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The genetic aetiology of cannabis use: from twin models to
genome-wide association studies and beyond
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Cannabis is among the most widely consumed psychoactive substances worldwide. Individual differences in cannabis use
phenotypes can partly be explained by genetic differences. Technical and methodological advances have increased our
understanding of the genetic aetiology of cannabis use. This narrative review discusses the genetic literature on cannabis use,
covering twin, linkage, and candidate-gene studies, and the more recent genome-wide association studies (GWASs), as well as the
interplay between genetic and environmental factors. Not only do we focus on the insights that these methods have provided on
the genetic aetiology of cannabis use, but also on how they have helped to clarify the relationship between cannabis use and co-
occurring traits, such as the use of other substances and mental health disorders. Twin studies have shown that cannabis use is
moderately heritable, with higher heritability estimates for more severe phases of use. Linkage and candidate-gene studies have
been largely unsuccessful, while GWASs so far only explain a small portion of the heritability. Dozens of genetic variants predictive
of cannabis use have been identified, located in genes such as CADM2, FOXP2, and CHRNA2. Studies that applied multivariate
methods (twin models, genetic correlation analysis, polygenic score analysis, genomic structural equation modelling, Mendelian
randomisation) indicate that there is considerable genetic overlap between cannabis use and other traits (especially other
substances and externalising disorders) and some evidence for causal relationships (most convincingly for schizophrenia). We end
our review by discussing implications of these findings and suggestions for future work.
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INTRODUCTION
Cannabis is among the most widely consumed psychoactive
substances worldwide. An estimated 4% of the world population
aged 15 to 64 used cannabis at least once in 2019 [1]. While
prevalences vary highly between countries, the overall European
Union lifetime use prevalence is estimated to be 27.2% [2]. People
mainly use cannabis to experience a psychoactive induced ‘high’
characterised by mild euphoria, relaxation, and perceptual and
cognitive alterations [3]. These responses are likely related to the
endogenous endocannabinoid system, given that Δ-9-tetrahydro-
cannabinol (THC) binds to cannabinoid receptors in different brain
areas. Besides THC, an important component of cannabis is
cannabidiol (CBD). By itself, CBD is not intoxicating (at typical
doses) and has a much lower risk of adverse effects compared to
THC [4]. This is confirmed by studies showing that cannabis with
an elevated THC to CBD ratio is more damaging [5].
Indeed, a large body of research has demonstrated adverse

effects linked to cannabis use. For example, cannabis use is
associated with accidents, lower cognition and motivation, and
suicide attempts and regular use has been related to various
physical and psychological problems [5–8]. Regular use can also
lead to addiction; in many countries cannabis is among the most
common primary reasons for entering drug-related treatment [1]

and cannabis use often precedes other drug use [9–11]. Problems
related to cannabis use can in turn interfere with family, school,
and work obligations [12]. Public health costs, law enforcement,
and loss of work potential because of cannabis use are an
economic drain on society [13]. In contrast, there may also be
positive health benefits. There is some evidence that, by itself, CBD
has antioxidant, anti-inflammatory, and neuroprotective proper-
ties [5]. Cannabinoid-based drugs are used to treat a range of
medical conditions, including neurological disorders, psychiatric
disorders, and pain [4, 14, 15]. While few serious side-effects have
been reported, additional safety data are needed from more (and
larger) clinical trials. In addition, it is important to note that non-
medicinal CBD products (sold online or from health food retailers)
lack quality standards and are not recommended for medicinal
purposes [4].
In light of the prevalence and adverse effects, for prevention,

intervention and harm reduction efforts to be effective, it is
important to understand why some individuals initiate cannabis
use while others do not, and why a small subset progresses to
regular user or develop a cannabis use disorder (CUD). In addition
to environmental factors known to increase use (e.g. peer
substance use, lower socio-economic status, poor neighbourhood
characteristics, inadequate parental monitoring, high drug
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availability, and stressful life events [16–20]), risk of cannabis use
runs also in families. A substantial part of the variability in
cannabis use is due to genetic differences. This review provides an
overview of current knowledge of the genetics of cannabis use,
covering early twin studies to genome-wide association studies
(GWASs) and post-GWAS analyses. When presenting results, we
will refer to various indices of cannabis use, including initiation,
frequency of use, and CUD which also be operationalised
differently per study (Box 1 provides an overview of phenotypic
definitions).

TWIN STUDIES
Before detailed information on the DNA sequence of the human
genome was available, scientists were limited to studies using
inferred genetic relatedness to explore the influence of genetic
factors on cannabis use. Such studies relied on family, adoption,
and twin designs. Family studies cannot distinguish between
genetic and family environmental influences, and only few
adoption studies were performed of cannabis use. A longitudinal
adoption study showed that genetic influences on cannabis
initiation were important at an early age (13–14 years old), but less
so at age 17 and 18 [21].
Twin studies have proven more valuable because they typically

used larger samples than adoption studies and they can
differentiate between shared environmental and genetic influ-
ences. In twin studies, the resemblance between monozygotic
twin pairs (who share all their DNA) is compared to that of
dizygotic twin pairs (who share on average 50% of their
segregated genes) [22]. If monozygotic twins resemble each other
more than dizygotic twins on a certain trait, for example cannabis
use, this is an indication that this trait is partly influenced by
genetic difference between people. By applying sophisticated
statistical models to twin data, it is possible to estimate what
proportion of individual differences is due to genetic differences
between people (heritability), shared (or family) environmental,
and non-shared (or unique) environmental influences (see
[23, 24]). Decades of twin studies have revealed that virtually
every physical, behavioural, cognitive, and disease trait is heritable

[25]. It is important to emphasise that heritability does not
represent a fixed estimate nor does it describe individual levels of
personal risk. Estimates of genetic and environmental variation are
population estimates used to describe the sources of individual
differences within a sample. When a trait or disorders is heritable,
this does not mean that people’s outcomes are determined at
conception; heritability does not equal genetic determinism.
Instead, whether someone develops a certain disease or addiction
depends on a complex interplay between genetic vulnerability
and many environmental factors.
The heritability of various cannabis use phenotypes has been

estimated in twin studies, most of which focussed on cannabis
initiation or indices of CUD. A meta-analysis of these twin studies
in 2010 [26] presented meta-analytic heritability estimates of 48%
for females and 51% for males for cannabis initiation, and 51% for
females and 59% for males for problematic cannabis use. In
addition, Agrawal et al. [27] estimated a heritability of 35% and
27% for positive and negative subjective initial reactions to
cannabis intake, Hines et al. [28] estimated that the opportunity to
use cannabis was 64% heritable, and frequency of use 74%, and
Minică et al. [29] estimated that age at first cannabis use was 38%
heritable. In general, the relative genetic contribution is lower for
the initiation of cannabis use compared to more severe stages of
use such as problematic use, while for shared environmental
influences, it was the other way around. Possibly, the initial stages
of cannabis use are more sensitive to environmental factors, such
as drug availability, peer influences, parental monitoring, and
parental attitudes towards drug use, whereas the likelihood of
progression to problematic use is more influenced by biological
factors such as people’s physical response to THC intake. The
pattern of higher heritability and lower family environmental
influences for more severe phases of cannabis use has also been
found for other substances [30, 31].
With multivariate twin methods [23], it is possible to estimate

how much the genetic influences on one trait overlap with those
underlying other traits. Multivariate twin studies have revealed
that large portions of genetic factors in cannabis use initiation and
problematic use are shared [32]. Correlations between measures
of cannabis initiation, regular use, and problematic use suggest a
single liability [33, 34], explained by common genes and
environments [31, 32]. Similar patterns in terms of common
genetic and environmental on different stages of use have also
been observed for other substance [35, 36].
Multivariate twin studies have also explored to what extent

genetic and environmental influences are shared across use of
different substances. One study found that a common factor
influenced by genetic factors, and family and non-family
environmental influences underpins comorbid cannabis, sedative,
stimulant, opioid, and psychedelic misuse [37]. Another study
found that comorbid substance misuse (including cannabis,
cocaine, hallucinogens, sedatives, stimulants, and opiates) is
largely explained by overlapping genetic and shared environ-
mental influences [38]. The same study also suggest that random
environments determine how individuals choose to use a
particular substance. A third study found that comorbid cannabis,
cocaine, alcohol, caffeine, and nicotine misuse was best explained
by two highly correlated genetic factors - one predisposing to
cannabis and cocaine, the other to alcohol, caffeine, and nicotine
misuse [39].
Overall, twin studies have demonstrated substantial overlap in

genetic factors influencing earlier (experimental/regular use) and
later (CUD) stages of cannabis use, and significant genetic overlap
between use of cannabis and other substances. This general
genetic vulnerability to substance use could be part of a much
broader spectrum of personality characteristics or externalising
psychopathology, characterised by substance use as well as
conduct disorder, antisocial personality disorder, and other
correlated traits [40–45].

Box 1. Definitions of the cannabis use variables

Throughout the literature various measures and descriptions have been used as
indices of cannabis use. In this review we use the term cannabis use as a generic,
inclusive term to describe all types of cannabis use behaviours. Definitions of
specific phenotypes are:
Cannabis initiation; self-reported information on whether or not a person has
ever used cannabis in their lifetime, sometimes referred to as ‘lifetime cannabis
use’.
Frequency of cannabis use; a measure of the number of times that cannabis is
used during a specified period (e.g. one week or one month).
Quantity of cannabis use; a measure of the amount of cannabis that is used
during a specified period (e.g. a single occasion, or during one week or one
month).
Cannabis use disorder (CUD); umbrella term for a clinical diagnosis, in the DSM
subdivided into cannabis dependence and cannabis abuse.
Cannabis abuse; a diagnosis of cannabis abuse, based on DSM criteria or ICD
codes. Cannabis abuse can be defined as a maladaptive pattern of substance use
manifested by recurrent and significant adverse consequences related to the
repeated use.
Cannabis dependence; a diagnosis of cannabis dependence, based on DSM
criteria or ICD codes. Cannabis dependence is the more severe form of cannabis
use disorder can can be defined as “a cluster of cognitive, behavioural, and
physiological symptoms indicating the individual continues use despite
significant substance-related problems. There is a pattern of repeated self-
administration that usually results in tolerance, withdrawal, and compulsive drug-
seeking behaviour.
Problematic cannabis use; term used to refer to use of cannabis to an extent to
which it leads to problems (symptoms of abuse/dependence or a full diagnosis of
abuse/dependence).
Age at first cannabis use; self-reported information on the age at which a person
used cannabis for the first time.
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GENE-FINDING STUDIES
With the arrival of affordable DNA genotyping, the focus of
behavioural genetics research shifted from family and twin studies
to designs such as linkage analysis, candidate-gene studies, and
GWASs, which rely on measured genotypes. Linkage analyses test
for co-inheritance of genetic markers and traits within families.
The segregation of a genetic marker within families is compared
with the segregation of the trait in the family members.
Downsides of this approach are that the analysis requires pedigree
data and that linkage peaks only provide a rough indication of the
implicated genomic region. In genome-wide linkage studies of
cannabis use, most linkage peaks did not meet significance, and
nearly all failed to replicate [46–51]. Ehlers et al. [48] found
genome-wide significant linkage peaks for symptoms of cannabis
dependence on chromosome 16 and 19, and in another study [49]
on chromosomes 1, 3, 6, 7, and 9 for craving and cannabis
symptoms. Hopfer et al. [50] reported suggestive evidence for
linkage peaks for cannabis dependence symptoms on chromo-
some 3 and 9 in an adolescent sample. Han et al. [51] found a
(non-significant) linkage peak at chromosome 8 for cannabis
dependence; they then performed an association analysis under
this peak, and found a significant and replicable association
between variants in NRG1 and cannabis dependence. Non-
significant peaks were reported on chromosome 14 for cannabis
dependence symptoms [46], on chromosome 18 for cannabis
frequency of use and initiation and chromosome 19 for early onset
of cannabis use [47], and on chromosome 1 and 4 for cannabis
problems [52]. The latter peak was in the region of the gamma-
aminobutyric acid type A gene cluster, which includes GABRA2
that had previously been implicated in drug use disorders [53, 54].
Around the same time researchers also turned to candidate-

gene studies, a hypothesis-driven method designed to tests for a
correlation between a phenotype and a gene that is hypothesised
to relate to this phenotype. For cannabis use these studies focused
initially on variants in the cannabinoid receptor (CNR1) gene,
located at chromosome 6. CNR1 is densely expressed in the central
nervous system, notably in brain circuits thought to be important
for reward and mnemonic processes related to substance misuse
[55]. CNR1 was among the strongest candidate genes for cannabis
use because it was known to be activated not only by
endocannabinoids, but also plant phytocannabinoids such as
THC, and synthetic analogs of THC. Using the candidate-gene
approach, Hopfer et al. [56] and Agrawal et al. [57] found a
significant association between the CNR1 gene and (symptoms of)
cannabis dependence, but others could not replicate this
association [58, 59]. In a meta-analysis, Benyamina et al. [60]
showed a small but significant effect for the CNR1 AAT
polymorphism on measures of substance dependence that
included cannabis. Candidate-gene studies have also reported
associations between cannabis use phenotypes and GABRA2
[53, 61], FAAH [62–64], and ABCB1 [65]. However, these associa-
tions largely failed to replicate [66–68]. For a comprehensive
overview of candidate-gene studies for CUDs, see [69].
Overall, linkage and candidate-gene association studies were

largely unsuccessful at identifying replicable genes. This failure is
likely attributable to variation in research designs and phenotyp-
ing, lack of power, and publication bias [70]. Fortunately,
technological advances permitted genome-wide analysis of
genetic variants associated with complex traits, using GWASs.
GWASs use genetic markers (typically single nucleotide poly-
morphisms (SNPs)) spanning the entire genome to systematically
test for association with a trait. This approach has become a
widely adopted method of identifying genetic associations.
The first cannabis GWASs, focussed on initiation [71, 72],

dependence [73], and age at initiation [72], comprised small
sample sizes and failed to identify genome-wide significant
genetic loci. To increase power, large-scale collaborative efforts
were undertaken. In 2012, the International Cannabis Consortium

(ICC) was established with the aim of combining data from
multiple cohorts to identify genetic variants associated with
cannabis use. To date, the ICC has published three GWAS meta-
analyses. The first [74] investigated cannabis initiation and
involved a meta-analysis of 13 cohorts (N= 32,330, plus four
replication samples (N= 5,627)). Although no individual SNP
reached genome-wide significance, subsequent gene-based tests
of association identified four genes significantly associated with
cannabis initiation: NCAM1, CADM2, SCOC, and KCNT2. In a more
recent ICC report [75], where the meta-analytic sample for
cannabis initiation was increased to ~184,000 individuals, eight
independent genome-wide significant SNPs in six regions were
identified, as well as 35 significant genes in a gene-based tests of
association. The third ICC GWAS report investigated age at onset
of cannabis use (N= 24,953 individuals [29]), and identified a
genome-wide significant association with SNPs in the
ATP2C2 gene.
In 2016, Sherva et al. [76] identified the first genome-wide

significant associations for cannabis dependence. The performed
a GWAS for cannabis dependence criterion count in three
substance dependence cohorts (N= 14,754 African American
and European American participants; 18–36% cases). Three
independent genome-wide significant SNPs were identified, two
specific to African American participants (one in RP11-206M11.7
and one 12.4 kb upstream from the S100B gene) and one in the
combined sample (in the CSMD1 gene). Two additional meta-
analytic efforts for cannabis use disorder have been undertaken by
(i) the Initiative for Integrative Psychiatric Research (iPsych) and
deCODE genetics [77] and (ii) the Psychiatric Genetics Consortium
—Substance Use Disorder (PGC-SUD) workgroup [78]. Demontis
et al. [77] performed a GWAS for CUD with a discovery sample of
2,387 cases and almost 50,000 controls (plus a replication sample
of 5,501 cases and ~300,000 controls). They identified one
genome-wide significant risk locus for CUD, a SNP that is a strong
marker for CHRNA2 expression. More recently, The PGC-SUD GWAS
meta-analysis study based on 20,916 cases and 363,116 controls
[78] identified two genome-wide significant loci: one novel locus
in the FOXP2 gene, and the previously identified locus near
CHRNA2 (and EPHX2). A systematic review of all cannabis use
GWASs can be found elsewhere [79].
Whole genome sequencing (WGS) allows for more comprehen-

sive association analysis than microarray-based GWASs, with the
potential to identify rarer genetic variants. Gizer et al. [80] applied
low-pass WGS to identify low frequency variants involved in
cannabis dependence across two cohorts: a Native American tribal
community and a family-based sample of primarily European
ancestry. Their set-based analysis yielded two significant regions: a
protein-coding region, C1orf110, and a regulatory region within
the MEF2B gene. An overview of significant SNP and gene-based
associations from the GWAS and WGS reports can be found in
Table 1 and Fig. 1.

REVEALING MOLECULAR MECHANISMS USING FUNCTIONAL
ANNOTATION ANALYSES
GWASs alone cannot inform the cascade of biological changes
linking SNPs to cannabis use. This can, however, be addressed
using gene-expression analyses via analysis of expression
quantitative trait loci (eQTLs) or SNPs regulating gene-
expression. Because gene-expression plays a critical role in human
diseases [81], and because eQTLs regulate gene-expression, they
likely provide a direct link between GWAS results and gene-
expression studies [82]. Furthermore, eQTL analysis can discern
transcriptome adaptations, while eQTLs in transcription factor
binding sites, splice sites, and regulatory regions can reveal
mechanisms by which genetic variants contribute to cannabis use
[83]. Since most variants reside outside protein-coding regions,
the influence of eQTLs on cell functioning likely involves subtle
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modification of gene transcription and translation [84]. By
assessing eQTLs in linkage disequilibrium with SNPs associated
with cannabis use, can we begin to explain their function.
Many of the genetic variants associated with cannabis use are

located in non-protein-coding regions. Therefore, functional
annotation analyses are required to elucidate downstream
biological consequences underlying these genetic associations.
Several methods have been developed for the biological
interrogation of genetic associations [85]. The majority are based
on the premise that associated SNPs influence disease risk by their
influence on an intermediate molecular trait (known as a
quantitative trait locus), such as gene expression, protein
expression, exon splicing, or DNA methylation.
Functional annotation analyses of cannabis use are relatively sparse

as only a handful studies have revealed significant genome-wide
associations. However, the results reveal interesting leads to putative
causal genes (Table 1). Multiple studies have explored if associated
genetic variants regulate gene expression by browsing databases of
expression Quantitative Trait Loci (eQTLs). Demontis et al. [77] found
that genetic variants linked to CUD are eQTLs for CHRNA2, a nicotinic
acetylcholine receptor gene. This finding was confirmed in the larger
PGC-SUD GWAS meta-analysis [78] (including the Demontis sample).
Given the association between CHRNA2 and cigarette smoking [86],
Demontis et al. [77] explored whether the association between this
gene and CUD was due to smoking as a confounding factor. Their
results suggest that the signal is primarily driven by CUD.
Transcriptome-wide association study (TWAS) combines eQTL

information across SNPs and tests the association between imputed
levels of gene expression and disease risk to prioritise risk genes in a
tissue-specific manner [87, 88]. Using the TWAS approach, Demontis
et al. [77] found an association between CUD and CHRNA2
expression in the cerebellum, whereas Johnson et al. [78] found
significant associations between CUD and expression levels for NAT6
(amygdala, cortex, frontal cortex), HYAL3 (multiple brain tissues), and
IFRD2 (cerebellum). Significant associations were also reported
between CUD and expression in NAT6, HYAL3, SHTN1, and FOXP2
in other tissues such as whole blood and adipose [78], highlighting
the potential for non-invasive predictive bio-markers of CUD.
A TWAS of cannabis initiation [75] revealed 21 genes of which

imputed expression levels are associated with initiation. The top
association was found for CADM2; genetic variants associated with
increased liability to initiate cannabis use are predicted to
upregulate expression levels in eight non-brain tissues, including
whole blood. CADM2 has been found to be associated with risk-
taking, impulsivity, several measures of substance use, risky sexual
behaviour, and self-control [89–95], suggesting that the associa-
tion with cannabis use is part of a spectrum of externalising traits.
Agrawal et al. [96] conducted an extensive exploration of the

molecular mechanisms underlying the association between
rs1409568 and cannabis dependence. Based on its regulatory
effects, this SNP was identified as the most plausible functional
candidate within a locus at chromosome 10. The SNP appears to be
located within an active enhancer and was predicted to bear active
enhancer marks in several brain-derived tissues (e.g. dorsolateral
prefrontal cortex). The risk increasing C allele is associated with
reduced binding of several transcription factors. There was some
support for this SNP to be associated with CpG methylation of
TIAL1, with lower methylation scores in C allele carriers. Finally, the
C allele of rs1409568 was also associated with a modest increase in
right hippocampal volume (2.13%) in a sample of college students
of whom very few met criteria for cannabis dependence. Of note,
the counterintuitive finding of increased rather than decreased
volumes was replicated in the phenotypic analysis.

POST-GWAS APPROACHES
As with nearly all complex traits, GWAS has likewise revealed that
cannabis use is a highly polygenic behaviour whereby individualTa
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differences are explained by many genetic variants each with very
small effects. These tiny individual differences combined explain
considerable amounts of genetic variation, but current GWASs
capture only a fraction of the estimated heritability reported by
twin studies. For instance, SNP-based heritability estimates are 11%
for cannabis initiation [75], 3.6% for age at initiation [29], and
between 6.7 and 12.1% (depending on the estimated population
prevalence) for cannabis dependence [78]. The discrepancy in
heritability reported by twin studies and GWASs is referred to as
‘missing heritability’, and is a known phenomenon in complex
traits [97]. Among the various explanations proposed, missing
heritability may arise from rare variants not captured by SNP arrays
used in GWASs, or the poor ability of current genotyping arrays to
capture structural variants. It is also possible that there may be
interplay between genes and the environment not captured with
the current GWAS design. As study sample sizes and genomic
coverage increase, the expectation is for SNP-heritability to
increase. Despite the small individual effect sizes and low SNP-
heritabilities, summary-level data from GWASs—containing the
association estimates of each genetic variant with the outcome
variable—can be used for a range of useful secondary analyses. It is
anticipated that this research will improve our understanding of
the genetic architecture of cannabis use, and will help elucidate
the nature of the relationships between cannabis use and
comorbid complex traits including mental health outcomes.

POLYGENIC SCORE ANALYSES
Polygenic scores (PGSs) are predictors of the genetic liability of an
individual to a disease or trait, and can be calculated by summing
an individual’s ‘risk’ alleles for a certain phenotype weighted by
the allele effect size, which are typically derived from effect

estimates from large-scale GWASs. While PGSs only capture a
small part of the genetic contribution to a trait, the validity of PGSs
to predict complex psychiatric behaviours has been well demon-
strated for many traits (e.g. [98–100]). Since the publications of the
large-scale GWASs on cannabis initiation, age at initiation, and
CUD, a number of studies have used the summary statistics to
create PGSs in independent samples to predict observed cannabis
use, other substance use, or correlated phenotypes. Several
studies have found that cannabis PGSs significantly predict
cannabis use phenotypes [77, 101–105] and mental health
problems including depression and self-harm [103, 106], whereas
other PGS analyses have not yielded significant results
[105, 107, 108]. With larger samples we can determine if such
discrepancies stem from lack of statistical power.

USING GWAS RESULTS TO EXAMINE GENETIC CORRELATIONS
BETWEEN TRAITS
The introduction of affordable genotyping has meant that twin-
based findings regarding sources of comorbidity of cannabis use
with use of other substances or correlated traits can now be tested
using measured genotypes. To assess shared genetic risks, linkage
disequilibrium score regression (LDSR) can be used to compute
genetic correlations between traits using summary-level GWAS
data [109]. Such genetic correlation reflects the degree to which
effects of genetic variants across the genome on one trait
correlate with those on a second trait. Genetic correlations
between cannabis use and various relevant other traits are shown
in Fig. 2. Strong genetic correlations are found between cannabis
use and other substance use. Cannabis initiation is strongly
correlated with smoking initiation, whereas CUD is strongly
correlated with dependency, e.g. alcohol dependence and cocaine

Fig. 1 Genomic locations of the identified genome-wide significant SNPs and genes. Illustration of the genomic locations of the genome-
wide significant SNPs and genes for cannabis use phenotypes as identified in genome-wide association studies.
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dependence. This suggests a common genetic liability for
initiating an addictive substance, and a partly distinct genetic
liability for progressing from initiation to heavier use. Initiating
substance use is most likely influenced by genetic factors that
relate to externalising traits such as impulsivity. In line with this
risk-taking and ADHD show some of the strongest genetic
correlations with cannabis use. Cannabis use is also considerably
correlated with major mental health disorders, e.g. major
depressive disorder, schizophrenia, and bipolar disorder. Overall,
these patterns imply that cannabis use has a considerable shared
genetic aetiology with mental health problems. Note that while
for cannabis initiation there are positive genetic correlations with
intelligence, educational attainment, and income, these genetic
correlations are negative for CUD.
By itself, a genetic correlation does not inform about the

mechanisms underlying the association. Genomic structural
equation modelling (SEM [110]) addresses this gap by providing
insights into the nature of genetic associations. Genomic SEM is an
extension of LDSR used to estimate genetic covariance between
multiple traits using GWAS data. By constructing latent variables,
different types of models can be built and (sub)models can be
compared to test which has the superior fit. A number of studies
have used genomic SEM to investigate relationships between
cannabis use and other traits by modelling a latent genetic factor
structure. One study included different substance use traits, and
identified a unidimensional addiction risk factor, in which
cannabis use (together with opioid use disorder) demonstrated
the largest loadings [111]. Two other studies looked at mental

health variables more broadly, and both found that cannabis
dependence is part of a larger (externalising) factor comprised of,
among others, alcohol dependence, nicotine dependence, and
ADHD [112, 113].

USING GWAS RESULTS FOR CAUSAL INFERENCE
While a genetic correlation could arise due to a shared genetic
liability between trait X and trait Y (‘horizontal pleiotropy’), this is
not the only possible explanation. If there are causal relationships,
such that X causes Y, or Y causes X, this would also lead to genetic
correlations (‘vertical pleiotropy’) [114]. For example, if cannabis
use causes schizophrenia, then genes underlying cannabis use
should be indirectly associated with schizophrenia. Resolving the
direction of causation may help improve preventive efforts. A
genetic method that aims to infer causality using summary-level
GWAS data is Mendelian randomisation (MR). To conduct an MR
study, genetic variants that are strongly and reliably predictive of
the proposed risk factor are typically required. Usually, this is
achieved by selecting genetic variants that are genome-wide
significantly (p < 5E-08) associated with the proposed risk factor in
a well-powered GWAS. In some cases variants are selected based
on a higher p-value threshold (e.g. p < 1E−07 or p < 1E−05). This is
generally done when there is a lack of available genome-wide
significant variants (note that this practice can lead to weak
instrument bias). The selected variants are then employed as
instrumental variables, or ‘proxies’, to test causal effects on an
outcome. MR can be compared to a randomised clinical trial (RCT)

Genetic Correlation (rg)

Cannabis initiation
Cannabis use disorder

Psychiatric
Substance U

se
Personality
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Nicotine Dependence
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Neuroticism
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Risk Taking
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Educational Attainment
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Social Deprivation

Fig. 2 Genetic correlations of cannabis initiation and cannabis use disorder with behavioral and mental health outcomes. The genetic
correlations were computed with LD Score regression and the GWAS summary statistics of the GWASs on these traits (see Supplementary
Table 1 for references and sample sizes).
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in the sense that experimental randomisation into an ‘exposed’
and an ‘unexposed’ group is mimicked by the random assortment
of a set of genetic variants. Genetic differences on these variants
should not be (strongly) associated with confounders, which
reduces bias [115].
There are important assumptions that need to be fulfilled to justify

a causal interpretation of an MR analysis. The three main
assumptions are that the genetic instrument must (1) be robustly
associated with the exposure variable, (2), not be associated with any
confounding variables, and (3) not influence the outcome through
another path than through the exposure. Additional assumptions
depending on the exact MR design are discussed elsewhere [116]. In
general, it is preferable to use genetic instruments for which there is
a (relatively) good understanding of how genetic variation leads to
individual differences in the trait. For cannabis use, knowledge of
biological pathways is limited and as mentioned before, there is
evidence that the genetic variants involved are highly pleiotropic.
This should be taken into account when judging evidence from MR
studies looking at cannabis use. An important strength of MR is that
a wide range of sophisticated sensitivity methods is available to
assess the robustness of a causal finding.
MR studies have so far focused on two topics, the first being the

relationship between cannabis use and the use of other
substances. Three studies attempted to elucidate causal pathways
of cannabis use with smoking, caffeine consumption, alcohol use,
and other drug use (cocaine and opioid dependence), specifically
trying to establish whether there is some kind of gateway
mechanism. The first study (N= 38,181 to 112,117) found no clear
evidence for causal relationships [117]. The second study
(N= 25,153 to 207,726) found no evidence for causality except
for one relationship: smoking initiation leading to higher caffeine
intake [118]. The most recent MR study (N= 1749 to 1,232,091),
which was also the most extensive with regards to the studied
phenotypes and sensitivity methods, found evidence for causal
effects of smoking initiation on cannabis initiation and cannabis
dependence. In the other direction, they found evidence that
cannabis initiation leads to smoking initiation, opioid dependence,
and more alcohol consumption. The authors caution that these
latter findings may indicate there is shared vulnerability rather
than causality, because smoking and alcohol use typically begin
before the use of the other substances (the temporality is unlikely)
[119]. These findings emphasise that genetic variants for cannabis
use, initiation specifically, are pleiotropic and likely not very
specific in their effects.
The second focal point in MR literature is the relationship

between cannabis use and mental health disorders. A recent
systematic review paper summarised all MR studies that looked at
substance use and mental health, including eight studies on
cannabis use [120]. For major depression, self-harm behaviour,
and cognitive functioning (N= 126,291 [121], 125,925 [106], and
3242 [122], respectively) there was no clear evidence for causal
effects with cannabis initiation, in either direction. Note that the
sample size of the analyses looking at cognitive functioning were
underpowered. Between liability to schizophrenia and cannabis
initiation there was evidence for bidirectional effects, based on
three studies that used (partly) overlapping GWAS datasets
(N= 79,845 [123], 32,330 to 150,064 [124], and 150,064 to
184,765 respectively [75]). Finally, based on two studies there
was evidence that liability to ADHD increases the risk of cannabis
initiation, without clear evidence for the reverse (N= 32,330 to
53,293 [125] and 53,293 to 184,765 [126]). Since this systematic
review, other MR studies focussed on cannabis use have been
published. One study found evidence that liability to bipolar
disorder causally increases the risk of cannabis initiation, but no
evidence for the reverse (N= 62,082 to 198,882; [127]). A second
study found evidence that cannabis initiation causally increases
the risk of suicide attempt (N= 50,264 to 162,082; [128]), while
another found no evidence for causality between cannabis

dependence and suicide-related behaviours (N= 18,223 to
117,733; [129]). Finally, a particularly comprehensive study
investigated cannabis dependence and schizophrenia using
multiple causally informative methods (genomic SEM, latent
causal variable modelling, and MR) (N= 161,405 to 357,806;
[130]). Some support was found for a causal influence of cannabis
dependence on schizophrenia, but findings were not consistent
across methods This last study is a nice demonstration of the
importance of using several different methods to study (causal)
relationships. This is referred to as ‘triangulation’, the premise
being that if methods with different strengths and weaknesses
point in the same direction, it is less likely a finding is an artefact
[131]. Besides genetic methods, it is important for future studies to
triangulate with alternative methods, such as longitudinal
epidemiological analyses, or other types of (non-genetic) instru-
mental variable methods (e.g. population effects of cannabis
policy changes).

INTERPLAY BETWEEN GENETIC VULNERABILITY AND
ENVIRONMENTAL FACTORS
Both genetic and environmental factors play a role in cannabis
use. A complex interplay between these factors might determine
individual differences in cannabis use and dependence. Interplay
can occur as gene-environment interaction (G × E) where the
effect of genetic vulnerability depends on the presence of
environmental factors. For example, increased genetic risk for
cannabis use may only influence patterns of use in people living in
a neighbourhood where cannabis is widely available. Alternatively,
genetic effects may reflect gene-environment correlations (rGE),
where genetic liability to cannabis use influences environments to
which individuals are either exposed or self-select into. For
example, having an outgoing personality might lead to exposure
to an environment where the use of cannabis is more common.
Similarly, genetic effects could influence ones’ socio-economic
status and thereby become correlated with one’s social surround-
ings and geographic location [132].
Rather than relying on candidate genes, G × E interaction

studies now typically use polygenic measures [133]. A review of G
× E studies using PGSs for substance use outcomes identified 34
publications (publication date before February 2018) but only
three studies included cannabis outcome measures, and none
used a cannabis use PGS. But since then, five studies have been
published using a cannabis PGS to explore G × E interaction
(Table 2). Two studies found significant PGS x Environment
interactions; for trauma exposure [102] and for community
activities [108]. Trauma seemed to exacerbate genetic risk for
substance use, while engagement in community activities may
serve as protective factor for cannabis use. Other environmental
factors such as frequency of religious service attendance,
organised sports, school activities, church activities and peer
deviance were not or not consistently significant in these studies.
The three other studies (exploring moderating roles for neigh-
bourhood environment [134], peer cannabis use [101], prenatal
stress, warm parenting, and cortisol reactivity [135]) did not find G
× E interactions for cannabis use outcomes.
Regarding rGE, Johnson et al. [101] showed that individuals with

high cannabis PGS are more likely to affiliate with cannabis using
peers, a finding that is consistent with a process of social selection,
whereby higher genetic risks for cannabis use may drive the
propensity to affiliate with deviant drug using peers [136]. To our
knowledge, only Pasman et al. (2019) have explicitly simulta-
neously modelled rGE (which was found to be absent) indepen-
dently from G × E. Although G × E and rGE are typically studied
independently, several statistical and conceptual reasons warrant
joint assessment [137]. The presence of rGE may lead to false
conclusions of G × E as many environmental factors are in fact
influenced by genes themselves [137, 138].
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In summary, evidence for G × E interactions for cannabis use is
limited. Significant interaction need to be replicated and all
studies used PGSs for cannabis initiation (based on [75]). Future
studies should also evaluate G × E for more severe cannabis
measures, but discovery GWAS samples for these phenotypes are
still relatively small [79]. Furthermore, other environmental factors
need to examined (for example parental factors) and the potential
influence of rGE on G × E findings needs to be considered.

CLINICAL USE
GWAS findings, the identification of mechanistic pathways, and
studies investigating PGSs for cannabis use raise questions
regarding the predictive validity of cannabis PGSs in clinical
settings. Yanes et al. [139] have argued, broadly, that PGSs can be
useful in terms of informing population screening programs,
guiding therapeutic interventions, refining risk for individuals and
families at high risk, and improving diagnosis. To date however,
most cannabis research has been limited to basic science studies.
While it is viable with PGSs to predict cannabis use in independent
target samples, it is important to realise that PGSs currently contain
too much noise and explain very little variation (up to a few
percent), commensurate with other complex traits. Savatore et al.
[140] have illustrated that although PGSs could be used to predict
individuals and families meeting fewer clinical criteria for substance
use disorders including cannabis, the effect sizes remain very small.
Therefore, use of genetic results to identify individuals at risk of
substance use disorders is modest at best, and future success
depends upon increased and well phenotyped and genotyped
samples [141]. It is not possible yet to use PGSs in clinical settings to
meaningfully predict an individual’s genetic vulnerability to
cannabis use. Efforts by the ICC and PGC-SUD workgroup to
ascertain larger samples to improve the predictive validity of
cannabis-based PGSs are ongoing. Furthermore, the modest
heritability and importance of environmental risks shown by twin
studies, suggests that clinical prediction algorithms will likely
require a combination of measured genotypes and environments.

FUTURE DIRECTIONS AND CONCLUSIONS
Insights into the genetic architecture of cannabis use are
improving, but there are several steps we need to take in order
to learn more [142]. Firstly, increasingly larger GWAS samples are
required to capture more heritability. The genome coverage of
GWASs also needs to improve to capture rare variants and other
types of variation not captured by the current micro-arrays.
Furthermore, we need to focus on including individuals of non-
European ancestry. GWASs have been done almost exclusively in
datasets of European ancestry. Systematic differences in ancestral
genetic and environmental influences renders PGSs less useful in
non-European samples. We need to improve the coverage of the
population (e.g. non-European ancestry) to decrease the effect of
ascertainment bias on the genetic signal. Environmental effects
need to be accounted for in these genetic association studies by
including within family and within region analyses while the
interplay between genes and environment should be addressed
more thoroughly. Twin studies show that genetic influences are
more pronounced for cannabis dependence compared to initia-
tion of cannabis use with similar SNP-based heritabilities from
GWASs. Lastly, post-GWAS methodology needs to be further
improved in order to disentangle the polygenic effects into
underlying traits and underlying biological processes [142].
A specific point of focus in post-GWAS methodology is the

improvement of MR and other causal inference methods. So far,
the number of genetic variants associated with cannabis use—
which are needed to use as instruments in an MR study—is
limited. This may lead to weak instrument bias and spurious MR
findings. In future studies, it is therefore recommended that

evidence from a range of different MR methods is triangulated.
Besides correcting for weak instrument bias [143], MR methods
that allow correction for ‘correlated horizontal pleiotropy’ are
important [144]. This phenomenon—whereby genetic variants
affect two traits through a shared heritable factor—is highly
relevant when testing relationships between cannabis use and
mental health outcomes, but it is not taken into account in most
common MR methods. Another promising approach is the MR
direction of causation (MR-DoC) model, an adaptation which
integrates the twin model with the MR design (a limitation is that
well-powered twin samples are required) [145]. Besides genetic
methods, it is important for future studies to also triangulate with
alternative methods, such as longitudinal epidemiological analyses,
or other types of (non-genetic) instrumental variable methods.
In conclusion, human genetics studies have provided a lot of

insights of the genetic architecture of cannabis use. A large body
of twin studies has shown that cannabis use is heritable—with
moderate heritability for initiation of use and a somewhat higher
heritability for measures of frequency and CUD. In the past
decade, our insights into the molecular genetic architecture of
cannabis use has also improved. Increases in sample size and
technological advances have enabled GWASs to identify specific
locations in the genome that are associated with cannabis use. So
far, dozens of genetic variants and genes implicated in cannabis
use have been reported, each explaining a tiny fraction of
variance. Using summary-level GWAS data also provided us insight
into the comorbidity between cannabis use and the use of other
substance and mental health problems, providing evidence for
shared genetic influences as well as some causal associations.
Future studies with increased sample sizes, including more

diverse populations, higher genome coverage, and new
approaches to improve the specificity of the genetic signals,
should further increase our knowledge of the biological under-
pinnings of cannabis use and the predictive power of genetics.
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