
Sample Final - Solutions

1. Find the unit tangent and unit normal vector for the following vector functions

~r(t) =< t,
1
2

t2 >

Soln.

−→r =

〈
t,

1
2

t2
〉

−→r ′ = 〈1, t〉

‖−→r ′‖ =
√

t2 + 1.

so
−→
T =

−→r ′

‖−→r ′‖
=

〈
1√

t2 + 1
,

t√
t2 + 1

〉
Further

−→
T ′ =

〈
−t

(t2 + 1)3/2 ,
1

(t2 + 1)3/2

〉
‖−→T ′‖ =

1
t2 + 1

.

so
−→
N =

−→
T ′

‖−→T ′‖
=

〈
−t√
t2 + 1

,
1√

t2 + 1

〉

2. Prove the limits either exist or do not exist. In the former case use the squeeze

theorem.

(i) lim
(x,y)−>(0,0)

x2 + 2y2

x2 + y2 (ii) lim
(x,y)−>(0,0)

x2y4

x2 + y2

Soln. 2 (i)

Along y = 0, lim
(x,y)−>(0,0)

x2 + 2y2

x2 + y2 = lim
(x,y)−>(0,0)

x2

x2 = 1

Along y = x, lim
(x,y)−>(0,0)

x2 + 2y2

x2 + y2 = lim
(x,y)−>(0,0)

3x2

2x2 =
3
2

.

Since following different paths lead to different limits, the limit DNE.

Soln. 2 (ii) From the inequalities

−
√

x2 + y2 ≤ x ≤
√

x2 + y2

−
√

x2 + y2 ≤ y ≤
√

x2 + y2



we have

−
(

x2 + y2
)
≤ x2 ≤

(
x2 + y2

)
−
(

x2 + y2
)2
≤ y4 ≤

(
x2 + y2

)2

which gives

−
(

x2 + y2
)3
≤ x2y4 ≤

(
x2 + y2

)3
.

Thus,

−
(

x2 + y2
)2
≤ x2y4

x2 + y2 ≤
(

x2 + y2
)2

and

− lim
(x,y)−>(0,0)

(
x2 + y2

)2
≤ lim

(x,y)−>(0,0)

x2y4

x2 + y2 ≤ lim
(x,y)−>(0,0)

(
x2 + y2

)2
.

Since

lim
(x,y)−>(0,0)

(
x2 + y2

)2
= 0

by the squeeze theorem

lim
(x,y)−>(0,0)

x2y4

x2 + y2 = 0.

3. Find the equation of the tangent plane to the given surface at the specified point

x2y + xz + yz2 = 3, P(1, 2,−1)

Soln. If we define F = x2y + xz + yz2 − 3 then Fx = 2xy + z, Fy = x2 + z2 and

Fz = x + 2yz. Evaluating these at the point P gives Fx = 3, Fy = 2 and Fz = −3.

The equation of the tangent plane is thus 3(x− 1) + 2(y− 2)− 3(z + 1) = 0.

4. Find the directional derivative of z = x2 + 3xy + y2 at (1, 1) in the direction of

< −3, 4 >.

Soln. The gradient is given by ∇z =< 2x + 3y, 3x + 2y > and at the point (1, 1) it

becomes ∇z =< 5, 5 >. The direction derivative is then given by

∇z · ~u
‖~u‖ =< 5, 5 > ·< −3, 4 >

5
=
−15 + 20

5
= 1.
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5. Classify the critical points for

z = x2y− x2 + y2 − 18y

Soln. The derivatives are

zx = 2xy− 2x = 2x(y− 1), zy = x2 + 2y− 18.

Setting each of these to zero gives the following critical points: (0, 9), (−4, 1), and

(4, 1). The second derivatives are:

zxx = 2(y− 1), zxy = 2x, zyy = 2

giving ∆ = zxxzyy − z2
xy = 4(y− 1)− 4x2. We now test each critical point

(0, 9) ∆ = 32 > 0 zyy > 0 min
(−4, 1) ∆ = −64 < 0 saddle
(4, 1) ∆ = −64 < 0 saddle

6 (i). Find the volume bound by the paraboloid z = 1− x2− y2 and the plane z = 0

Soln. The two surfaces intersect when z = 0 so x2 + y2 = 1. The volume is then

obtained from the integral ∫∫
R

(
1− x2 − y2

)
dA

As the region of integration is a circle of radius 1, we switch to polar coordinates

giving ∫ 2π

0

∫ 1

0

(
1− r2

)
rdrdθ =

π

2

6 (ii). Find the volume inside the sphere x2 + y2 + z2 = 2 and the cylinder x2 + y2 =

1

Soln. The surfaces intersect when z2 = 1 or z = ±1. The volume is then obtained

from the integral ∫∫
R

2
√

2− x2 − y2dA
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As the region of integration is a circle of radius 1, we switch to polar coordinates

giving ∫ 2π

0

∫ 1

0
2
√

2− r2rdrdθ =
8
√

2− 4
3

π

6 (iii). Find the surface area of the plane x + 2y + 3z = 6 for x, y, z ≥ 0.

Soln. The general formula is ∫∫
R

√
1 + z2

x + z2
y dA

Since z = 2− 1
3

x− 2
3

y, the nzx = −1/3 and zy = −2/3 giving

∫∫
R

√
1 +

1
9
+

4
9

dA =

√
14
3

∫∫
R

dA

Thus √
14
3

∫ 3

0

∫ 6−2y

0
dxdy = 3

√
14.

7. Set of the triple integral
∫∫∫

f (x, y, z) dV in both cylindrical and spherical coor-

dinates for the volume inside the cone z =
√

x2 + y2 and below the plane z = 1.

Soln - Cylindrical Eliminating z between the equations gives x2 + y2 = 1. This is

the region of integration∫ 2π

0

∫ 1

0

∫ 1

r
f (r cos θ, r sin θ, z) r dz dr dθ

Soln - Spherical From the picture we see that φ = 0 → π/4. Further, ρ = 0 →
1/ cos φ and θ = 0→ 2π so∫ 2π

0

∫ π/4

0

∫ sec φ

0
f (ρ cos θ sin φ, ρ sin θ sin φ, ρ cos φ, )ρ2 sin φdρ dφ dθ

8. Is the following vector field conservative?

~F =< y2 + 3yz, 2xy + 3xz, 3xy > .
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Soln. Since ∇× ~F = 0 then yes, the vector field is conservative. Thus f exists such

that ~F = ~∇ f so

fx = y2 + 3yz ⇒ f = x y2 + 3xyz + A(y, z)

fy = 2xy + 3xz ⇒ f = x y2 + 3xyz + B(x, z)

fz = 3xy ⇒ f = 3xyz + C(x, y)

Therefore we see that

f = x y2 + 3xyz + c

and ∫
C

(
y2 + 3yz

)
dx + (2xy + 3xz) dy + 3xy dz = x y2 + 3xyz

∣∣∣(1,2,3)

(0,0,0)
= 22.

9 (i). Evaluate the following line integral
∫

c 2xy dx + (x + 1) dy where c is the coun-

terclockwise direction around the square with vertices (0, 0), (1, 0), (1, 1) and (0.1).

Soln. Here we have 4 separate curves which we denote by C1, C2, C3 and C4.

C1 : Here y = 0, dy = 0 so
∫

c1

0 = 0

C2 : Here x = 1, dx = 0 so
∫ 1

0
2 dy = 2

C3 : Here y = 1, dy = 0 so
∫ 0

1
2xdx = −1

C4 : Here x = 0, dx = 0 so
∫ 0

1
dy = −1

Thus
∫

c 2xy dx + (x + 1) dy = 0 + 2− 1− 1 = 0.

9 (ii). Evaluate the following line integral
∫

c(x− y) dx+(x+ y) dy where c is clock-

wise direction around the circle of radius 2.

Soln. Here we parameterize the curve by x = 2 cos t, y = −2 sin t, 0 ≤ t ≤ 2π.

Note the −2 on the y term as we are going clockwise and not counterclockwise. So

dx = −2 sin t dt and dy = −2 cos t dt. Thus, the line integral becomes∫ 2π

0
−(2 cos t + 2 sin t)2 sin t dt− (2 cos t− 2 sin t)2 cos t dt = −8π
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10. Green’s Theorem is∫
C

P dx + Q dy =
∫∫
R

(
∂Q
∂x
− ∂P

∂y

)
dA.

Verify Green’s Theorem where ~F =< 3x2y, x3 + x > where R is the region bound

by the curves y = x2 and y = x.

Soln. We have two separate curves which we denote by C1 and C2.

C1 : Here y = x2, dy = 2x dx so
∫ 1

0
3x4dx+(x3 + x)2x dx = 5/3

C2 : Here y = x, dy = dx so
∫ 0

1
3x3dx+(x3 + x)dx = −3/2

so ∫
C

3x2y dx + (x3 + x) dy = 5/3− 3/2 = 1/6.

For the second part, since P = 3x2y and Q = x3 + x then Qx − Py = 3x2 + 1−
3x2 = 1 so ∫∫

R

(
Qx − Py

)
dA =

∫ 1

0

∫ x

x2
1dy dx = 1/6

11 (i). Evaluate
∫∫
S

x y dS where S is the surface of the plane 2x + y + z = 6.

Soln. Since z = 6− 2x− y then dS =
√

1 + z2
x + z2

y dA =
√

1 + 4 + 1dA and thus

∫ 3

0

∫ 6−2x

0

√
6x y dy dx = 27

√
6/2

11 (ii). Evaluate
∫∫
S

(x + z) dS where S is the surface of the cylinder y2 + z2 = 9

bound between x = 0 and x = 4 in the first octant.

Soln. Without parameterization. We solve the surface for z so z =
√

9− y2. Next

dS =

√
1 +

y2

9− y2 dA =
3√

9− y2
dA. As we have projected down, then the region

of integration is in the xy plane (0 ≤ x ≤ 4, 0 ≤ y ≤ 3). The surface integral

becomes∫ 3

0

∫ 4

0

(
x +

√
9− y2

)
3√

9− y2
dxdy = 3

∫ 3

0

∫ 4

0

(
x√

9− y2
+ 1

)
dxdy = 12π+ 36
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With parameterization. Here, we’ll parameterize the surface by x = u, y = 3 cos v

and z = 3 sin v, 0 ≤ u ≤ 3 and 0 ≤ v ≤ π/2. If we let~r =< u, 3 cos v, 3 sin v >

then ||~ru ×~rv|| = 3 and we have∫ 4

0

∫ π/2

0
(u + 3 sin v)3 dv du = 3(4π + 12)

This problem is really much easier with the parametric surface.

12. Verify the divergence theorem∫∫
S

~F · ~N dS =
∫∫∫

V

∇ · ~F dV

where ~F =< x + y z, y + x z, z + x y > and V is the volume of the tetrahedron

bound by x + y + z = 1 and the planes x = 0, y = 0 and z = 0.

Soln. We will first deal with the surface integrals. There are 4 of them.

S1: Bottom. Here z = 0 so ~F =< x, y, xy > and ~N =< 0, 0,−1 > .

Thus ~F · ~N = −xy and
∫ 1

0

∫ 1−x
0 −x y dy dx = −1/24

S2: Left. Here y = 0 so ~F =< x, xz, z > and ~N =< 0,−1, 0 > .

Thus ~F · ~N = −xz and
∫ 1

0

∫ 1−x
0 −x z dz dx = −1/24

S3: Back. Here x = 0 so ~F =< yz, y, z > and ~N =< −1, 0, 0 > .

Thus ~F · ~N = −yz and
∫ 1

0

∫ 1−y
0 −y z dz dy = −1/24

S4: Plane. Here x + y + z = 1 and ~N =< 1, 1, 1 > /
√

3.

Thus, ~F · ~N = (1 + x + y− x2 − xy− y2)/
√

3 and∫ 1

0

∫ 1−x

0

(
1 + x + y− x2 − xy− y2

)
dy dx = 5/8

Therefore
∫∫
S

~F · ~NdS = −1/24− 1/24− 1/24 + 5/8 = 1/2.

Second part. ∇ · ~F = 3 so
∫ 1

0

∫ 1−x

0

∫ 1−x−y

0
3 dz dy dx = 1/2. Verified!
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