
IJRECE VOL. 5 ISSUE 3 JULY.-SEPT. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 46 | P a g e

Various Detection Techniques and Types of Code Clone

Maintenance of Software
Jasmandeep Kaur1, Rakesh Kumar2, Sukhjot Kaur3

1Research (Scholar), Department of CSE, SECG, Gharuan
2Principal and Associate Professor, SECG, Gharuan

 3Assistant Professor, Department of CSE, SECG, Gharuan

 Abstract—Large-scale software systems are expensive to

build and, are even more expensive to maintain. In PC

software, we could possibly have dissimilar sorts of repetition.
We ought to note that not every type of redundancy is unsafe.

There are diverse types of redundancy in software. Software

embodies both programs and information. At particular times

redundant is used correspondingly in the sense of unessential

in the software engineering works. Sometimes, developers

take easier way of implementation by copying some fragments

of the existing programs & use that code in their effort. This

kind of work is called code cloning. Redundant code is as well

recurrently misleadingly permitted as cloned code despite the

fact that it point towards that one bit of code which is possibly

imitative from the additional one in the original meaning of
this particular word. Even though cloning stimuli to redundant

code, not each specific redundant code is a specific clone.

 Keyword: Code cloning, Textual Similarity, Functional

Similarity, Textual comparison, Token based comparison,

Abstract Syntax Tree Based Comparison.

I. INTRODUCTION

 A code clone is a code helping in source files that is equal

or similar to another [1]. Duplication of code occurs
frequently during the development of large software systems.

Code cloning is a procedure of software reuse and exists in

almost every software project. This ad-hoc form of reuse

consists in copying, & eventually modifying, a block of

existing code that apply a piece of required functionality. The

main issue with code clone is coupled only with their similar

code that is indirectly rather than directly which creates it

problematic to identify them. The code quality declines and

modification becomes more expensive and error-prone.

 Copied blocks are called clones and the act ofcopying,

counting slight modifications, is said cloning. Cloning mainly
occurs because programmers find that it is cheaper and

quicker to use the copy and paste feature then writing the code

from scratch. Sometimes programmers intent on applying new

functionality find particular working code that completes a

computation nearly matching to the one desired copy it

entirely & then modify in place[2]. While this is considered a

serious problem in industrial software [3]. The quality of code

analysis, virus recognize, facet mining and error exposure are

the other tasks which need the knowledge of syntactically

verified code part to facilitate code detection importance for
software detection tool analysis.

Fig.1: Generic Clone Detection Process [13]

IJRECE VOL. 5 ISSUE 3 JULY.-SEPT. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 47 | P a g e

A. Pre-processing

 At the beginning of any clone detection approach, the

source code is partitioned and the domain of the comparison is

determined. There are three main objectives in this phase:

Remove uninteresting parts: All the source code uninteresting

to the comparison phase is filtered out in this phase.

Determine source units: After removing the uninteresting

code, the remaining source code is partitioned into a set of

disjoint fragments called source units. These units are the

largest source fragments that may be involved in direct clone

relations with each other.

Determine comparison units / granularity: Source units may
need to be further partitioned into smaller units depending on

the comparison technique used by the tool. For example,

source units may be subdivided into lines or even tokens for

comparison.

B. Transformation

 Once the units of comparison are determined, if the

comparison technique is other than textual, the source code of

the comparison units is transformed to an appropriate

intermediate representation for comparison. This

transformation of the source code into an intermediate

representation is often called extraction in the reverse

engineering community.

Extraction: Extraction transforms source code to the form

suitable as input to the actual comparison algorithm.

Depending on the tool, it typically involves one or more of the

following steps.

Tokenization: In case of token-based approaches, each line of

the source is divided into tokens according to the lexical rules

of the programming language of interest. The tokens of lines

or files then form the token sequences to be compared.

Parsing: In case of syntactic approaches, the entire source

code base is parsed to build a parse tree or (possibly

annotated) abstract syntax tree (AST).

Control and Data Flow Analysis: Semantics-aware

approaches generate program dependence graphs (PDGs)

from the source code. The nodes of a PDG represent the

statements and conditions of a program, while edges represent

control and data dependencies.

C. Normalization

 Normalization is an optional step intended to eliminate

superficial differences such as differences in whitespace,

commenting, formatting or identifier names.

Removal of whitespace: Almost all approaches disregard
whitespace, although line-based approaches retain line breaks.

Some metrics-based approaches however use formatting and

layout as part of their comparison.

Removal of comments: Most approaches remove and ignore

comments in the actual comparison.

Normalizing identifiers: Most approaches apply identifier

normalization before comparison in order to identify
parametric Type-2 clones.

Pretty-printing of source code: Pretty printing is a simple way

of reorganizing the source code to a standard form that

removes differences in layout and spacing.

Structural transformations: Other transformations may be

applied that actually change the structure of the code, so that

minor variations of the same syntactic form may be treated as

similar.

D. Match Detection

 The transformed code is then fed into a comparison

algorithm where transformed comparison units are compared

to each other to find matches. Often adjacent similar

comparison units are joined to form larger units.

E. Formatting

In this phase, the clone pair list for the transformed code

obtained by the comparison algorithm is converted to a

corresponding clone pair list for the original code base. Source

coordinates of each clone pair obtained in the comparison

phase are mapped to their positions in the original source files.

F. Post-processing / Filtering

 In this phase, clones are ranked or filtered using manual

analysis or automated heuristics.

Manual Analysis: After extracting the original source code,

clones are subjected to a manual analysis where false positive

clones or spurious clones [72] are filtered out by a human
expert.

Automated Heuristics: Often heuristics can be defined based

on length, diversity, frequency, or other characteristics of

clones in order to rank or filter out clone candidates

automatically.

G. Aggregation

 While some tools directly identify clone classes, most

return only clone pairs as the result. In order to reduce the

amount of data, perform subsequent analyses or gather

overview statistics, clones may be aggregated into clone

classes.

II. RELATED WORK
 Iman Keivanloo et.al (2011) [4] presented real-time code

clone search was an emerging family of clone detection

IJRECE VOL. 5 ISSUE 3 JULY.-SEPT. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 48 | P a g e

research that goals at finding clone sets matching an input

code fragment in fractions of a second. For these techniques to

meet actual real world requirements, they were to be scalable

and provide a short response time. Our research presented a

hybrid clone search approach using source code pattern

indexing, information retrieval clustering, & Semantic Web
reasoning to respectively achieve less response time, handle

false positives, and support automated grouping/querying.

Yang Yuan et.al (2011) [5] introduced CMCD; a Count

Matrix based method to detect clones in program code. The

key model behind CMCD was Count Matrix, which was

created while counting the occurrence frequencies of every

variable in conditions specified by pre-determined counting

situation. Because the characteristics of the count matrix do

not change due to variable name replacements or even

switching of statements, CMCD works well on various hard-

to-detect code clones, such as exchange statements or deleting

a few lines, which are difficult for other state-of-the-art
detection techniques. Debarshi Chatterji et.al (2011) [6]

described a study that investigates the usefulness of code

clone information for performing a bug localization task. In

this study 43 graduate students were practical while

identifying defects in both cloned & non-cloned portions of

code. The goal of the study was to understand how those

developers used clone information to perform this task.

Yoshiki Higo et.al. (2011) [7] proposed a PDG based

incremental code clone detection technique for improving

practicality of PDG-based detection. A prototype tool

developed, and it applied to open source software. And
confirmed that detection time was extremely shortened and its

detection result almost the same as one of an existing PDG-

based detection technique.

III. CLONE TYPES

 Code clone could be of any sort that all rely on upon the

developer's method & ability of utilizing the code which

varies from replicating as it is to matching the code however
with some change which would be done at diverse level in the

method. In software scheme code pieces predominantly

demonstrates two sorts of similarities. One clone type of

similarity considers textual similarity), & other second

considers the semantic level that the clone code essential to

have the identical behaviors, means the functional similarity.

A. Textual Similarity: Two code fragments can be similar based

on the similarity of their program text we differentiate the

subsequent sorts of clones. The following types of clones are

discussed in order to find textual similarity [2].

1) Type I: In Type I clone, a copied code fragment is the
same as the original. However, there might be particular

variations in whitespace (blanks, new line(s), tabs etc.),

remarks and/or designs. Type I is widely known as exact

clones

2) Type II: A Type II clone is a code fragment that is the

same as the original except for some possible differences

about the corresponding designations of user-defined

identifiers (name of variables. constants, class. methods &

so on) layout, identifiers, remarks, literals, & sorts. The

specific reserved words & the sentence structures are
essentially the same as the original one.

3) Type III: Type DI is copy with further modifications. E.g.

a new statement can be added, or some statements can be

detached along with various dissimilarities in layout,

identifiers, remarks, literals, & sorts. The structure of code

fragment may be changed & they may even look or behave

slight differently. This kind of clone is hard to be

discovered, for the reason that the wholly framework

understanding is needed.

B. Functional Similarity: Two code fragments can be similar

based on the similarity of their functionalities without being

textually similar. If the functionalities of the two code
fragments are identical or similar i.e., they have comparable

pre as well as post circumstances referred as Type IV clones

or semantic clones [8].

4) Type IV: Type IV clones are the consequences of

semantic similarity between two or extra code fragments

which could accomplish the same computation however

actualized through diverse syntactic variations. In this

category of specific clones, the cloned part is not

necessarily copied from the first one. Two code

fragments may possibly be established by two different

programmers too.

IV. DETECTION OF CLONE AND USES

 Clone detection is useful in finding malicious software [8].

By comparing, one malicious software with another, it is

possible to find the matched parts of one software system with

another. Some applications of clone detection are as follows:

Fig.2: Schematic diagram of Clone Manager [14]

IJRECE VOL. 5 ISSUE 3 JULY.-SEPT. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 49 | P a g e

a) Plagiarism Detection: In Projects Plagiarism Detection is

one of the closely related areas of clone detection [11].

Clone detection techniques can be used in the domain of

plagiarism detection. A clone detection tool such as

token-based CC Finder has been applied in detecting

plagiarism.
b) Copyright Infringement: The problem of detecting

source code copyright infringement is watched as a code

similarity measuring problematic between software

systems. Clone detection tools therefore, can be applied or

can simply be adapted in noticing copyright infringement

[9].

c) Clone Detection: in Models Clone detection is also used

in models [10]. Phenomenon is not restricted to code, but

usually occurs in models in a very similar way. So it is

likely that model clones are as unfavourable to model

quality as they are to code quality. Clone detection is also

used in data flow model. General Model. LIE Domain
Model [10, 11].

V. DETECTION CLONE TECHNIQUES

 Clone Detection is a dynamic research territory since
1990‟s [6]. Code clone location is exactly identified by

upkeep of software, code overhauling & along these lines

making the code more effective. The impression on clone

identification demonstrates the dissimilar strategies &

calculations to distinguish clones [3]. Clone position

methodologies are comprehensively considered into five

procedures which are portrayed underneath:

A. Text - Based Technique

One of the fastest clone detection approaches. It can easily

deal with type 1 clone and with additional data transformation,

the type 2 can also be taken care. The newer text- based clone

detection technique that is based on dot plots. A dot plot is a

two-dimensional chart where both axes list source entities. In

this approach the lines of a program are comparison entities. If

x and y are equal there is a dot at coordinate (x, y). Two lines

are considered equal if they have the same hash value. Dot

plots can be used to visualize clone information; diagonals in

dot plots are identified as clone. The detection of clones in dot
plots can be automated, & string-based dynamic pattern

matching is used to compare whole lines. Diagonals that have

gaps indicate type 3 clones.

B. Token - Based Technique

Token based technique is similar to text based technique.
However, instead of taking a line of code as representation

directly, a lexical analyzer converts each line of code into a

sequence of token [12]. After data values & identifier are

substituted by some special tokens. The token sequences of

lines are compared efficiently through a suffix tree algorithm.

The result is also presented in dot plot graph. This technique is

somewhat slower than text based technique because of the

tokenization step. However, applying suffix tree matching

algorithm the time complexity is similar as text based

technique. By breaking line into tokens, it can easily detect

both type 1 and type 2 clone, with token filter applied. The

result of clone can be controlled very precisely, for instance,
skip any uninterested information.

C. Abstract Syntax Tree (AST) - Based Technique

In AST based technique the program is parsed into a parser tree

or an abstract syntax (AST) with a parser of language of

interest. Then, using a tree matching method similar sub trees

are examined in the tree. When a match is found corresponding
so code of the alike sub trees are returned as clone couples or

clone classes. The information is available in the parse tree of

AST. The variable names & literal value the source code are

discarded during the tree representation: still it is possible to

employ more sophisticated clone detection tools. By using

AST as code representation gives this technique a better

understanding of the system structure. However parsing source

file is still a very expensive process on both time and memory.

VI. CONCLUSION

 Code clone is a big problem. A copy and paste activity

which is done by programmer is the main reason of code

cloning. It looks like a simple and effective method, these

copy and paste activities are not documented. Which create a

bad effect on the software quality and duplication also

increase the bug probability and maintenance problem?.
Cloning of code has become one of the easiest ways to

complete a project, who does not want to invest their time on

doing programming their project. It’s a loss for those who

really work hard for the project coding. The date no such

method has present who can evaluate the cloning for several

languages with one piece of code. In this paper also present

the different types of code clone techniques like text based

Token based comparison and Abstract Syntax Tree Based

Comparison. In this paper describe how to effective these

technique in code clone.

VII. REFERENCES

[1]. Balazinska, Magdalena, Ettore Merlo, Michel Dagenais, Bruno

Lague, and Kostas Kontogiannis. (1999) "Measuring clone
based reengineering opportunities."In Software Metrics
Symposium, 1999.Proceedings.Sixth International, pp. 292-
303.vol.no.5, IEEE.

[2]. Baker, Brenda S. (1995) "On finding duplication and near-
duplication in large software systems." In Reverse Engineering,
1995., Proceedings of 2nd Working Conference on, pp. 86-95.
Vol.no.95,IEEE.

[3]. Liu, Chao, Chen Chen, Jiawei Han, and Philip S. Yu. (2006)
"GPLAG: detection of software plagiarism by program
dependence graph analysis."In Proceedings of the 12th ACM

IJRECE VOL. 5 ISSUE 3 JULY.-SEPT. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 50 | P a g e

SIGKDD international conference on Knowledge discovery and
data mining, pp. 872-881. Vol.no. 6, ACM.

[4]. Keivanloo, Iman, JuergenRilling, and Philippe Charland (2011).
"Seclone-a hybrid approach to internet-scale real-time code
clone search."In Program Comprehension (ICPC), 2011 IEEE

19th International Conference on, pp. 223-224.Vol.18. IEEE.
[5]. Yuan, Yang, and Yao Guo. (2011) "CMCD: Count matrix based

code clone detection."In 2011 18th Asia-Pacific Software
Engineering Conference, pp. 250-257.Vol no 18 IEEE.

[6]. Chatterji, Debarshi, Jeffrey C. Carver, Beverly Massengil, Jason
Oslin, and Nicholas A. Kraft (2011). "Measuring the efficacy of
code clone information in a bug localization task: An empirical
study."In 2011 International Symposium on Empirical Software

Engineering and Measurement, pp. 20-29. Vol.no. 11,IEEE.
[7]. Higo, Yoshiki, Ueda Yasushi, Minoru Nishino, and Shinji

Kusumoto (2011). "Incremental code clone detection: A pdg-
based approach." In 2011 18th Working Conference on Reverse
Engineering, pp. 3-12.vol.no 18 IEEE.

[8]. C .K. Roy and JR. Cord (2007), "A Survey on Software Clone
Detection Research ”Queen‘s School of Computing Technical
Report No. 2007-541. vol. 115.

[9]. B. Baker (1992). “A Program for Identifying Duplicated Code."
in Proceedings of Computing Science and Statistics: 34th
Symposium on the Interface. Vol. 24. pp. 49-57.

[10]. Kapser, Cory J., and Michael W. Godfrey (2008). "“Cloning
considered harmful” considered harmful." Empirical Software
Engineering 13, vol.no. 6 : 645-692.

[11]. Merlo, Ettore (2007). "Detection of plagiarism in university
projects using metrics-based spectral similarity."In Dagstuhl
Seminar Proceedings.SchlossDagstuhl-Leibniz-
ZentrumfürInformatik,.

[12]. J. H. Johnson (1994) "Visualizing Textual Redundancy in
Legacy Source, "In Proceedings of the 1994 Conference of the
Centre for AdvanceclSmclies on Collaborative research(C.-
l$Co.~‘v”94). Vol.no 94, pp. 171-183. Toronto. Canada. 1994.

[13]. Roy, Chanchal K., James R. Cordy, and Rainer Koschke(2009).
"Comparison and evaluation of code clone detection techniques
and tools: A qualitative approach." Science of Computer

Programming 74, no. 7: 470-495.
[14]. Kodhai, Egambaram, and Selvadurai Kanmani (2014)."Method-

level code clone detection through LWH (Light Weight Hybrid)
approach." Journal of Software Engineering Research and
Development 2, no. 1 : 1.

