant weights of its diagonal torus T =

H‘reZ Ta+7 x TG—T‘

For 1<i<n, let ¢] in X(T') := Homg (T, Gy, )=Homg, (T,Gy,) be the charac-
P

ter defined by

el T(@) = [1Tu,, (@) x T (@) ~ Gn(@,)

oex
i (diag(V] 1, Vmn)oes) = Vi

s

These characters form a basis of the free Z-module X (T"). We choose A =
{a] = €] — €], }res1<ic<n,iza,. as a basis for the root system of H. The set of
all dominant weights of T with respect to A is X(T); = {k € X(T)| (k, &) >
0Va e A}. Using the basis {e] : 7€ X,1<i<n} of X(T), we identify:

X(T)s 2 {(k], K )res € [[ 2" K] 2 KI,q Vi#as,},
TED

where & = (k7) .., and 7 = [1;(¢])" . For each dominant weight r, p,; : Hg -
M, denotes an irreducible algebraic representation of highest weight x. (See,
for example, [Jan03| Part IT. Chapter 2].)
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2.4.2 SCHUR FUNCTORS

We briefly recall the construction of Schur functors, adapted to our setting.
(We refer to [FHII, Sections 4.1 and 15.3] for the usual definitions).

For k a positive dominant weight, i.e. k= (k],...,&])rex € X (7). satisfying
T T ; : T+ — | peTH| .= T+ T T— _
k] > k[, 20 forall 7 €X and i # a,,, we write d[." = [x"*| = X7 K], dT =
T—| ._ |\ T T+ _ T T T— _ T T
|77 = X, 1k, and regard K77 = (K7,... kg, ) and K7 = (kg ..., k)

as a partition of d]*. When there is an integer k such that x] = k for all ¢ and
T, we denote k := k.

To each x7*, there is an associated Young symmetrizer c[* € Z[&47+] in the
group algebra of the symmetric group G4-+ on d* symbols. If V' is any module

over a ring R, we let G4r+ act on the d]*-th tensor power V®d* on the right
by permuting factors. This action extends to give a right-Z[&4r+ ]-module

T+
structure on V&

We define the k™*-Schur functor on the category of R-modules

Spre (V) 1= VO L 7% c o4,

We now assume R is a Zy-algebra or an algebraically closed field of characteris-
tic 0. Then for each K™, Sy-+(R**) is an irreducible representation of GL,, _
with highest weight ™ ([FH91, Proposition 15.15 and Proposition 15.47]).

Let V=@, (VO"®V™7) be an R-module, together with such a decomposi-
tion. We define the k-Schur functor, for k a positive dominant weight, by
Sk(V) = Bres (Ser+(VIT) RS, (V™T))
_ ('ZTEZ ((V+’T)®d;+ = (V—,T)®d;_)) Cr C V®d”,

where d,; = ZE (dir +di7) and ¢, = ®rex (cF ® ¢ 7). We call ¢, the generalized
TE
Young symmetrizer.

We now consider the case of non-positive dominant weight. If K™* is a dominant
weight, but x; , <0 we define

Snfi (V) = SK/Ti_(K/T

KT
aym) 9 Rayr

y (V) @ det(V)"asr,

Similarly, if k7™* is dominant, but k] < 0, we define Si-(V) :=
Skre—(nr enr) (V) ® det(V)*n. This allows us to extend the definition of
the Schur functor S, to all dominant weights .

Throughout this paper, for each dominant weight k, we denote the irreducible
representation Sy (@rex; (Zy'™ @ Zp ")) of Hyz, of highest weight by p.. In
the following, we sometimes write (-)?~ for S.(-), and also & . (resp. &) in
place of &y ,, (resp. &,,.).
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Remark 2.4.1. In [CEF"16] (see [CEF*16L Remark 3.5]) the symbol p,; is used

for the representation py := Indg%p (=r) of Hz, of highest weight x, where B~
is the Borel subgroup containing 7' corresponding to lower triangular matrices
in Hz,. For each dominant weight r, the two representations p, and pj are
isomorphic over Q,, and by Frobenius reciprocity

~ H
Homp, (pw,prx)=Homp, (p,.ﬁIndB%” (—m)) ~ Hompg- (px, k) (2 Zyp).

The isomorphism between the left and right hand side is given by composi-
tion with ev,, where ev, is defined by ev,(f) = f(1) for f € Indg%”(—/{). In
particular, a choice {¢, } of a Z,-basis of Homp- (ps, ) yields an injection
iy from p, into Py such that €5, = ev, oi,. (Note that ev, is denoted £¢ay, in

[CEF*16).) -

2.4.3 PROJECTION ONTO HIGHEST WEIGHT REPRESENTATIONS

We will use the material from this section to construct and study differential
operators on p-adic automorphic forms. For comparison, we note that a dis-
cussion of differential operators on C* automorphic forms and the description
of highest weights in that case is in [Shi00, Section 12.1] and [Shi&4]; a related
(but briefer) description also is available in [Shi97] Section 23]. In this section,
we denote the standard representation @, ex; (Zy*" @ Zp ") of Hy by V.

Let B = U {br 1, b} be the standard basis of V, and BY = u {bY,---, b .}

10 HY7rn

be the corresponding dual basis. For each positive dominant weight x, we write
Tk + V®d~ - Pk

for the surjection obtained from projecting onto summands and applying the
generalized Young symmetrizer.

DEFINITION 2.4.2. For each positive dominant weight «, we define £5, to be
the Z,-basis of Hompg- (p, k) such that

= ome = [T TN @ @Y. -c.. 2)

TeX =1 Tex i=1

We have chosen the above normalization so that Remark [5.2.1] holds.

DEFINITION 2.4.3. A weight « = (K], K], )rex is called sum-symmetric if s is
positive dominant and d.* = d],~ for all 7 € ¥, where d[* = Y727 k] and d,” =
Z?:aﬁ +1 k7. A representation p is called sum-symmetric if it is isomorphic to
pr for some sum-symmetric weight . In this case we call e, = Y .5 dit = d,;/2
the depth of k or of the representation p.

DEFINITION 2.4.4. A weight & is called symmetric if k is sum-symmetric and
for all 7€ ¥ we have

T_
K; =K

T . .
a, +i for all 1 <i<min(a,,a-;).
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14 E. EiscHEN, J. FINTZEN, E. MANTOVAN, & 1. VARMA

Remark 2.4.5. If k is sum-symmetric of depth e, then, by the Schur functor
construction, the representation p, of Hz, of highest weight « is a quotient of
(Bres (Zp @ Zy77)) %"

LEMMA 2.4.6. Let x be a positive dominant weight, let k' be a sum-symmetric
weight. Then the projection Ty : V&r' - p... factors through the map

T ® Ty 2 VEn! o @ @ @ Pr ® Prr-

Moreover, if we denote the resulting projection p,, ® pyr = prwr bY Ty 7, then

Ecﬁan ® ggan = 25:11 °© WH,H" (3)
and R } }
€an ® Lean = Lean- (4)

Proof. Recall the injection i, : p, = Py = Indg%p (-k) defined in Remark
and note that (i.)qg, is an isomorphism. Let Ty . : Dk ® Par = Prxr be the
projection obtained by f® f' — ff’, and define 7y . : pi ® prr = prr to be the
composition

(imﬁ’)@i Oﬁ:&ﬁ' ° ((in)Qp ® (in’)Qp)-
Then we obtain after base change to @Q,, that

U ® e, = €V 0l ® €V, Olyr = €V 4y 0T o © (G ® Uyer) = Lipy © T -
Using Equation and the definition of the action of ¢, we deduce that

’
KK
ann O M,k’ © (ﬂ-li ® ’/TK') = gcan O TMkp!-

Thus by Frobenius reciprocity 7, . o (T ® Txr) = T, and it only remains
to check that 7, ./ is defined over Z,. However, this follows from =, being
defined over Z, and the surjectivity of 7, ® m,. O

2.5 THE IGUSA TOWER OVER THE ORDINARY LOCUS

In this section, we introduce the Igusa tower as a tower of finite étale Galois
covers of the ordinary locus of a Shimura variety. This construction is due to
Hida in [Hid04, Section 8.1] (see also [CEEF*16l Section 4.1]). We recall that
our Shimura varieties have hyperspecial level at p and neat level away from p
(and that we suppressed the level from the notation).

We fix a place P of E above p and denote the residue field of Og, c Ep by k.
Abusing notation, we will still denote the base change of M to O, by M.

Let ﬂord over k be the ordinary locus of M = M ®0y, k, and M over O,
be the ordinary locus of M as defined in [Lanl4l Definition 3.4.1.1]. Then
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M = pmord ®0y,, k. For each m > 1, the scheme Merd ®0p,, W/p"W agrees
with the locus where a lift of (a sufficiently large power of) the Hasse invariant
does not vanish. Since we assume p splits completely in K (which implies that
p splits in the reflex field E), M° is nonempty, in fact it is open and dense.
We fix a connected component S°¢ of MG :=pq0rd X0z, W. Equivalently,

8§ is the ordinary locus of a fixed connected component S of Myy.

Let A% = A /sera be the universal (ordinary) abelian variety over sord,

Pick a W-point z of S°*4, and denote by Z the underlying F,-point. We can
identify the Z,-lattice L, (defined in Section with the p-adic Tate module of
A9™d[p>]. Choose such an identification L, ~ T},(A%*4[p>]), compatible with
the Og-action and identifying the Hermitian pairing with the Weil pairing.
Then, the kernel of the reduction map

T, (AT [p°]) = T, (AT [p™]%)
determines an Og-submodule £ c L,. Using the self-duality of L, under the
Hermitian pairing (-,-) and its compatibility with the A\-Weil-pairing (-,-)x, we

can identify the dual £Y of £ with the orthogonal complement of £ inside L.
Note that £ decomposes as

L=,x(LeL]).

In the sequel, we write
L2 =0, Ll 0L (5)

We now introduce the Igusa tower over the p-adic completion of S°*4. For each
m € Zs1, we write Sﬁfd = 8O W/p™W. For each n,m € Zs;, consider the
functor

Ig, m {Schemes/Sﬁfd} — {Sets}
that takes an SSr-scheme S to the set of Og-linear closed immersions
tn + L ®z, pipn > As[p"],

where Ag = A% x gora S. This functor is represented by an S%"4-scheme, which
by abuse of notation we also denote by Ig,, ,,,. For each n>1, Ig, ., is a finite

étale and Galois cover of anrd, whose Galois group is the group of Og-linear
automorphisms of £/p™L.

For each n > 1, we define the formal scheme Ig, :=lim Ig, .. Equivalently,
we define Ig,, as the formal completion along the special fiber of the scheme
representing the functor that takes a S°*d-schemes S to the set of Og-linear
closed immersions ¢, : £ ®z ppn = Ag[p"].

Finally, we define the infinite Igusa tower Ig as Ig := l(gln Ig,. Recall that in-
verse limit of projective system of formal schemes, with affine transition maps,
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16 E. EiscHEN, J. FINTZEN, E. MANTOVAN, & 1. VARMA

exists in the category of formal schemes (see [Far08, Proposition D.4.1].) Thus,
Ig exists as formal scheme, and is a pro-étale cover of the formal completion
of 8™ along its special fiber, with Galois group the group of O-linear auto-
morphisms of £, which we identify with H(Z,). For any point x( of the formal
completion of S° along its special fiber (e.g., 7o € S (W) or S™4(F,)), the
choice of a point z of Ig lying above xq is equivalent to the choice of an Igusa
structure of infinite level on A,,, i.e. of an Og-linear closed immersion of
Barsotti-Tate groups ¢, : £ ®z, fip= <> Agy[p>]. In the following, we write

L: L®g, fpe = Aerd [p>]

for the universal Igusa structure of infinite level on A°*¢ over Ig.

2.6 p-ADIC AUTOMORPHIC FORMS

Following Hida [Hid04, Section 8.1], we define p-adic automorphic forms as
global functions on the Igusa tower (see also [CEET16, Section 4.2]). For all
n,m e Zs1, let

Vom = H° (Ign,nw Olgn,m)a
we write Vo :=1im Vj, 1y, and Vo oo :=1im Vg .

’ —n ’ ? <~—m ’

Note that the space Vo oo is endowed with a left action of H(Z,), f ~ ¢g- f,
induced by the natural right action of g € H(Z,) on the Igusa tower.

We call VV := Viﬁﬁf?’ the space of p-adic automorphic forms.

The above definition is motivated by the existence of an embedding of the space
of p-adic automorphic forms, regarded as global sections of automorphic vector
bundles on S, into V. We briefly recall the construction ([Hid04, Section
8.1.2]) adapted to our setting.

Fixn >m > 0, and x any dominant weight. Let anym[n] denote the k-eigenspace

of the action of torus on VnIYTSLZP). We define a map

\Ilz,m : HO (S$d7gﬁ) - an\,[m[’ka]

as follows. We regard each f e H° (Sﬁfd,&{) as a function (4,j) —» f(A4,j) €
px(W.,,) on pairs (A4, ), where A = Agzd is an abelian variety associated to a
point z¢ of SO, and j is a the trivialization of w, = W gord gord g+ Using the
canonical isomorphism

~ pordr, niyét
W gordjSord > A [p ] ®05%d,

to each Igusa structure ¢ on A we associate a trivialization j, of w,. Finally,

we define W,y (f) € ;1 [£] as the function (A, ¢) = €5, (f(A,4.)). As n,m
vary, with n > m, we obtain a map

U, H (S8 E,) - VV[k], (6)
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where V¥ [k] denotes the s-eigenspace of the action of the torus on V.

We define

v P HUSUE) VY (7)
keX (T)+

to be the linear map whose restriction to H(8°,&,.) is U,..

THEOREM 2.6.1. [Hid0J), Prop. 8.2 & Thm. 8.3] The map ¥, is injective, and
after inverting p, the image of ¥

1
vl @ HUS™,E) HnVN
neX(ﬂ’I;)’+, p

is p-adically dense in V.

Proof. Proposition 8.2 and Theorem 8.3 in [Hid04] are conditional on the as-
sumption (given in [Hid04, Section 8.1.4]) that the following equality holds for
all ke X(T'), and all integers m > 1:

HO(Sord7€N)/pmH0(Sord7gﬁ) — HO(Sord75,i).

m

Here, we prove that such equations hold in our settings.

Although they have not been introduced in this paper, Lan has constructed

partial toroidal and minimal compactifications Sord*" and Sord™™ of gord (see
[LanT4l, Theorems 5.2.1.1 & 6.2.1.1]) as well as a canonical extension 2" of
&, to the partial toroidal compactifications (see [Lanld, Definition 8.3.3.1]).
Additionally, by [Lanl4, Proposition 6.3.2.4], for every m > 1, we have that

gord™n xyw W/p™W is affine. Because the pushforwards (under a proper map

by [Lanl4l Proposition 5.2.3.18]) of £5*" to Sord™™ are quasi-coherent, we can
conclude that

HO (Sordt0r7 g;an) Jp™ HO (Sordt0r7 S:;an) L (Sordtor sy W /p™W, g;an) )

We could then conclude the theorem if we knew that Koecher’s Principle ap-
plied. By [Lanl6, Remark 10.2], the analogue of [Lani6l Theorem 2.3] holds
for the partial compactifications of ordinary loci and so we deduce

HO(Sordtor’ &zan) _ HO (Sord7 5&)

O

The above statement implies that the p-adic closure of the space of integral
weight p-adic automorphic forms is the space of all p-adic automorphic forms.
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18 E. EiscHEN, J. FINTZEN, E. MANTOVAN, & 1. VARMA

2.7 SERRE—TATE THEORY FOR UNITARY SHIMURA VARIETIES

We briefly recall the main results in [CEF*16].

2.7.1 LOCAL COORDINATES AT ORDINARY POINTS

For any xg € SY(W), we write Tg € S (F,) for its reduction modulo p,
and denote by Sordgo the formal completion of S° x Fp at Tg. We also write
Sordgo = Spf(zzsord@() ). The ring Rgora ,, is a complete local ring over W, with
residue field F,, and we denote by mz, its maximal ideal.

Let Ap = .A%f)d denote the abelian variety over E, attached to the point zy, and

write T, Ao for the physical Tate module of Ay. It is a free O ®7 Z,-module,
which decomposes as

TpAo = &;_1 Ty, Ao D @] Tips Ao,

where the decomposition is induced from the identification Ok ® Z, =

1 (O, © Ok, ).

THEOREM 2.7.1. ([CEF*16, Proposition 5.8]) Let xo € S°™Y(W). There exists
a canonical isomorphism of formal schemes

T ~
813, > @ Homg, (T, Ao ® Tye Ao, Gr), 7> o
i=1

Zo
In the following, we identify the space @;_; Homgz, (T, Ao ® Tcpon,(@m) with

the subspace of Homg, (T,A0® T, A, (@m) consisting of all symmetric (Ox ®7
Zy, c¢)-hermitian forms, and write

q= QA/Sordgo : TpAo ® TpAo - (Grm (8)

for the universal symmetric (O ®z Zy, ¢)-hermitian form over Sord;U. This
implies that q satisfies q(Q,P) = q(P,Q) and q(kQ,P) = q(Q,k°P), for all
P,Q eT,Ap and k € Ok. In particular, for any P € Ty, Ao, q(Q, P) = 0 unless
Q € Tm;AQ

For any point x € Ig(W) above xp, we write Z for its reduction modulo p, and
tz for the Igusa structure of infinite level on Ay attached to the point Z. The
map (g : L ® pipe = Ao[p*°] induces an isomorphism of Ox ®z Z,-modules

Tp(ez) : TpAo — L. (9)
We denote by

T
te: @qule ®Tsp§A0 - (E2)V,
i=1
the Z,-linear isomorphism induced by the restriction of T}, (¢z")®?.
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PROPOSITION 2.7.2. ([CEF*16, Proposition 5.10]) Let xo € S (W). Each
point x € Ig(W) above xg defines an isomorphism of formal schemes B :
5§ 5 G @ L2,
Remark 2.7.3. Let t denote the canonical formal parameter on Gm, we write
By - Wt ® (£2)" > Reora
for the isomorphism of local rings induced by 3., where W[[t]]® (£*)" denotes
the complete ring corresponding to the formal scheme G,, ® £2. A choice of a
Zy-basis € of (L?)Y yields the isomorphism
Bie: W[t € €]] 5 Rgora s,

which satisfies the equality 8% () = q(t;' (1)) = 1 € mg,, for all [ € €.

2.7.2 THE t-EXPANSION PRINCIPLE

Let = € Ig(W). Recall that since Ig is a pro-finite étale cover of S°9, the
natural projection j : Ig - S°*¢ induces an isomorphism between the formal
completion of Ig at x and Sordgo, for xg = j(x) € S*Y(W). In particular, the
localization map at z induces a map locz : Veo,co = Rigord 4,-

For any f e VN, the t-expansion (or Serre-Tate expansion) of f is defined as

Fo(t) = B2 (locy () e WI[t]] ® (£2)".

Recall that, for all g € H(Z,), we have fys(t) = (id® g')(g- f).(t) ([CEF16]
Proposition 5.13]).

THEOREM 2.7.4. ([CEF' 16, Theorem 5.14, Proposition 5.5, Corollary 5.16])
1. For any weight &, and f e VN[k]: f.(t) =0 if and only if f =0.

2. For any f € VN, f =0 if and only if f.(t) = 0 for at least one CM
point x in each connected component of the Igusa tower. In particular,
for a choice of a CM point x, f =0 if and only if (9- f)=(t) =0 (equiv.
fzo(t) =0) for all g e T(Zy).

3. Let m e N. Let f,f € VN be two p-adic automorphic forms of weight r
and k', respectively. Then f = f'modp™ if and only if for all g € T(Zy)

#(9) f2(t) = K'(g) f(t) mod p™.
3 DIFFERENTIAL OPERATORS

In this section, we introduce differential operators similar to the ones in [Eis09]
Eis12]. Unlike [Eis09, [Eis12] (which only explicitly handles unitary groups
whose signature is of the form (ay,a-) with ay, = a_ at each archimedean
place), we place no restrictions on the signature of the unitary groups with
which we work.
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3.1 THE GAUSS—MANIN CONNECTION

We briefly review key features of the Gauss—Manin connection, which was first
introduced by Y. Manin in [Man58] and later extended and studied by N.
Katz and T. Oda [Kat70l, [KO68|. A detailed summary of the Gauss—Manin
connection also appears in [Eis12l Section 3.1]. Below, we mostly follow the
approaches of [KOGS| Section 2] and [Eis12] Section 3.1]. Throughout this
section, let S be a smooth scheme over a scheme T, and let 7 : X - S be a
smooth proper morphism of schemes. Define Hi,(X/S) to be the relative de
Rham sheaf in the complex Hjn(X/S), i.e. the quasi-coherent sheaf of graded
algebras on S given by

HIL(X/S) =Rim, (/)

here R, denotes the g-th hyper-derived functor of 7., and Q% /s denotes the
complex A*® Qi( /s on X whose differentials are induced by the canonical Kahler

differential Ox /s —~ Qﬁ( /s The de Rham complex (QB( /T d) admits a canonical
filtration

Fil* %) = Im (7°Q ) @0 O jr ~> W )r)
with associated graded objects

Gri(QS(/T) = 7T*Qfs*/T ®ox iix/s

(this follows from the exactness of the sequence 0 - m*Qg . - Q. > Qx5 —
0 for 7 smooth). Using the above filtration, one obtains a spectral sequence
(EP?) converging to R?m, (2% /;), whose first page is

EPY =RPY7, (GrP) 2 Qg/T ®0s Hyp (X/9) (10)

and such that the Gauss-Manin connection V is the map d9 : )7 - E}Y.
Using Equation 7 we regard V as a map

V' HY, (X/S) > Hi (X]S) 805 Q)1

It is an integrable connection. In this paper, we shall be interested solely in
the case of ¢ = 1.

3.2 THE KODAIRA—-SPENCER MORPHISM

We now briefly review the construction of the Kodaira—Spencer morphism,
focusing on the details we need for this paper. More detailed treatments than
we shall need for the present paper are available in [Eis12] Section 3.2], [Lanl3]
Sections 2.1.6-7 & 2.3.5], and [CF90, [Eis12]. Like in Section we let S be
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a smooth scheme over a scheme T, and we let 7 : A — S be a smooth proper
morphism of schemes, and we require A to be an abelian scheme together with
a polarization A: A - AY. We deﬁneﬂ Wyass = 71'*9114/5. The Kodaira—Spencer
morphism is a morphism of sheaves

KS: w5 ®Wavss > g1
defined as follows. Consider the exact sequence
0—wyg = Hig(X/S) » H' (X,0x) -0 (11)

o>1

obtained by taking the first hypercohomology of the exact squence 0 - Q%7 /s~
% /s~ Ox — 0 where we view Ox as a complex concentrated in degree 0. By
identifying H'(A,04) = gZ‘V/S, we obtain:

0> wy/s = Hip(A/S) » whv/s = 0. (12)

The Kodaira—Spencer morphism KS is defined to be the composition of mor-
phisms:

(2] (3]
Hyp (A]S) ®Wpvis — Hjp (A]S)® Q}S‘/T QWpv/s = QXV/S ® Q}S/T ®Wavys

[1]:| ¢[4]
Wass OWavyg

where [1] is the canonical inclusion from tensored with the identity
map on wyvg, [2] is Ve®id [3] is the surjection in tensored with

Wavys?
idgls/T ®idy,, , and [4] is the pairing gév/s ® wyvys > Og tensored with
idQl .
s/T

By identifying wyyg With w4y g via the polarization A : A — AY, we regard KS
as a morphism

KS: w5 ®0s wass > Ly (13)

We now assume S is a scheme equipped with an étale morphism S — S%rd
where T is a scheme over W. We write A for the corresponding abelian scheme
over S; the action of Ok on A induces a decomposition

Wass = D Wiys.r ©Ways.r) (14)
TE
defined as in . In the following, we write

Wiys = ®rex (Whys,r ® Ways,r) - (15)

'In [Lan13, Lani4], Lan gives an equivalent definition for Wy/g as e*Q}A/S, the pullback

via the identity section of the sheaf of relative differentials on A.

DOCUMENTA MATHEMATICA 22 (2017) 1-1000



22 E. EiscHEN, J. FINTZEN, E. MANTOVAN, & 1. VARMA

PropoOSITION 3.2.1. ([Lanij, Proposition 3.4.8.3]) For any étale morphism
S — S%rd over T, KS induces an isomorphism

ks:gi/s ;Q}S/T. (16)

3.3 DEFINITIONS OF DIFFERENTIAL OPERATORS

We now define differential operators. The construction is the same as the one
in [Eis12, Sections 7-9], which follows the construction in [Kat78 Chapter II].
Unlike in [Eis09} [Eis12], we place no conditions on the signature of the unitary
groups with which we work; but the construction is identical. The place the
generalization of the signature is apparent is in the explicit description of the
operators in terms of coordinates in Section [5.1

Let A, S, and T/W be as in Proposition We identify le/T with

Drex (QZ/S F®Wys T) via the isomorphism (16)), and ®,cx (gz/s F®Wys T)

with its image in H}, (A/S)®2 via the inclusion (T1]). Applying Leibniz’s rule
(i.e. the product rule) together with the Gauss—Manin connection V, we obtain
an operator

Ved: Hin (A]9)®" — Hip (4)5)%"?)

for all positive integers d.

The O ® W-structure on A induces a decomposition

Hip (AlS) =@, s (Hy; (AlS) @ Hyj (A]S))),

such that w3 ¢ © Hy7 (A]S) and V(H3; (A/S)) € Hy (A]S) @0 Q}WT? for
all 7 € ¥ ([EisI2l Equations (3.3)-(3.4)]). Thus, the image of Vg4 is contained
in Hip (A18)%" ® (@5 (HS7 (A]S) ® HyiT (A]S))).

For all positive integers d and e, we define Vg, := Vg(ds2(e-1)) © Vo(d+2(e-2)) ©
) V®d’

Voa: Hip (A/S)® ~ Hip (A415)*" ® (@ (Hyi (A/S)® Hyy (A/S))) :

TE

ProprosSITION 3.3.1. For each positive integer e and each positive dominant
weight k, the map Vg, where d = d,; induces a map

Ve S (Hip (A]S)) > Sk (Hig (A/S))® (@ (H;7 (A/S)e Hyjf (A/S))) .

TEX
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Proof. Note that by definition the operator Vgq is equivariant for the action
of &4 (where we consider the natural action on the d-th tensor power and
the action on the d + 2-th tensor power induced by the standard inclusion
Gd - 6d+2). I.e.,

Ved((1)0) = (Vea(-)) o for all o € &4,

for all positive integers d. It follows from the definition that the same holds
for the operators Vg, for all positive integers d and e. Thus, in particular

v%d(f ' Cn) = (V%df) *Cry
for all feHLp (A/S)®d, and ¢, the generalized Young symmetrizer of k. [

For a locally free sheaf of modules F, we sometimes write (F)” (resp. V¢) in
place S, (F) (resp. V&), for p = p,; the irreducible representation with highest

weight k.

Note that v, := V; decomposes a sum over 7 € % of maps
Vo () (Hin (A)8)) — (Hig (A]9)) ® (Hi7 (A/S)®H ;7 (A/S)).

For each nonnegative integer e, we define V{(7) to be the composition of V(7)
with itself e times (taking into account that the subscript changes with each
iteration).

3.3.1 (C* DIFFERENTIAL OPERATORS

The construction of the C*° differential operators in this section is similar to
the one in [Kat78| Section 2.3] and [Eis12] Section 8]. As explained in [EisI2]
Section 8.3], these differential operators are the Maass—Shimura operators dis-
cussed in [Shi00, Section 12]. (The explanation in [Eis12] immediately extends
to all signatures.)

Let Hip (C%) = Hjp (Auniv/M) (C™), and w (C™) := WAoo /M (C*). By
Equation , we have a decomposition

w(C%) =P (wr (C7) ®w, (C7)) (17)

TEX
and similarly for H}(C*).

The Hodge decomposition H}p (C™®) = w (C®)@®w (C>) over M (C*) (follow-
ing the convention in [Kat78| Section 1.8], the bar denotes complex conjugation)
induces decompositions

Hyp (C%) =wr (C%) @ ws (C),
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for all 7 € ¥, and the associated projections H3; (C™) - wi(C*) induce
projections

@, (C%) : Hyp (C%)° > w(C),
for all irreducible representations p as above.

As in [Kat78, (1.8.6)] and [Eis12) Section 8], V(w(C>)) € w(C*=) ® Qpq(c=)/c-
We define

Dp(C%) :w(C%)” > w(C) @ P res (Wi (C7) @ w (CT))

to be the restriction of (w,(C*) ®id) o V, to w(C*)”’.

For each irreducible representation Z of H that is sum-symmetric of some depth
e, let Tz be the projection of (B;cx (W (C®) ® w,(C*)))" onto w(C*)Z de-
fined as in Section (i.e. by projection onto summands and applying the
generalized Young symmetrizer cz).

We define
DPZ(C‘X’) =(i[d®nz) o Dy (C™):w(C®)’ —» w(C™)” ®w(C™)?.

As explained at the end of [Eis12] Section 8.1], the operators DE(C’“’) canon-
ically induce operators, which we also denote by DPZ ,

DZ(C®): £,(C™) > £yp2(C™).

(Many additional details of these operators, explicitly for unitary groups of
signature (n,n) but which extend by similar arguments to the case of arbitrary
signature, which we do not need in the present paper, are discussed in [Eis12|
Section 8].)

Let x’ be a sum-symmetric weight of depth e, and s be a positive dominant
weight. Take p = p,, and Z = p,. By abuse of notation, we still denote by 7 ./
the projection &,gz — &,_, induced by the projection 7, ./ : px ® prr = Prrs
defined in Lemma P2.4.6l We define

DE(C™®) = My 0 DZ(C) : £(C®) = Enr (C).

3.3.2 p-ADIC DIFFERENTIAL OPERATORS ON VECTOR-VALUED AUTOMOR-
PHIC FORMS

We now consider the pullback of the universal abelian scheme A°*4/S°*¢ over
Ig. In analogue with the Hodge decomposition of H é r(C*), there is a decom-
position over Ig

HéR(Aord/Ig) = W gora g ® U,

where U is Dwork’s unit root submodule, introduced in [Kat73|]. By [Kat78|
Theorem (1.11.27)] and [Eis12, Proposition V.8], V(U) cU ® Qllg/W'
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As before, for each irreducible representation p as above, we define
@, (A” ) : Hyp (A [1g)° - wra

to be the projection induced by Dwork’s unit root decomposition after applying
the Schur functor ()”. Note that w,,.q J1g 18 identified with the pullback of &,
over Ig via the definition of Schur functors.

Analogously to how we defined the C* differential operators Df (C*),
DPZ (C*), and DF (C*) in Section replacing w(C*) by’ U, we define
p-adic differential operators D¢ (A°4/Ig), D7 (A°™/Ig), and D (A°"/Ig), for
all e, Z, k, k', and p as above.

In the sequel, for each sum-symmetric weight ' of depth e, and each positive
dominant weight k, we write

DF = DF (A Ig) : €. > Epvuer.

4 LOCALIZATION AT AN ORDINARY POINT

The ultimate goal of this section is to describe the action of the differential oper-
ators on the t-expansions of p-adic automorphic forms. We start by describing
the constructions of Section [3] in terms of Serre—Tate local parameters, now
taking S = S°™ the ordinary locus of a connected component S of the Shimura
variety M, and A/S the universal abelian scheme A = A°™ (as defined in the
beginning of Section .

Throughout the section, we fix a point z € Ig(W) lying above z € S (W),
and denote by Z, Ty their reduction modulo p. In the following, we write R for
the complete local ring Rgora ,,, corresponding to Sordgo introduced in Section
and mg = mg, for its maximal ideal. We denote by Aggd the universal
formal deformation of the abelian variety with additional structures Ay = Az,
i.e. A% is the base change of A% from 8! to R and has special fiber Aj.

By abuse of notation, we also abbreviate Aggd by A.

4.1 THE GAUSS-MANIN CONNECTION

In [Kat81] Katz explicitly describes the Gauss—-Manin connection and Dwork’s
unit root submodule in terms of the Serre-Tate coordinates. We recall his
results.

Let # denote the formal relative de Rham cohomology bundle, H =
le(Qh/R). We write @ for the R-semilinear action of Frobenius on #, and

0~ war _’7:[_’%V4V/R ~0 (18)

for the (localized) Hodge exact sequence over R (where we identified H'(A4,04)
with QXV/R as in Equation )
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ProposITION 4.1.1. [Kat81l, Cor. 4.2.2] Notation and assumptions are the
same as above.

1. There is a canonical Frobenius-equivariant isomorphism
a:T,(A5) ® R — wWaAIR

where the R-semilinear action of Frobenius on the left hand side is defined
by extending multiplication by p on T,(Ay).

2. There is a canonical Frobenius-equivariant isomorphism
a:Hom(T,A9,Z,) ® R — ng/n

where the R-semilinear action of Frobenius on the left hand side is defined
by extending the identity on Hom(T,A0,Z,) ® R.

3. The surjection
H — Wivr = Hom(T, A, Zy) ® R

induces an isomorphism between the Z,-submodule L 0f7:l where ® acts
trivially and Hom(T, Ao, Zy). The inverse of such an isomorphism defines

a canonical splitting of the Hodge exact sequence over R, v :QXV/R - H,

i.e. there is a canonical R-linear decomposition A= War @ (L4 ®z, R).

Remark 4.1.2. The submodule L; ®z, R agrees with the base change U, —of
Dwork’s unit root submodule U to R introduced in Section In the fol-
lowing, we write Uy c H for the the submodule L, ®z, RcH and denote by

u:H — WasR the projection modulo U, .

Remark 4.1.3. In our setting, the action of Ok on the abelian scheme A/R
induces natural structures of Ox-modules on T, (Ag), Hom(T, Ao, Zy), wy g
and wY,,p- It follows from the construction that the isomorphisms o and a
are Ok -linear.

By abuse of notation we will still denote by V the Gauss-Manin connection on
H/R, R )
V:’H—>"H®RQ713/W.

In the following proposition, we denote by q the universal bilinear form on R
introduced in Equation , and by T,(A) the isomorphism of physical Tate
modules, T,A¢ = T,(Ay), induced by the polarization A. Finally, for any
Zy-basis T of T,Ag, we denote by {dg|@ € T} the associated dual basis of
Hom(T,Ao,Zy).

PropPOSITION 4.1.4. ([Kat81, Thm. 4.5.1]) The notation is the same as in
Proposition |4.1.1].
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1. For each § € Hom(T,Ao,Z,), the differential ns := v(a(d)) € L1 satisfies
Vns = 0.

2. For each e € Tj,(Ay), the differentials we = a(e) € w 4/ satisfy
Vwe = 3 115g ® dloga(Q, T,(A) ' (e)),
QeT
for any Zy-basis T of T, Ay.
Note that Part implies that V(Ug) c U ®%r Q%/W, as stated in Section

Also, PAart implies that for each e € T,,(Ay), the differentials w, satisfy
Vwe €Ugr ¢ H, ie., u(Vwe) = 0.

4.2 THE KODAIRA—-SPENCER MORPHISM

In this section, we explicitly describe the Kodaira—Spencer morphism in terms
of the Serre—Tate coordinates. By abuse of notation we will still denote by KS
the localization at the point x¢ € S 4(W) of the Kodaira—Spencer morphism,
ie.

KS:wam ®r wam = Qryw-

PROPOSITION 4.2.1. For all P € T, Ag, let wp = a(T,(A)(P)). Then, for all
P,P"eT,Ay and any Zy-basis T of T, Ao,

KS(wpewp:) = > (Q, P")rdlogq(Q, P),
QeT

where (, ) denotes the A\-Weil pairing on T,A,.

Proof. By definition, for any wy,ws € WA RS
KS(W1®WQ) = <(7T ® ld)(vw1),>\(w2)> € QR/W;

where m : H — Wiy R is the projection in the Hodge exact sequence, A\ :
WaR 5wy /= 1s the isomorphism induced by the polarization A on A, and
(,): (%VM/R@Qix/R) X Wav R = QZ/R is the map obtained by extending the
natural pairing (,) :Q,VM/R Xwavr >R by the identity map on Q,l4/R'
Let us fix a basis T of T),A¢; for all P € ¥, we write np =15, =v(a(dp)). We
deduce from the definitions and Proposition [£.1.4] that for all P,Q € ¥,
(r(ng), AM(wp)) = (Q,P)x, and Vwp = Z ng ® dlogq(Q, P).
Qe%

Thus, for all P, P’ € T, we have

KS(wpewp:) = (7 ®id)V(wp), Mwpr)) =
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= < Z W(nQL)‘(wP’))legq(QuP) = Z (Q7P,))\d10gq(Q7P)
QeT Q%
O

Remark 4.2.2. Theorem implies that for any P € Ty, Ao, q(Q,P) =0
unless @ € qung. Thus, the morphism KS factors via the quotient gi R =

D rex (QZ/RVT ®QA/.R7T), and Proposition |3.2.1| implies that the induced map

is an isomorphism.

4.3 'THE DIFFERENTIAL OPERATORS

Finally, in this section we explicitly describe the differential operators in terms
of the Serre-Tate coordinates. By abuse of notation, we will still denote by D,
(resp. Dj) the localization at zq of the differential operators D, (resp. Dj)
introduced in Section [3.3] i.e. its base change to R.

We briefly recall the constructions. Let u : H->w AJR denote the projection
modulo Uy (as defined in Remark 4.1.2). We define

D:=(u®id)o V|QA/R tWasR = Wasr OR QR (19)
where id denotes the identity map on Q%z e

By abuse of notation, we still denote by ks : QIR/W S %24/73 c Q%R the local-
ization of the inverse of the Kodaira—Spencer isomorphism defined in Proposi-

tion B.2.11

For all positive integers d and e, we write
d d d 1
Dga = (u®* ®@id) o V®d|£§7n :ﬂi/n - Him ®Rr QR/Wv
. -1
Dy, = (1d£§7R ®ks ) 0 Dgq and Dg ;= Dg 4 9, 500 Dg,.

Let £, 4, denote the localization of £,, i.e. the base change to R. For any irre-
ducible representation p = p,, and positive integer e, the differential operator

Dy & a0 = Epy ®R (Qi/R)@)e
is induced by the restrictions of Dg, to QZ /R In the following, we also write
_pl
D,=D,.
4.3.1 LOCAL DESCRIPTION

We fix a point x € Ig(W) lying above xg, and define o, to be the Ok ®zR-linear
isomorphism

ag = ao(Ty(iy)' ®id) : LO7, R > T, Ay ®2, R = w4z,
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where T},(t)) : T,Ag - L is defined as in (9) and o : T,(Ay) ®z, R — Wa/R
as in Proposition 1), and we identify T,,(Ay) with (7,A40)" via the Weil
pairing.

By linearity, we deduce that the isomorphism «, induces isomorphisms
ay Ly ®z, R>whp, and o L7 8z, R >wyr .
for each 7€ 3. We write

Qg = @(a;ﬂ' ® a;,'r) : ‘62 ®z, R > Qi‘ﬂ?ﬂ
TEX

(recall £? = @,ex (L} ®z, L7)), and
ksy =ksoaZ:L*®; R > Q%{/W'

For any irreducible representation p, the map «, also induces an Ok ®zR-linear
isomorphism
Ozg : LP ®Zp R - 5/),9;0,

via the identification of &, , with QZ/R defined by x.

Finally, for all e € N, we define a?° := o ® (a2)®°,

Oég’e : LF ®Zp (52)®e ®ZF R = (ﬁp ®Zp R) R ((52)®e ®Zp R) 5 5p’m0 R (gi‘/n)m.

Let d: R - Q'x /w denote the universal W-derivation on R. We define
Ei=ks;'od: R>L2®R.
For any integer e € N, we write
2° = (id(g2yecen ®E) 00 Z: R > (L7)® @z, R.
PROPOSITION 4.3.1. For any irreducible representation p, and any integer e €
N,

(afrf,e)il ° D; © Oéz =id®=°: L° ®z, R — LP ®z, (£2)®e ®z, R,

Proof. Proposition implies (e ®id) ' o Doa =id ®d, with D defined as in
(19). We deduce that
(0 ®id) " oDoa, =ided: L ®z, R~ L ®z, Q}%/W.
Therefore, for any representation p, we have
(af®id) ™ e Dyoal =ideks " od: LF ®z, R~ L’ @z, w)r,
and thus also (a2!') ™o D, 0’ =id ®Z.

The general case, for e > 2, follows from the case e = 1. O
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—

4.3.2 EXPLICIT DESCRIPTION OF Z IN TERMS OF SERRE—TATE COORDI-
NATES

We conclude this section with an explicit description of the map = in terms of
Serre-Tate coordinates. Let B be a Z,-basis of £ such that B = U s (BFUB)
where, for all 7 € ¥, BF = {b;1,...,b,4,. } is a Z,-basis of L} and B =
{bra, 41,075} is & Z,-basis of L7 such that BE and BI. are dual to each
other under the Hermitian pairing on £. We denote by € = U,n&, (resp.
eV, € = Ex - x € e times, and €Y = €Y x--- x & ¢ times) the associated
bases of £? = @ex LI ® L7 (resp. (L£2)Y, (£2)®°, and ((L£L2)V)® = ((£L?)®)V).
Explicitly,
@TZ{l;j = bT7i®bT,j:0<i£a+T<j§n}.

Note that the pairing on £ induces a canonical isomorphism £2 > (£2)Y, which
identifies € with &Y. In the following, by abuse of notation we write [ — [V, for
both the map € - " and its inverse.

Let B} v : W[[t|l € €¥]] - 5 R denote the Serre-Tate isomorphism associated
with the choice of 2 and €, as defined in Remark 2.7.3] Recall that, for all
le &, we have 8] ¢ (t) = q(t; L)) -1, with ¢, = T, (1,.")®2.

PRrROPOSITION 4.3.2. The notation is the same as above. For all f € R and
ke @Y, we have

Br e ((k®id)(E(f))) = (1 + ) Biev (f) e W[[t]l € €],

where O = % denotes the partial derivation with respect to the variable ty.

Proof. From the definition of = follows that it suffices to prove the equalities

B ev(k@id)(E(B; ev(t1))) = (L+1)d1p

where d; ;; denotes the Kronecker symbol (i.e. &5 = 1 if [ = k, and 0 otherwise),
for all k,l € &Y. We have (using Proposition |4.2.1)

E(Br e (t) = (a2) ks d(a(t;' (1) ~ 1) = (a3) ks (da(t51 (D)) =

= (a2) ks (a(t; () dloga(t; (1)) = ¥ ® ;' (1)),

which implies

Brrev (k®id)(E(6; ev (1))

Brev(k®id)(I" ®q(t;' (1))

= Brev@ura(tz (1))
(1 +tl)5l,k'
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5 MAIN RESULTS ON p-ADIC DIFFERENTIAL OPERATORS

In this section, we construct p-adic differential operators on Hida’s space V¥V of
p-adic automorphic forms by interpolating the differential operators defined in
Section |3| First, using the t-expansion principle and Theorem [2.6.1] we prove
that the p-adic differential operators on the space of classical automorphic form
extend uniquely to all of V¥ (Theorem . Secondly, we prove that p-adic
differential operators of congruent weights are congruent (Theorem . As
a corollary, we establish the existence of p-adic differential operators of p-adic
weights interpolating those of classical weights (Corollary .

5.1 p-ADIC DIFFERENTIAL OPERATORS OF CLASSICAL WEIGHTS

In this section we prove that the differential operators

:’ : gpn’ - gﬁhﬂ'-n’

(where k' is a positive dominant weight and x is a sum-symmetric weight)
induce differential operators ©X on the space of p-adic automorphic forms V¥,
satisfying the property ©X (VN[X’]) c VN[x'-x] for all p-adic weights x'.

In the following, we write &, (resp. L%, o, ...) in place of &, (resp. Lf=,

afs ...). By abuse of notation, we still write D, in place of the map on global
sections

D:,(Sord) . HO (Sord76'€,) N HO (Sord,gnlﬂ).

For any weight £/, we write W, : HY(8”,&) & VN[x'] ¢ V as in (6). By
definition, the localization of W, at the point = € Ig(W) agrees with the map
(f’“l ®id) o (ozgl)_1 2l 3o cr ®z, R > R.

can

where £ L - Z,, is defined as in Definition , and id denotes the

can

identity of R.
By abuse of notation, for any sum-symmetric weight x of depth e, we still
denote by ~

K'cgan : (‘62)@6 - Zp
the map induced by £% : £®*¢ - 7Z, as defined in Definition 2.4.2 (recall
that (£?)®° is a direct summand of £®%¢, see also Remark [2.4.5). We write
05, ®id: (L£2)®° ®z, R — R for the associated R-linear map.

can

DEFINITION 5.1.1. For any positive integer e € N, and any sum-symmetric
weight  of depth e, we define
0% = (05, ®id) 0 E°: R — (L£2)®° ®z, R > R.

can

We call 6% the k-differential operator on Serre-Tate expansions.
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We fix a point x € Ig(W), and write loc, : VY — R for the localization map at
x as introduced in Section 2.7.21

LEMMA 5.1.2. For any weights k,k’, where k' is positive dominant and s is
sum-symmetric, and for all f € HY(S°'Y, &), we have

0" (locy (Vs (f))) = loce (Vi (D (f))-

Proof. Let my ¢ L ® L5 > L5 be defined as in Lemmam By Equation
we have (% @ (f = (5" o Tt e LF @ LF — LFF R, and the lemma

can can can

then follows from Proposition O
THEOREM 5.1.3. For each sum-symmetric weight k, there exists a unique op-
erator

e : VN vV
such that ©% oW = Vo Dy,.
The p-adic k-differential operator ©F satisfies the properties:

1. for all f e VN: loc, 0 ©F = 6% o loc,,
2. for all weights k': ©(VN[k']) c VN[K' - k].

Proof. Using the fact that ¥ is an injection, we first define ©®" on the image of
U in V by

©%(f) =W oDy oW (f)

for each f eim(U,) for all positive dominant weights x’. Since

1

vl @ HU(S™LE) [7] nvy
ReX(T)+, p
k positive

is dense in V¥, it is clear that if ©" exists, then it is unique. In order to

prove that indeed ©F extends to all of VIV, it is sufficient to check that if

fi, fa,... € Im(¥) converge to an element f € VY, then ©%(f1),0%(f2),...

converge in VY to ©%(f) e V.

By the Serre—Tate expansion principle (Theorem [2.7.4)), one can check conver-

gence after passing to t-expansions, in which case the statement follows from

Lemma Properties (1) and (2) follow immediately from the construc-
tion. O

Remark 5.1.4. The operators ©" play a role analogous to the role played by
Ramanujan’s theta operator in the theory of modular forms and Katz’s theta
operator in the theory of Hilbert modular forms (see [Kat78, Remark (2.6.28)]).
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5.2  p-ADIC DIFFERENTIAL OPERATORS OF p-ADIC WEIGHTS

In this section we establish congruence relations for the differential operators
OF as k varies. As an application we deduce the existence of p-adic differen-
tial operators ©X for p-adic characters y, interpolating operators of classical
weights.

In the following, we fix a Zjy-basis BY = u;({b];,...,b7, } v
{6Y 415507, }1) of LY as in Section [4.3.2) and write & (resp. €&

for the associated basis of (£%)¥ (resp. ((L£*)®%)Y).

Remark 5.2.1. For any sum-symmetric weight « = (k7,--+, k], ), Equation ,
ie. ) . 1 B .
- v ;
lean = [TTIGID T Q@ ® (67 )% -cx, (20)
TeX 1=1 TeX i=1

implies that £~

can

Qs
with coefficients in {1}, for e= Y. Y ] the depth of k.
res i=1

For all [ = (Iy,...,l.) € €/, we define a,; € {0, +1} such that £5, = Yieey Gl L.

can

is a linear combination of elements of the basis €Y of ((£?)¥)®*

We choose a point z € Ig(W), and write 7 & : W[[#|l € €"]] — R for the
Serre-Tate isomorphism at the point z, written with respect to the Z,-basis
&Y of (L?)V.

LEMMA 5.2.2. The notation is the same as above. For any sum-symmetric
weight k of depth e, and for all f € R, we have ﬂ;’_@lv(ﬁ"(f)) is equal to

> g+t ), (- (L4 t)0h, ((1+1,)0h, (B e () )

1=(l1, ol ey

Proof. The equality follows from the definitions and Proposition O

5.2.1 CONGRUENCES AND ACTIONS OF p-ADIC DIFFERENTIAL OPERATORS

We now prove a lemma describing properties of certain differential operators 64
that are closely related to those appearing in the right-hand side of the equality
in Lemma For each [ = (I1,...,l.) € €/, we define

0L W[l e €V]] - W[[t;|l e €']]
Bom (+1,)0, (- (L+1,)0, (1 +1,)01,(8)) - ) -

For convenience, we first introduce some more notation. For all ] ;€ ¢Y as in
;

Section we define

07 Wltill e €]] > W[[t,[le €”]] [ 1+t )

. 21
g @)
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Note that these operators commute, i.e. for [j; and lin:j' €€, 07,0 HiT,’,j, =
07 41 © 0 ;-

For all d= (dj ; )IT cev € Zlfov‘, we define #2 as the composition of the d; ;-th
iterates of 0; ; for all I7; € € (we take (0] ; )% = id). By commutativity, the
order does not matter. For each [ € €Y, we define d(l) to be the tuple of
non-negative integers such that

g4 = gL, (22)

Remark 5.2.3. Let R denote the subring of polynomials in R, i.e. R:= W[l €
€&V] c R = W[[t;]l € €"]]. The differential operators #< on R are continuous for
the (|l € €¥)-adic topology on R, and preserve the subring R, i.e. #%4(R) c R.
In particular, congruences among the operators ¢ on R can be detected by
studying congruences among their restrictions to R.

Furthermore, for all polynomials f(t) € R, if we write f(t) = ¥, ca(1 +1)%,
where (1 +1)% = I, IT; ;(1 + tlzj)o‘ﬂ‘ﬂ? for a collection of numbers a7 ; € Zxo,
then ’

(041)(t) = Y. da(@)ca(l+1), (23)

where ¢g4 is a polynomial (in the numbers a7 ;) dependent on d. (We set

a = (a) , with o = (a;l)) Therefore, congruences among the operators
62 on R can be detected by studying congruences among the polynomials @d-
(Note that Formula does not extend to R as in general an element of R

cannot be written as a power series in (1 +t).)

PROPOSITION 5.2.4. Let k, k" be two symmetric weights (as in Definition|2.4.4
and let m > 1 be an integer. Assume

k=x'modp™(p-1)
i 27", Additionally, if

(i) min(k] - KL,k — K'[,q) > mforalt € Yandl < i <
ay, for which kT — kI, # k'] —K'[,q, and

/T

(%) min(k] ) >m for all T €% for which r,_#k

ag . K am’ ag .

then 6% = 0% mod p™**.

Proof. By Lemma and Equation , we obtain

Ba: @v © 0% o Bm eV = Z Qg [ * 9d(l) (24)
leeyY
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We assume without loss of generality that

™ (p-1
CET N CONINE SR S L
for some 7 € X. (Recall that €7 denotes the character of T(Z, ) given by

e (diag(~f 1, Y9 )oex) =71, ie. such that k™ = [];(e])".) By combining
Equatlons and ., and analyzing the action of the generalized Young
Symmetrlzer we obtain that

771(p 1)
ot = G (o 5 7 [ )

legy geS
(25)

= a,,0%0 (26)

leey
— ﬁ V 0 B” OB;,GV modpm+1,

where congruence follows from the following observation.

In the notation of Remark [5.2.3]
p™(p-1)
( ( Z ( 1 sgn(o') Hg] a. +0'(j)))
oeS;

has the effect of multiplying each polynomial ¢4(;)(c) by

(i! ( D (-1)%&n(@).. Ha;#a(j)’j)) R
ceS; j=1

which is congruent to

_ { Imodp™*! if each al ., 18 relatively prime to p

O mod p™ otherwise,

because p > n (though note that p > max,cs{min(a;,,a_,)} is enough). If
some ag o o is divisible by p, then $a@) (@) = 0mod p™*! by assumptions
(i) and (ii).

Hence, we conclude that 6% = 8% mod p™*! for all symmetric weights x and x’
satisfying the above hypotheses. O

Remark 5.2.5. Note that if k is sum-symmetric, but not symmetric, then 8% =0

This follows by combining Equation and [20| together with an analysis of
the action of the generalized Young symmetrizer c.
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THEOREM 5.2.6. Let k,&’ be two symmetric weights and m > 1 be an integer.
Assume
k=" modp™(p-1)

n 27", Additionally, if

e min(x] - Kkl,1,K"7 — K'1,1) > mforalrt € Xandl < i <
ay, for which K] - K[,y # K’} —Kk'l,1, and

T

T 17
K a I
+r

e min(kg, ,K'y ;) >m for all T €X for which k7, #k

then ©F = ©% mod p™*!.

Proof. By the p-adic Serre-Tate expansion principle (Theorem , combined
with Property (1) in Theorem [5.1.3, ©* = © modp™*' if and only if * =
0% mod p™*1. Then the statement follows from Proposition O

DEFINITION 5.2.7. We define a (symmetric) p-adic character to be a continuous
group homomorphism T'(Z,) — Z, that arises as the p-adic limit of the Z,-
points of characters corresponding to (symmetric) weights.

Proposition enables us to define by interpolation the differential operators
60X on R for all symmetric p-adic characters x. Note that in order to define 6%,
one should only take the limit over 6% for weights x that satisfy conditions (i)
and (ii) of Proposition (without loss of generality, one may also choose
the weights k such that |k|e — o0). These conditions can always be achieved
by modifying the characters converging to x if necessary.

The following result is then an immediate consequence of Theorem [5.2.6

COROLLARY 5.2.8. For all symmetric p-adic characters x, there exist p-adic
differential operators

ox: VN - vN

interpolating the p-adic k;-differential operators previously defined for classical
weights k;, and satisfying the following proerties:

1. for all f e VN: loc, 0 ©X(f) =X oloc,(f),
2. for all p-adic characters x': ©X(VN[x']) c VN [x" - x].
5.2.2 POLYNOMIALS ¢y

The remainder of this section introduces some notation and results needed in
Section [7

DOCUMENTA MATHEMATICA 22 (2017) 1-1000



DIFFERENTIAL OPERATORS AND FAMILIES 37

DEFINITION 5.2.9. For each sum-symmetric weight x, there is a unique polyno-
mial ¢, with integer coefficients such that for all polynomials f(t) € R = W[[¢]],
if we write f(2) =Y, ca(1+1)® in the notation of Remark [5.2.3] then

(0" 1) () = 3 du(@)ca(l +1)".

From the description of the action of the differential operators described in
Equation together with Equation , we deduce the following corollary
of the proof of Proposition [5.2.4

COROLLARY 5.2.10. Let k be a sum-symmetric weight. Then

dr(a) = Hz ((a+7!~mZ+T(a))nZ+T aﬁ (i .mir(a))ﬁ?—ﬂill)

where m] («) is (a determinant of ) an i x i minor of the matriz «, for each i,
1<i<ay,, and T €.

Remark 5.2.11. Let x and k' be two sum-symmetric weights satisfying the
conditions of Proposition [5.2.4] Then

bn(@) = ¢ (o) mod p™+t.

We extend the definition of the polynomials ¢, as follows. We write Oc¢, for
the ring of integers of C,, the completion of an algebraic closure of Q,,.

DEFINITION 5.2.12. Let (:T(Z,) - Oép be any continuous group homomor-
phism. We write ¢ = [1,ex; (ITj2q ¢7 -€7), where the (] are continuous group

homomorphisms Z; — Oép (possibly including finite order characters). We
define

-1

oc(a) = T] ((cgw (arst-my, (@) TT (¢ ()™ @ mz<a>>), (27)

TEYN =1

where the m] («) are as in Corollary [5.2.10

Remark 5.2.13. 1t follows from the defintion that, if ¢," : T(Z,) — O are

two continuous group homomorphisms satisfying ¢ = ¢’ mod p™*!, then ¢¢(a) =
¢¢r (o) mod p™Ht.

6 PULLBACKS

In this section, we discuss the composition of the differential operators with
pullbacks to a smaller group. This construction is similar to the one in [Eis16l
Section 3]. We further describe the action in terms of Serre-Tate coordinates
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(which are absent from [EisI6]), and then we obtain formulas (in terms of Serre—
Tate coordinates) in the case of all signatures. (Using g-expansions, [Eis16] had
only obtained formulas when the signature at each archimedean place was one
of just two possibilities.) This section builds on [CEE*16l Section 6], which
provides details about pullbacks of automorphic forms in terms of Serre—Tate
coordinates.

6.1 PULLBACK AND RESTRICTION OF AUTOMORPHIC FORMS

We start by introducing the required notation. Let L = & ; W, be a self-dual
Og-linear decomposition of the free Z-module L. For each i, 1 <14 < s, we denote
by (,); the pairing on W; induced by (,) on L, and define GU; = GU(W;, (, ):),

a unitary group of signature (a+$i)7a,§i)) . We write v; : GU; - Gy,
TEX K
@) @)

for the similitude factor. Note that the signatures (a+T LA y ) form
i=1,...,s

a partition of the signature (a,,,a_,). We define G’ = 151 (G,,) < [I, GU;,
where vy := [I; v, and G, c G}, is embedded diagonally. Then, there is a
canonical injective homomorphism G’ < GU, which induces a map ¢ between
the associated moduli spaces, ¢ : M’ - M. Let 8’ be a connected component of
M. We can identify 8’ with the cartesian product of connected components
of the smaller unitary Shimura varieties. We write S for the unique connected
component of My containing the image of §’, and we still denote by ¢ : S’ - S
the restriction of ¢.

We assume the prime p splits completely over each of the reflex fields E;, i =
1,...,s, associated with the smaller Shimura varieties, and let ¢ : S 4 - S°rd
also denote the restriction of ¢ to the ordinary loci. We denote respectively by
Ig', Ig the Igusa towers over S °™4, §°*4 and define
! _ .
H' = H GLaJr(;) X GLa

TeX,1<i<s

@) -
*

We also write H' = [] <, Hi, where H; = [],ex GL, » xGL, @, for all i =

1,...,s. The algebraic group H' can be identified over Z,, with a Levi subgroup
of G'nU. Thus we have a closed immersion H' — H arising from the inclusion
of G’ into GU and the identification over Z, of H with a Levi subgroup of
U. This allows us (by choosing without loss of generality a suitable basis) to
identify the maximal torus T of H with a maximal torus 77 in H'. In the
following, we denote by X (T"), the set of the weights in X (7T") = X (T) that
are dominant with respect to the roots of A that belong to the root system of

H'. We also write V'™ for the space of p-adic automorphic forms on H'.

6.1.1 PULLBACKS

In [CEF*16l Proposition 6.2] we observed that the map ¢ : S’ — S°d lifts
canonically to a map between the Igusa covers, ® : Ig’ - Ig. As a consequence,
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we are able to explicitly describe the pullback ¢* : VNV — V’ N"in the Serre—
Tate coordinates associated with a point z € Ig'(W) (and ®(x) € Ig(W)). To
recall the result we first establish some notation. For each 7 € X, we denote
by L7 = @;_, £}, the associated Z,-linear decompositions of the modules £
(arising from the signature partition). We define £ := ®;£?, where for each
1=1,...,s8
2= @, o, 25,).
TEX

In the following we denote by € : £2 < £2 the natural inclusion as a direct
summand.

We fix a point = € Ig'(W), and we write z¢ € S 4 (W) for the point below =

(thus the point ®(z)e Ig(W) is above ¢(xg) € S°™4(W)). Following the notation
of Section [2.7.1] we write

By WIIt]] ® (£%)"

Br W[t ® (£%)

l

R := RSord)¢(zO), and
R, = Rs’ord7xo,

2

for the corresponding Serre-Tate isomorphisms of complete local rings.

In [CEF*16), Proposition 6.8], we prove that the ring homomorphism ¢* : R —
R’ induced by the map ¢ : S'ord , gord gatisfies the equality

0" 0 By (o = B 0 (id®e). (28)

Remark 6.1.1. For a choice of compatible bases § ¢ & of £2 c £2, the pullback
map on local rings R - R’ described on coordinates as

idee - W[[t]]® (£2)" = W([[tll e €"]] — W[[t]] ® (£*)" = W[[t:[l € F']]
satisfies the equalities

tl ifle’SV

0 otherwise

(id®e¥) () = { for all [ € €V,

In the following, with abuse of notations, we will identify R’ ~ W[[#]|l € §V]]
via 37, and R = W[[t,[l € €¥]] via B3,

6.1.2 RESTRICTIONS OF p-ADIC AUTOMORPHIC FORMS

Finally, we recall the definition of restriction on the space of p-adic automorphic
forms.

Let k,x’ be two characters of the torus 77 = T. Assume x € X(T),, and
k'€ X(T")y; ie., k is dominant for H, and ' is dominant for H'. We say that
k' contributes to k if p,s is a quotient of the restriction of p, from H to H'.
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In the following, we denote by w . : pxlg — pw a projection of H%p-
representations. If k' € X (T"), satisfies (x')? = k for some o € Wy (T'), then
k' contributes to xk and we choose w,, ' : p,€|H, — px to be the projection of
H%p-representations satisfying the equality

élgan = egan O Wk,k' © Yo
where g, € Ny (T)(Z,) is the elementary matrix lifting o (and Ny (T") denotes
the normalizer of T in H).

Remark 6.1.2. If k is a dominant weight of H, then & is also dominant for H'
and as a weight of H' it contributes to .

Remark 6.1.3. Assume k' is a weight of H' contributing to a weight x of H.
Then, for each weight A of H, the weight A-x’ of H' contributes to \ - k.

For each k € X(T)4, let ¢*&, denote the pullback over M’ of the automorphic
sheaf over M. To avoid confusion, we will denote by £, the automorphic sheaf
of weight k' over M, for k" € X (T"),. For each weight x’ € X (T"), contributing
to , the morphism wy, , induces a morphism of sheaves over M/,

Tw i 0 Ex > EL.

We define the (k, k’)-restriction on automorphic forms to be the map of global
sections

TeSk k! *= Tk,k' © ¢* : HO(Magm) - HO(M,75;’)'

By abuse of notation we will still denote by res,; .» the map induced by res,, ,/
between the spaces of sections of automorphic sheaves over the ordinary loci,
i.e.

res, ot HO(8,E,) - H(S ™, &),

In the following, we write res, := res, .

Finally, we define the restriction on p-adic automorphic forms as the pullback
on global functions on the Igusa tower under ® : Ig’ — Ig, i.e.

NI
res=®*: VN v

In |[CEF*16, Propositions 6.5 and 6.6], we compare the two notions of restric-
tion. Again, to avoid confusion, for all weights ' € X(T"),, we denote by

U’ the inclusion HO(Slord,S;,) - V’N,, to distinguish it from the inclusion
U, : HO(S £,.) - VY for ke X(T),.

Then, for all dominant weights xk € X (7).,
reso W, = U/ ores,. (29)
More generally, if x’ € X (T"), satisfies (k')? = & for some o € Wy (T'), then
W', ores, o =reso (gy - Vy). (30)
for g, € Nu(T)(Z,) lifting o as above.

DOCUMENTA MATHEMATICA 22 (2017) 1-1000



DIFFERENTIAL OPERATORS AND FAMILIES 41

6.2 PULLBACKS AND DIFFERENTIAL OPERATORS

Let A e X(T) = X(T"). Tt follows from Definitions and that if A is
(sum-)symmetric for H' and dominant for H, then it is also (sum-)symmetric
for H, while the converse is false in general. In the following, we say that a
weight of H is H'-(sum-)symmetric if it is (sum-)symmetric for H’'. Similarly,
we say that a p-adic character of H is H'-symmetric if it arises as the p-adic
limit of H'-symmetric weights.

For any weight (resp. p-adic character) A of H', and for all i = 1,...,s, we
write A; := Ay, for the restriction of A to H; c H’'. Then, for each i, )\; is a
weight (resp. p-adic character) of H;. We observe that a weight A is dominant
(resp. sum-symmetric) for H' if and only if, for each i = 1,..., s, the weight \;
is dominant (resp. sum-symmetric) for H;. Furthemore, if, for eachi=1,... s,
A; is sum-symmetric for H; of depth e;, then A is sum-symmetric for H of depth
e =Y e; if it is dominant.

DEFINITION 6.2.1. A sum-symmetric weight A of H' of depth e is called pure
if there exists i € {1,...,s} such that \; is sum-symmetric of depth e. Equiva-
lently, a weight A is pure sum-symmetric if there exists i € {1,...,s} such that
A; is trivial for all j # ¢ and is sum-symmetric for j = 1.

Similarly, a symmetric p-adic character x of H' is called pure if there exists
i€{l,...,s} such that x; = xg, is trivial for all j # 4 and symmetric for j = .

Remark 6.2.2. If a sum-symmetric weight A of H' is pure, of depth e, then the
associated irreducible representation py of Hip is a quotient of (£2)®¢, for some

ie{l,...,s} (where ®;(£?)® is by definition a direct summand of (£?)%¢).
In the following, we say that a weight (resp. p-adic character) of H is pure
H'-sum-symmetric if it is a pure sum-symmetric for H'.

Note that if \ is pure H'-sum-symmetric, with \; non-trivial of depth e, then
A is sum-symmetric of H also of depth e, if it is dominant (see Remark [6.2.5]).

Remark 6.2.3. A weight A of H is both dominant for H and pure H’-sum-
symmetric if and only if A; is sum-symmetric for H; and A; is trivial for all
7> 1.

Similarly, a p-adic character x of H is both pure and H’-symmetric if and only

if x1 is a p-adic symmetric character of H; and x; is trivial for all j > 1.

For each H'-sum-symmetric weight A of H and positive dominant weight s’ of
H', we write
Dy HO(S ', €L) » HO (S, &5,
for the associated differential operators on the automorphic forms of weight x'.
For each H'-symmetric p-adic character x of H, we write
(._.),X . V,N/ N V,N/
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for the corresponding operator on the space of p-adic automorphic forms (as in

Theorem [5.1.3)).

PROPOSITION 6.2.4. For all pure H'-symmetric p-adic characters x of H that
are H-symmetric

I’
res o ©X = © X o res.

Proof. By the t-expansion principle, it suffices to verify the above equality after
localizing at an ordinary point, i.e. as an equality of operators on t-expansions.
Moreover, by Theorem [5.2.6 it is enough to consider the case when x has
integral weight .

In view of Remark (together with the formulas in Lemmas and ,

the statement is a consequence of the assumptions on A (which imply that the
coefficients ay; defined in Remark satisfy ax; = 0 for all [ € €/ - F))
together with the following general fact. For all positive integers n,m € N,
n > m, the homomorphism of W-algebras W[[t,...,t,]] = W[[t1,. ., tm]]
defined as

f=f(t,..  tn) = f(£,0) = f(t1,... tm,0,...0)

satisfies the equalities

0 0
¢! +t¢)67i(f(t,0)) =((1 +ti)87if)(t,0),
foralli=1,...,m. O

Remark 6.2.5. As an example, we consider the partition (1,1),(1,1) of the
signature (2,2), and weights A = (2,0,2,0) and A" = (1,1,1,1). Note that
both A, \" are dominant symmetric weights of both H = GL(2) x GL(2) and
H' =GL(1) x GL(1) x GL(1) x GL(1), but only X is H'-pure. Write ®*: R ~
W([t1,3,t1,4,t2,3,t24]] > R =~ W[[T1,3,T5,4]] for the map of complete local
rings at an ordinary point corresponding to the inclusion of Igusa varieties.
With our notations, ®*(t; ;) = T; ; for (¢,7) = (1,3),(2,4) and 0 otherwise. If
we compute the associated differential operators 6* and 0N of R, we obtain
o = (01,3)2 and 6 = 01,302 4 — 01 402 3. If instead we compute the associated
differential operators 6 and 6*on R/, we obtain 6 = (6] 3)% and o =
01 305 4. Tt is easy to check that as maps on R’ 0 o®* = ®* 0 but 0 0 d* +
d* 0N, An explanation comes from the fact that the weight A has depth 2 for
both H and H’, while A" should be regarded as of depth 2 for H and 1 for H'.

We now consider the case of a pure symmetric p-adic character y of H', which
is not a symmetric p-adic character of H (i.e., of x arising as the p-adic limit of
pure symmetric weights which are dominant for H' but not for H). For such p-
adic characters we have already defined a differential operator on automorphic
forms on H' but not on H, Proposition explains how to extend it to H.
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Note that for any weight A of H', there is a unique weight Ay which is dominant
for H and conjugate to A under the action of the Weyl group Wx(T), i.e.
Ao = A% for some o € Wy (T). If X is a (sum-)symmetric weight of H', then Ag
is a (sum-)symmetric weight of H. Furthermore, if A is pure sum-symmetric for
H', then the permutation o € Wg(T') can be chosen to arise from a permutation
of {1,...,s}. More precisely, if i € {1,..., s} is such that \; is trivial for all j # ¢,
then we can choose o = 0(y; to correspond to the permutation (17). (Here, for
each permutation v on {1,...,s}, we define o, to be the element of Wy (T)
induced by the action of  on the partition {(a+$j)7a,$j))7@|j =1,...,s} of
the signature (a4,,a_;)res.) In particular, we observe that Ag is pure sum-
symmetric for the subgroup H := [Ty¢;<s Hy(jy of H, for v = (1i).

PROPOSITION 6.2.6. For all pure symmetric p-adic characters x of H', let
o =04y, forie{l,...,s} such that x; is trivial for all j #1i. Then X7 is a
symmetric p-adic character of H and

© X ores =res o (9o 00X 0 g7h).

Proof. As in the proof of Proposition [6.2.4] we use Theorem [5.2.6] to reduce
to the case when x has integral weight A, and by the t-expansion principle it
suffices to establish the equality after localization at a point x of the smaller
Igusa tower Ig’. For all f € V!V, on one side we have

(0 ores)(f)a(t) = 0 (res(f)u(t) = 0 0 B* (fa(u (1)),

and on the other

(reso (95,00 0 g7))(f)u(t)

(9500 0. g1 ) (Na (1))
(@ 0.9,)((O* g, )(Naaya (1))
(" 0 90 20" )((95") (a(ayen ()
= (209,00 0 g, ) (Mo (1)

Thus, we have reduced the statement to an equality of two maps R ~ W[[#|l €
EV]] >R ~W[[t]l € FV]], i-e.

6020 ®* = 0% 0g, 00" og,",

where ®* =id®¢€" is the map on complete local rings corresponding to the map
® between Igusa varieties described in Remark Recall that the action of
go on W[[t|l € €"]] is given by the formula g, (#;) =ty for all [ € €. Write
0N = Yieev ar - 020 and define 6 = ¥ ev ay - 02°D) (note that here X is
possiblyincit dominant for H). Then, on the right hand side, we have

(I)*ogaoe)‘aoggl:(I)*oHAogaog(;l:(I)*OGA.

Finally, the same computation as in the proof of Proposition implies
6o d* =0 O
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Remark 6.2.7. Given a pure H'-(sum)-symmetric dominant weight A of H,
Proposition together with Equation imply the equality

IeéS).; © D;\ = D,’}V ores,,

for all positive dominant weights x of H. In fact, the same argument, combined
with Equation , also proves

T€S ).k Ak © D,i‘ = D,i‘, O TeSy k'

for all dominat weights k of H, and ' of H', such that (x')? = k for some
o € Wy (T), assuming A% = \. Similarly, given a pure sum-symmetric weight A
of H', if i e {1,...,s} is such that A\g = A7) is a (sum-symmetric) dominant
weight of H, then Proposition and Equation together imply that

T€S) -k, Ao © D;‘” o g;1 = ’Dé ores,

for all positive dominant weights x of H, satisfying k709 = k.

Remark 6.2.8. Let s, k', A\, A\g and 0, 0(1;) be as above. The choice of projection
Wi * Prlpr = Pwr, satisfying €5, = Eﬁf;m © Wy, © Jo, Uniquely determines
one quotient of py|ps of weight ', even when the multiplicity of the Hip—
representation p,s in px|gs (by which we mean the rank of Hom Hy (pwlar, prr))

is larger than 1. For a general A, the multiplicities of py.s in px.|r and of p,
in pglp (resp. of payk in prx|rr and of p,; in pylpr) might not agree. However,
our (uniform) choice of projections ensures the compatibility of the resulting
restrictions of automorphic forms with the differential operators.

7 p-ADIC FAMILIES OF AUTOMORPHIC FORMS

In this section, we construct p-adic families of automorphic forms on unitary
groups. To construct the families, we apply the differential operators intro-
duced above to the Eisenstein series constructed in [Eisl4l [Eis15] and then
apply Theorem [5.2.60f We also construct a p-adic measure by applying the
description of the differential operators in Section (especially Equation

(27))-
7.1 PRIOR RESULTS ON FAMILIES FOR SIGNATURE (n,n)

We begin by recalling the Fisenstein series in [Eis14], which include the Eisen-
stein series in [Kat78| [Eis15] as special cases. Similarly to the notation in
[Eis14], for k€ Z and v = (v(0)) o5, € Z*7, we denote by Ny, the function

ok be Tlemr (@)
Ny, : K> K b MHE(b) (J(b)) .
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Note that for all be O, Ny, (b) = Ny /g(b)*.

The theorem below gives explicit g-expansions of automorphic forms. Note that
as explained in [Hid04, Section 8.4], to apply the p-adic g-expansion principle
in the case of a unitary group U(n,n) of signature (n,n) at each place (for
some integer n), it is enough to check the cusps parametrized by points of
GM, (Ag+), where GM, denotes a certain Levi subgroup of U(n,n). (More
details about cusps appear in [Hid04, Chapter 8] and, as a summary, in [Eis14];
we will not need the details here.)

THEOREM 7.1.1 (Theorem 2 in [EisI4]). Let R be an Ok-algebra, let v =
(v(0)) € Z®, and let k > n be an integer. Let

F2(0K®Zp)>< an(OK+ ®Zp)—>R

be a locally constant function supported on (O ® Z,)” x GL,, (Ok+ ® Z,) that
satisfies

F(ex,Ng/p(e")y) = Ny, (e)F (z,y) (31)

foralle e O, x € Ox®Zy, andy € My, (Ox+ ® Zy). There is an automorphic
form Gy, r of parallel weight k on GU (n,n) defined over R whose g-expansion
at a cusp m € GM, (Ag+) is of the form Yoqer,, c(a)q® (where Ly, is a lattice
in Herm,, (K) determined by m), with c(«) a finite Z-linear combination of
terms of the form

F(a, NK/E(a)_la) N (a_l det ) Npq (deta) ™"

(where the linear combination is a sum over a finite set of p-adic units a € K
dependent upon « and the choice of cusp m).

Let (R, te0) consist of an Op (p)-algebra R together with a ring inclusion te
R - C. Given an automorphic form f defined over R, we view f as a p-adic
automorphic form via ¥ or as a C*°-automorphic form after extending scalars
via Lo : R < C.

Remark 7.1.2. The C*°-automorphic forms Gy, r are closely related to the
C*°-Eisenstein series studied by Shimura in [Shi97]; the difference between
Shimura’s Eisenstein series and these ones is the choice of certain data at p,
which allows one to put Gk, r into a p-adic family. For R = C, these are
the Fourier coefficients at s = g of certain C*°-automorphic forms Gy, r (2, s)
(holomorphic in z at s = %) of parallel weight k defined in [Eis14, Lemma 9.
We do not need further details about those C*°-Eisenstein series for the present
paper.

7.2 FAMILIES FOR ARBITRARY SIGNATURE

We use the notations introduced in Section [6.1] with GU = GU(n,n) and G’ of
arbitrary signature. In particular, we still denote by H and H' the associated
Levi subgroups.
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For each symmetric weight x of H', we define an automorphic form of weight
k+k for G’

— K -
G F = O°resyGi o F,

where resy, is the restriction on automorphic forms from GU(n,n) to G', (i.e.
the pullback followed by projection onto an irreducible quotient) as introduced
in Section

Remark 7.2.1. Proposition implies that if the weight x is pure H'-
symmetric and H-symmmetric, then the automorphic form Gy, ., r . agrees with
res©” Gy, , the restriction to G’ of the form ©*Gy , r for U(n,n).

As an immediate consequence of Theorem and Remark applied to
res; G, . r, we obtain the following result.

THEOREM 7.2.2. Let k_and k' be two symmetric weights satisfying the condi-
tions of Proposition . Then Gy, = Gr,u F e inside VN [pmaty N

Proposition below summarizes the relationship between the values at CM
points (together with a choice of trivialization) of the p-adic automorphic forms
obtained by applying p-adic differential operators to resy Gy ,,r and the values
of C* automorphic forms obtained by applying C* differential operators to
I‘GSEG]CJ,’F.

PROPOSITION 7.2.3. For each locally constant function F as in Theorem[7.1.]),
the values of G, r,x and ngl ome. o DI (C°°)resy G, r, where mo, denotes
the projection onto an irreducible subspace of highest weight k-k, agree at each
ordinary CM point A over R (together with a choice of trivialization of w,/R)
up to a period.

Thus, as a consequence of Theorem we can p-adically interpolate the
values of (55 o o © D (C*°)resy G, p (modulo periods) at ordinary CM
points as & varies p-adically.

Proof. The proof is similar to [Kat78, Section 5|, [Eis15l Section 3.0.1], and
[Eis14l Section 5.1.1]. O

Let x = [I, Xxw be a Hecke character of type Ag. We obtain a p-adically
continuous character x on X,,, where X,, denotes the projective limit of the ray

class groups of K of conductor p”, as follows. Let Yoo : (K ® Z,)” — @; be the
p-adically continuous character such that

Xoo(@) = 1p © Xoo(a)

for all a € K. So the restriction of Yoo to (Ox ® Z,)™ is a p-adic character. We
define a p-adic character x¥ on X, by X ((aw)) = Xoo ((aw)wlp) [T too X ().
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For each character ¢ on the torus T and for each type Ay Hecke charac-
ter x = xu| - |*/? with x, unitary, we define F\, ¢(x,y) on (Og ®Z,)" x
GL, (Og+ ®Zy) by Fy, ¢(z,y) = xu(2)pc(Ng/p(x)'y) and extend by 0 to
a function on (O ® Zp) x Myxn (Ok+ ® Zy), with ¢ defined as in Equation

(27).

We now construct a certain p-adic measure.

THEOREM 7.2.4. There is a measure ug (dependent on the signature of the
group G') on X, xT (Z,) that takes values in the space of p-adic modular forms
on G’ and that satisfies

X r =1es® Gy, 32
fx,,xT(z,,)XWNG 1es®"Gr o F,, ., (32)

for each finite order character ¢ and H-symmetric weight k on the torus T and

RS2 é)”(">

for each type Ag Hecke character x = x| of infinity type [yes 0" (U

with X, unitary.

In particular, for k pure H'-symmetric, we have
XVkig =G .
fxpr(Zp) XruG Rt B o

Equation is analogous to [Kat78| Equations (5.5.7)], which concerns the
case of an Eisenstein measure for Hilbert modular forms. Theorem [7.2.4] also
extends the main results of [Eis15l [Eis14] to arbitrary signature.

The idea of the proof is similar to the idea of the construction of analogous
Eisenstein measures in [Kat78| [Eis15], i.e. it relies on the p-adic g-expansion
principle.

Proof. First, note that the measure pgs is uniquely determined by restricting
to finite order characters on X, x T (Z,) (by, for example, [Kat78, Proposition
(4.1.2)]). Now, Equation follows from the p-adic g-expansion principle
([Hid05, Corollary 10.4]), as follows: First, note that the p-adic g-expansion
principle holds for all elements in Vi o, not just those in V. Now we apply the
differential operators from Section to the automorphic form Gi , r,  , on
the general unitary group G of signature (n,n). So the resulting automorphic
form takes values in a vector space that is a representation of H. We project
the image onto an irreducible representation for H'. So the pullback of this
automorphic form to G’ is res©" Gy, ., F,, .- Note that the action of differential
operators on g-expansions is similar to the action on Serre-Tate expansions,
with the parameter (1+t) replaced by ¢. (In each case, it depends on the
existence of a horizontal basis. See [Kat78, Corollary (2.6.25)] for the case of
Hilbert modular forms, which is extended to unitary groups of signature (n,n)
in [Eis12].) In particular, we see from Deﬁnition and Corollary that
applying D} and then projecting the image onto a highest weight vector results
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in multiplying each g-expansion coefficient by the polynomial from Corollary
5.2.10, Equation then follows immediately from Remark together
with the abstract Kummer congruences (see [Kat78l Proposition (4.0.6)]), i.e.
the observation that for each integer m, whenever a linear combination of the
values of the product of characters on the left hand side is 0 mod p™, then the
corresponding linear combination of g-expansions of the automorphic forms on
the right hand side is also O mod p™.

The statement for pure weights  follows from Remark [7.2.7] O
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