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Abstract 

Machine learning is an application of artificial 
intelligence (AI) that provides systems the ability to 

automatically learn and improve from experience without 

being explicitly programmed. Machine learning focuses on the 

development of computer programs that can access data and 

use it learn for themselves. This paper discuss about phishing  

and phishing are a standout amongst the most widely 

recognized and most perilous assaults among cybercrimes. 

The point of these assaults is to take the data utilized by 

people and associations to direct exchanges. Phishing sites 

contain different indications among their substance and 

internet browser-based data. The reason for this investigation 

is to perform Extreme Learning Machine (ELM) based 
characterization for 30 highlights incorporating Phishing 

Websites Data in UC Irvine Machine Learning Repository 

database. For results appraisal, ELM was contrasted and other 

AI techniques, for example, Support Vector Machine (SVM), 

Naïve Bayes (NB) and identified to have the most noteworthy 

exactness. 

Keywords: Machine Learning, Support Vector Classifier, 

Phishing, Information Security. 

 

I. INTRODUCTION 

Web use has turned into a fundamental piece of our every 

day exercises because of quickly developing innovation. 

Because of this quick development of innovation and serious 

utilization of advanced frameworks, information security of 

these frameworks has increased incredible significance. The 
essential target of keeping up security in data advancements is 

to guarantee that fundamental safety measures are taken 

against dangers and threats liable to be looked by clients amid 

the utilization of these innovations. Phishing is characterized 

as emulating dependable sites so as to acquire the exclusive 

data went into sites each day for different purposes, for 

example, usernames, passwords and citizenship numbers. 

Phishing sites contain different indications among their 

substance and internet browser-based data . Individual(s) 

submitting the misrepresentation sends the phony site or email 

data to the objective location as though it originates from an 

association, bank or whatever other dependable source that 

performs solid exchanges. Substance of the site or the email 

incorporate solicitations planning to draw the people to enter 
or refresh their own data or to change their passwords just as 

connections to sites that resemble precise of the sites of the 

associations concerned. Phishing are one of the most common 

and most dangerous attacks among cybercrimes. The aim of 

these attacks is to steal the information used by individuals 

and organizations to conduct transactions. Phishing websites 

contain various hints among their contents and web browser-

based information. The purpose of this study is to perform 

Extreme Learning Machine (ELM) based classification for 30 

features including Phishing Websites Data in UC Irvine 

Machine Learning Repository database.  

 

II RELATED WORK  

Procedural steps for solving the classification problem 

presented is as follows: 

Identification of the problem 

This study attempts to solve the problem as to how 

phishing analysis data will be classified. 

Data set 

Approximately 11,000 data containing the 30 features 

extracted based on the features of websites in UC Irvine 

Machine Learning Repository database. 
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Modeling 

After the data is ready to be processed, modeling process 
for the learning algorithm is initiated. The model is basically 

the construction of the need for output identified in accordance 

with the task qualifications. 

Classification is to determine the class to which each data 
sample of the methods belongs, which methods are used when 

the outputs of input data are qualitative. The purpose is to 

divide the whole problem space into a certain number of 

classes. A wide range of classification methods are present. 

This is due to the fact that different classification methods 

have been constructed for different data as there is no perfect 

method that works on every data set. As mentioned in 

literature studies, the aim of classification is to assign the new 

samples to classes by using the pre-labeled samples. The most 

commonly used classification methods are described below. 

• Artificial Neural Networks (ANN) 

• Support Vector Machine (SVM) 

• Naive Bayes (NB) 

 

III PROPOSED SYSTEM 

Extreme Learning Machine (ELM) is a feed-forward 

artificial neural network (ANN) model with a single hidden 

layer. For the ANN to ensure a high-performing learning, 

parameters such as threshold value, weight and activation 

function must have the appropriate values for the data system 

to be modeled. In gradient-based learning approaches, all of 

these parameters are changed iteratively for appropriate 

values. Thus, they may be slow and produce low-performing 

results due to the likelihood of getting stuck in local minima. 

In ELM Learning Processes, differently from ANN that 

renews its parameters as gradient-based, input weights are 

randomly selected while output weights are analytically 
calculated. As an analytical learning process substantially 

reduces both the solution time and the likelihood of error 

value getting stuck in local minima, it increases the 

performance ratio. In order to activate the cells in the hidden 

layer of ELM, a linear function as well as non-linear (sigmoid, 

sinus, Gaussian), non-derivable or discrete activation 

functions can be used. 

 

IV METHODOLOGY 

Extreme Learning Machine (ELM) 

Extreme Learning Machine (ELM) is a feed-forward 

artificial neural network (ANN) model with a single hidden 

layer. For the ANN to ensure a high-performing learning, 

parameters such as threshold value, weight and activation 

function must have the appropriate values for the data system 

to be modeled. In gradient-based learning approaches, all of 

these parameters are changed iteratively for appropriate 

values. Thus, they may be slow and produce low-performing 

results due to the likelihood of getting stuck in local minima. 

In ELM Learning Processes, differently from ANN that 

renews its parameters as gradient-based, input weights are 

randomly selected while output weights are analytically 

calculated. As an analytical learning process substantially 

reduces both the solution time and the likelihood of error 

value getting stuck in local minima, it increases the 
performance ratio. In order to activate the cells in the hidden 

layer of ELM, a linear function as well as non-linear (sigmoid, 

sinus, Gaussian), non-derivable or discrete activation 

functions can be used. 

 

Fig: An Artificial Neural Network Model 

Model performance evaluation 

The topics addressed in this section are the two measures 

that affect the performance of the model and the algorithm 

used, the first one being the division of data set into training 
and test data set and the second one being the definition of 

expressions measuring the performance. In the first measure, 

the data set is divided into three parts as training, validation 

and test data by three-phase division in K-Fold method, and 

model selection and performance status are simultaneously 

performed. In the second measure, performance assessment of 

classifier models generally uses a validation value. Validation 

value can be measured as the ratio of data count detected or 

estimated correctly by the algorithm into all data in the data 

set. 

 

V CONCLUSION 

In this paper, we defined features of phishing attack and 

we proposed a classification model in order to classification of 

the phishing attacks. This method consists of feature 

extraction from websites and classification section. In the 

feature extraction, we have clearly defined rules of phishing 

feature extraction and these rules have been used for obtaining 

features. In order to classification of these feature, SVM, NB 

and ELM were used. In the ELM, 6 different activation 
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functions were used and ELM achieved highest accuracy 

score. 
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