
FOR IMMEDIATE RELEASE
March 8, 2019
Contact:
Jennifer Kim
Membership Services Director
jennifer.kim@pesc.org
+1.202.261.6516

PESC COMPLIANT JSON V 1.0 APPROVED
XML REQUEST & RESPONSE V 1.0 APPROVED

Washington, D.C. The Postsecondary Electronic Standards Council (PESC) is pleased to announce the Approval and
Release of PESC Compliant JSON version 1.0 and XML Request & Response version 1.0. As a PESC Approved
Standard, PESC Compliant JSON v 1.0 defines unified translation rules (used by developers and programmers) for
data transformations between XML and JSON technologies. As a PESC Approved Standard, XML Request &
Response v 1.0 provides a digital method, a neutral way to communicate or signal, for requesting, sharing and/or
exchanging data via paired standardized XML messages between organizations.

Development of JSON was conducted and produced through the JSON Task Force, launched at PESC’s Spring 2017
Data Summit. In January 2018, PESC joined forces with the Access 4 Learning Community (previously the SIF
Association), one of PESC’s long-time Partners in PK12 to adopt a unified, education-wide strategy on JSON.
Development of XML Request & Response was conducted and produced under the PESC Standards Development
Forum for Education in collaboration with the AACRAO SPEEDE Committee.

“Over the past year, Members of the A4L Community, lead by A4L’s Technology Director John W. Lovell, and PESC
have been productively working together on a joint approach through the JSON Task Force,” states Dr. Larry L Fruth
II, A4L CEO. “PESC Compliant JSON v 1.0 will be referenced in the upcoming A4L Unity Technical Specifications as
a data exchange option for SIF Specification users and is a model for collaborative open standards development
between standards organizations,” Dr. Fruth concluded.

“PESC and the A4L Community working together on JSON is the perfect example of the power of collaboration
between standards bodies and the value of providing a unified approach for education,” adds Michael D. Sessa,
PESC President & CEO. “As PESC Members are heavy users of XML, our highest priority was to provide a
standardized migration, or mapping, strategy between XML & JSON to these users, many of whom were already
experimenting with JSON. XML has proven very successful for efficient, business-to-business digital exchange and
delivery of data. The addition of JSON enables standardized business-to-web delivery.”

PESC MEMBERS APPROVING PESC COMPLIANT JSON V 1.0 AND XML REQUEST & RESPONSE V 1.0

AACRAO
AcademyOne
ACT
Access 4 Learning Community
Alberta Post-Secondary Application System
Bardic Systems
California Community College System
Camosun College
Carnegie Mellon University
College Board
Common Application
Credentials Solutions
DegreeData
Digitary
Educational Credential Evaluators
EducationPlannerBC
Ellucian
ELM Resources
Florida International University
Federation of State Medical Boards
Gotocollegefairs

Indiana Commission for Higher Education
Indiana State University
iQ4
National Association Student Loan Administrators
National Student Clearinghouse
Nova Scotia Council on Admissions & Transfer
OCAS
Ontario Universities’ Application Centre
Oracle
Parchment
Stanford University
University of Chicago
University of Denver
University of Louisiana at Lafayette
University of Missouri System
University of Oregon
University of Phoenix
University of Southern California
U.S. Chamber of Commerce Foundation
Workday

MULTIPLE STAKEHOLDERS. ONE VISION.

“ J A S O N ” “ J – S – O – N ” “ J A Y – S A W N ”

JavaScript Object Notation

How do you pronounce JSON?

Douglas Crockford of Yahoo, JSON creator, sets the record straight.

Listen to his pronunciation here:
https://www.youtube.com/watch?v=zhVdWQWKRqM

PESC Compliant JSON v 1.0 and XML Request & Response v 1.0 are posted online as “PESC Approved Standards”
at www.pesc.org. All PESC Approved Standards are free; developed through a rigorous, yet open and transparent
voluntary, consensus-based development, approval and maintenance process; and made available to all education
stakeholders worldwide for use, adoption and implementation.

About the Access 4 Learning Community
The Access 4 Learning (A4L) Community, previously the SIF Association, is a unique, non-profit collaboration composed of schools, districts, local
authorities, states, US and International Ministries of Education, software vendors and consultants who collectively address all aspects of
learning information management and access to support learning. The A4L Community is “Powered by SIF” Specifications as its major technical
tool to allow for this management and access simply, securely and in a scalable, standard way regardless of the platform hosting those
applications. The Access 4 Learning Community has united these education technology end users and providers in an unprecedented effort to
give teachers more time to do what they do best: teach. For further information, visit http://www.A4L.org.

About PESC
ESTABLISHED IN 1997 AT THE NATIONAL CENTER FOR HIGHER EDUCATION AND HEADQUARTERED IN WASHINGTON DC,
PESC is an international, 501 (c)(3) non-profit, community-based, umbrella association of data, software and education technology service
providers; schools, districts, colleges and universities; college, university and state/provincial systems; local, state/provincial and federal
government agencies; professional, commercial and non-profit organizations; and non-profit associations & foundations.

LEADING THE ESTABLISHMENT AND ADOPTION OF TRUSTED, OPEN DATA STANDARDS ACROSS THE EDUCATION DOMAIN
Through open and transparent community participation, PESC enables cost-effective connectivity between data systems to accelerate
performance and service, to simplify data access and research, and to improve data quality along the Education lifecycle. PESC envisions
global interoperability within the Education domain, supported by a trustworthy, inter-connected network built by and between communities
of interest in which data flows digitally and seamlessly from one community or system to another and throughout the entire eco-system when
and where needed without compatibility barriers but in a safe, secure, reliable, legal, and efficient manner.

ABOUT PRIVACY While PESC promotes the implementation and usage of data exchange standards, PESC does not set (create or establish)
policies related to privacy and security. Organizations and entities using PESC Approved Standards and services should ensure they comply
with FERPA and all local, state, federal and international rules on privacy and security as applicable.

PESC IS SPONSORED ANNUALLY by Credentials Solutions, National Student Clearinghouse, Oracle, Parchment, DegreeData & ECE.

PESC PARTNERS include AACRAO, APEREO, ARUCC, A4L, DXtera Institute, EMREX, EWP, Groningen Declaration Network, HR Open Standards,
SHEEO, and the US Department of Education’s Common Education Data Standards (CEDS) Initiative.

PESC IS A PROUD EXHIBITOR at AACRAO’s Annual Meeting, ARUCC’s Annual Meeting, and the Annual STATS-DC Conference of the National
Center for Education Statistics (NCES) of the US Department of Education.

PESC IS A PROUD SPONSOR of AIR’s Annual Conference & of the Annual California Electronic Transcripts Workshop and CCCApply.

PESC IS A PROUD MEMBER/AFFILIATE/SIGNATORY of AACRAO, of the US NCES National Forum on Education Statistics, and of the
Groningen Declaration Network.

PESC HAS A STRONG HISTORY that includes AACRAO, SPEEDE, EDI, ANSI, X12, Canada, the US Department of Education and Y2K.

IN FULFILLING ITS NON-PROFIT MISSION, all PESC Approved Standards are available to the education community online free of charge at
www.PESC.org.

#

Postsecondary Electronic Standards Council (PESC)
PESC Compliant JSON

Version: 1.0.0 03/04/2019

Status: Approved Page i

PESC Compliant JSON
Version 1.0.0

03/04/2019

A publication of the
Technical Advisory Board

Postsecondary Electronic Standards Council (PESC)

© Postsecondary Electronic Standards Council (PESC), 2019.
This document is released and all use of it is controlled under Creative Commons, specifically under an Attribution-
ShareAlike CC BY-SA 4.0 International license (https://creativecommons.org/licenses/by-sa/4.0/). The machine
readable components (JSON Schema and/or XML Schema) generated from these specifications are released and
controlled under the Apache License 2.0 (https://www.apache.org/licenses/LICENSE-2.0)

Postsecondary Electronic Standards Council (PESC)
PESC Compliant JSON

Version: 1.0.0 03/04/2019

Status: Approved Page ii

Executive Summary

Business Problem
Currently, PESC provides standards for the electronic exchange of Transcripts, Applications for

Admission, Electronic Portfolios, Test Scores, Common Credentials, and other standards. These

standards provide exchange partners with a basis for creating exchange software and interpreting the

data sent to them. These standards currently support Electronic Data Exchange (EDI) and eXtensible

Markup Language (XML) formats. With the recent increased use of Javascript Object Notation (JSON) as

an exchange medium for web services and other data exchanges, users of PESC standards have

expressed the desire to use JSON as an exchange medium.

Solution
PESC has embarked on a phased approach to provide PESC Compliant exchanges of PESC standards

using JSON. The first phase is to provide rules for interpreting XML schema standards in the generation

and parsing of JSON. This might appear to be a manual process. However, the EdExchange project, using

Java technology, has demonstrated that the XML schema can be used to automate the creation of

programming language objects. In turn, these enforce the constraints of the schema on the generation

of JSON, as well as determine the validity of an incoming JSON instance. This document provides

detailed rules and examples that will assist the PESC community in generating and consuming PESC

compliant JSON. Our experience with EdExchange is that most of these rules are implicit in tools such as

JAXB, and those that are not implemented by default can be implemented via configuration options.

The second phase of this project will explore the application of PESC standards through JSON schema
language, JSON-LD, and/or OpenAPI specifications. In addition, PESC will continue to search for the holy
grail of a modeling language that will act as Chomsky's "deep structure" [3] for standards. This would
allow one specification to encapsulate the constraints on any type of serialization and provide for the
translation between them. This second phase is not in the scope of this document.

Postsecondary Electronic Standards Council (PESC)
PESC Compliant JSON

Version: 1.0.0 03/04/2019

Status: Approved Page iii

Table of Contents

Executive Summary... ii

Table of Contents ... iii

1 Introduction.. 1

1.1 Overview ..1

1.2 Purpose ..1

1.3 Scope..1

1.4 Intended Audience..1

1.5 Assumptions ...1

2 XML Schema Simplification ... 2

3 JSON Generation and Translation Rules .. 2

3.1 Requirements for Rules ...2

3.2 General Approach ...3

3.3 Rules...3
3.3.1 Name Collisions..4
3.3.2 Optional Values, Arrays, or Objects ...4
3.3.3 Complex Content with Attribute..4
3.3.4 Simple Content with Attribute...5
3.3.5 XML Types to JSON Types ..5
3.3.6 Repeatable Element...6
3.3.7 XML List Type ...6
3.3.8 Nillable Elements ...7
3.3.9 Required Empty Simple Element ...7
3.3.10 Required Empty Complex Content Element ..7
3.3.11 Sequence and Choice...8
3.3.12 Union Types ...8
3.3.13 Facets ...8
3.3.14 Namespaces...9
3.3.15 Schema Information ..9
3.3.16 Root Element ...9
3.3.17 XPath Expressions ..9
3.3.18 XML Features Not Translated ..10

4 Tools Support ... 10

4.1 Java JAXB..10

4.2 Python ..11

4.3 A4L Tool Set ..11

4.4 CAMV Editor ...11

Appendix A: Revision History ... 11

Appendix B: References ... 11

Postsecondary Electronic Standards Council (PESC)
PESC Compliant JSON

Version: 1.0.0 03/04/2019

Status: Approved Page iv

Postsecondary Electronic Standards Council (PESC)
PESC Compliant JSON

Version: 1.0.0 03/04/2019

Status: Approved Page 1

1 Introduction

1.1 Overview

This document describes a set of rules for the creation of JSON exchanges that must be followed if an

exchange is to be considered PESC compliant. PESC uses XML Schema Language to specify the data

model for its various standards (e.g., High School Transcript). The rules in this document instruct the

implementer how to interpret the XML Schema as a data model for JSON exchanges. In addition, the

document summarizes guidelines for simplifying XML Schema to promote consistency between XML and

JSON serializations.

1.2 Purpose

The purpose of this document is to establish JSON as a viable format for PESC data exchanges without

sacrificing standardization. There have been many attempts to define translation rules between XML

and JSON. Most of these rely on direct syntactical transformations without reference to an underlying

data model, thus resulting in difficult interpretations and excessive type checking on the part of the

receiving application. For example, a repeatable element in an XML schema that exists as a single

element in an XML instance document would be rendered in JSON as a name-value pair (e.g., {"A": 3},

but if the element was repeated, it would be serialized as a JSON array (e.g., {"A": [3, 4]}). The receiving

application must do type checking and process the two cases differently. In the data-model-aware

situation, the type would always be an array and type checking would not be needed.

This document is the first step in establishing JSON as a standard of data exchange for PESC. The next

step is exploring alternative expression of data and validation models that would complement or replace

XML Schema Language. Some of the alternatives that PESC will explore include JSON Schema, JSON-LD,

and the Content Assembly Mechanism (CAM).

1.3 Scope

This document applies to the exchange of JSON-formatted content for any PESC standard.

1.4 Intended Audience

The audience for this document consists of managers and programmers wishing to exchange JSON

content compliant with the PESC data model for any of its standards.

1.5 Assumptions

The reader should have knowledge of XML, XML Schema, and JSON. For a review of these topics, the

following sites have easy to read tutorials:

 XML: https://www.w3schools.com/xml/

 XML Schema: https://www.w3schools.com/xml/schema_intro.asp

 JSON: http://www.json.org/

Postsecondary Electronic Standards Council (PESC)
PESC Compliant JSON

Version: 1.0.0 03/04/2019

Status: Approved Page 2

2 XML Schema Simplification
In order to align with technology trends in information exchange while still supporting PESC's existing

standards, the standards for both XML and JSON should promote expression of comparable semantics,

simplicity of translation, and ease of implementation. Thus, the education community can have a choice

of exchange formats without sacrificing interoperability. To accomplish this objective, the following

requirements should be followed when creating new XML schemas for PESC standards:

 Do not define mixed elements with complex content.

 Limit the use of attributes.

 Use a single namespace if possible so that name conflicts will not occur in JSON.

 Do not define global elements in XML schemas as this will require namespace

qualification of elements in instance documents.

 An element name should not be used twice in a sequence. However, an element can be

repeatable.

3 JSON Generation and Translation Rules

3.1 Requirements for Rules

 JSON exchange data shall comply with RFC8259, "The JavaScript Object Notation
(JSON) Data Interchange Format" [2].

 The name "value" will be used to designate XML element values and thus may conflict
with attributes of the same name. The name conflict rule below shall be used to resolve
this conflict. JSON exchanges shall follow the data models expressed in XML schemas
and interpreted by the rules below.

 Although there are no specific required reserved words, the intent is to allow

implementers to utilize JSON-LD; thus no "@" sign plus key words should be present

unless following JSON-LD syntax. The link to these key words can be found at

https://json-ld.org/spec/FCGS/json-ld/20180607/#syntax-tokens-and-keywords.

 Any information needed for translating from JSON back to XML shall not be contained

in the JSON itself. For example, "@" or "_" will not appear before an attribute name to

denote that name was associated with an XML attribute. This will allow programmers

to view PESC JSON as they would any application natively using JSON. However,

translation tools may use metadata gathered by the tool from the XML schema for

translating JSON back to XML. For example, the JAXB framework keeps information

about attributes as Java annotatons. This allows JAXB to use these annotations for

creating attributes in XML from JSON, just by matching the property name.

 If a name appears in JSON, the value should always be of the same type (string, number,

boolean, object, or array), or the value may be null under defined circumstances (see

3.3.8 Nillable Elements).

 If an element is optional, it may be omitted from the JSON. This may require existence

checking by a receiving application.

Postsecondary Electronic Standards Council (PESC)
PESC Compliant JSON

Version: 1.0.0 03/04/2019

Status: Approved Page 3

3.2 General Approach

The basic strategy is that XML elements are generally represented as a name-value pair. The
XML tag name becomes the JSON property name. The value, whether simple or complex,
becomes the JSON value. When XML attributes are present, even for simple content, the JSON
value part will always be an object. Attributes are translated as a property representing simple
name-value pairs.When an XML object contains attributes and simple content, a property
named ‘value’ will have the value of the tag in the XML.

Examples:
<TAGNAME>TAGVALUE</TAGNAME> becomes
{"TAGNAME": "TAGVALUE"}

<TAGNAME someAttr="atrValue">TAGVALUE</TAGNAME> becomes
{"TAGNAME": {"value": "TAGVALUE", "someAttr": "attrValue"}}

To meet our goal of having JSON take the form of typical/customary JSON, some transformations may
not work as someone coming from a pure XML world might expect. Consider numbers. If one sends a
float of 1.00 and is processed somewhere in the middle as a JSON number, what is received should be
1. Now in the vast number of use cases this is not a problem. From a Computer Science perspective ,
1.00 equals 1 as both should be parsed into a numeric type before being compared. However, if you are
conveying a science question where significant digits matter, a directional heading where leading zeros
should be maintained, or a similar case, you should ensure your data schema uses a string based type
and not a numeric one. The astute reader will realize that this problem is nothing new; however, if one
chooses to convert XML into JSON, it is much more likely to occur.

Similarly, JSON has no requirement to maintain the order of elements while XML does. This means that
if you convert JSON into XML you either need to produce elements in the expected order AND use JSON
tools that maintain that order, or correct the order for the XML representation. In order to accomplish
this reordering the proper location of every element must be known. As you might imagine this tends to
be a resource intensive process. As such, any JSON enabled software should clearly state whether it
maintains document order of elements or not.

3.3 Rules

As with XML, it is understood that exchange partners may decide that certain rules, as specified below,

do not fit their business models or tools. The JSON produced by violating these rules would not be

considered PESC-compliant and may not work in an exchange expecting such compliance. However,

PESC still encourages that exchanges use standards as guidelines, even if not compliant. PESC would also

appreciate feedback as to the reasons for the deviations so that standards may be improved.

The examples below assume element A, which is part of a complex type, is being defined by a type

definition.

<xs:complexType name="top">
<xs:sequence>

Postsecondary Electronic Standards Council (PESC)
PESC Compliant JSON

Version: 1.0.0 03/04/2019

Status: Approved Page 4

<xs:element name="A" type="AType" minOccurs="0" nillable="true"/>
</xs:sequence>

</xs:complexType>

3.3.1 Name Collisions

There may be rare cases where a schema element defines both an attribute and a child element with

the same name or an attribute on a simple content element with the name "value", which is reserved

for specific purposes. This will cause a name conflict, which is not allowed in JSON objects. To resolve

this conflict, the property name ih JSON should be preceded by an underscore (i.e., "_").

3.3.2 Optional Values, Arrays, or Objects

If the following rules would result in empty JSON values ("", [], {}), the name-value pair for that element

may be omitted from the JSON if the element in XML is not required.

3.3.3 Complex Content with Attribute

Attributes on a complex element with complex content will be treated as another name-value pair in the

object’s properties.

Schema:
<xs:complexType name="top">

<xs:sequence>
<xs:element name="A" type="AType" minOccurs="0" nillable="true"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="AType">
<xs:sequence>

<xs:element name="B" type="xs:string" minOccurs="0">
</xs:sequence>
<xs:attribute name="attr" type="xs:string" use="optional"/>

</xs:complexType>

Translation:
text2 becomes "A":{"attr": "text", "B": "text2"}
 becomes "A":{"attr": "text"}
<A>text2 becomes "A":{"B": "text2"}
<A/> becomes "A": {} or A is omitted

Generation:
attr="text" and B="text2" becomes "A":{"attr": "text", "B": "text2"}
attr="text" and B=no data becomes "A":{"attr": "text"}
attr=no data and B=no data becomes "A":{} or A is omitted.

Postsecondary Electronic Standards Council (PESC)
PESC Compliant JSON

Version: 1.0.0 03/04/2019

Status: Approved Page 5

3.3.4 Simple Content with Attribute

Simple content with an attribute will be converted into a JSON object named for the simple element. If

the attribute is optional according to the schema, the attribute will be generated only if it has a value.

However, even if the attribute is not present, the JSON serialization will always be an object with a

"value" property.

Schema:
<xs:complexType name="top">

<xs:sequence>
<xs:element name="A" type="AType" minOccurs="0" nillable="true"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="AType">
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="attr" use="optional"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>

Translation:
text2 becomes "A":{"attr":"text","value":"text2"}
<A>text2 becomes "A": {"value": "text2"}
<A/> becomes "A": {"value": ""} (since an empty tag is meaningful)

Generation:
A="text" and attr=no data"A": {"value": "text"}
A="text" and attr="text2""A": {attr="text2", "value": "text"}
A=empty string and attr=no data"A": {"value": ""} if A is an optional child
A=no data and attr=no dataomit A

3.3.5 XML Types to JSON Types

The schema type determines the type of a JSON value.

xs:string, xs:token, etc.
<A>3.3 becomes "A": "3.3"

xs:integer, xs:decimal, etc.
<A>3.3 becomes "A": 3.3

xs:boolean
<A>true becomes "A": true

xs:date, xs:time, xs:dateTime to JSON String using ISO 8601 string format
<A/>1990-09-02T03:03:00-0500 becomes "A":"1990-09-02T03:03:00-0500"

Postsecondary Electronic Standards Council (PESC)
PESC Compliant JSON

Version: 1.0.0 03/04/2019

Status: Approved Page 6

3.3.6 Repeatable Element

The values of a repeatable element are translated to a JSON array even if the element only has one

instance.

Schema:
<xs:complexType name="top">

<xs:sequence>
<xs:element name="A" type="AType" minOccurs="0" nillable="true"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="AType">
<xs:sequence>

<xs:element name="B" type="xs:string" minOccurs="0" maxOccurs="unbounded">
<xs:element name="C" type="xs:string" minOccurs="0">

</xs:sequence>
</xs:complexType>

Translation:
<A>

text1
text2
<C>text3</C>

becomes
"A":{"B": ["text1", "text2"], "C": "text3"}

<A>
text1
<C>text3</C>

becomes
"A":{"B": ["text1"], "C": "text3"}

Generation:
B="text1" only and C="text3" becomes "A":{"B": ["text1"], "C": "text3"}
B=no data and C="text3" becomes "A":{"C": "text3"}
B=no data and C=no data becomes "A":{} or omitted

3.3.7 XML List Type

If the schema specifies a list then the space separated list is specified as an array.

Schema:
<xs:element name="A" type="AType" minOccurs="0" nillable="true"/>
<xs:simpleType name="AType">

<xs:list itemType="xs:integer"/>
</xs:simpleType>

Postsecondary Electronic Standards Council (PESC)
PESC Compliant JSON

Version: 1.0.0 03/04/2019

Status: Approved Page 7

Translation:
<A>1 2 3 becomes "A": [1, 2, 3]

Generation:
A= a list of "C", "CD", and "E" becomes ["C", "CD", "E"]
A= no data becomes "A": [] or omitted

3.3.8 Nillable Elements

Elements defined with the xs:nillable="true" (by default xs:nillable is false) may carry the xsi:nil attribute
in the instance documents. These elements will be assigned the value of null in JSON. The xsi:nil will not
be treated as an attribute for translation puposes.

Schema:
<xs:element name="A" type="AType" minOccurs="0" nillable="true"/>
<xs:simpleType name="AType" type="xs:integer"/>

Translation:
<A xsi:nil="true"/> becomes "A":null
<A xsi:nil="false"/> or <A/> is not valid XML for this integer simple type so it cannot appear in
valid XML. Translation will not be necessary.

Generation:
A=no data is omitted
A=null value to be transmitted becomes "A": null

3.3.9 Required Empty Simple Element

If an element is required (minOccurs > 0) and the element is not nillable or xsi:nil is false, the empty tag

(e.g., <A/> or <A>) will be translated into the empty string if the empty string is allowed by the type

definition (e.g., xs:string with minLength="0"). If the XML instance document being translated is valid,

the empty tag cannot occur for any type that does not include the empty string, and thus there will be

no need for translation.

Translation:
<A/> becomes "A": "" if a string with minLength="0"
<A/> becomes "A": [""] if repeatable and a string with minLength="0"
<A/> cannot exist in a valid XML instance document if its type does not include the empty
string

3.3.10 Required Empty Complex Content Element

A complex element with excluded children that must be present (i.e., minOccurs > 0) shall be

represented as an empty object in JSON ("A": {}).

Postsecondary Electronic Standards Council (PESC)
PESC Compliant JSON

Version: 1.0.0 03/04/2019

Status: Approved Page 8

3.3.11 Sequence and Choice

XML schemas can specify that child elements be presented in a particular order through the xs:sequence

and xs:choice constructs. JSON objects do not have an explicit order to their properties. Indeed, some

JSON tools will alphabetize the property names for display. As a result, the order of JSON properties are

not required to be in the same order as specified in the XML Schema xs:choice or xs:sequence. If

translation from JSON to XML is required, the XML Schema may be used to reorder the property names

for an XML instance document.

3.3.12 Union Types

The xs:union schema element allows for the defined element to be one of several types. For translation,

this requires that the value be interpreted by determining the most specific constraint of the XML

element value. For example, an integer is more constrained than a string. Processing of the union type

requires type checking when parsing the JSON string so it should be discouraged in XML schemas.

Schema:
<xs:complexType name="top">

<xs:sequence>
<xs:element name="A" type="AType" minOccurs="0" nillable="true"/>

</xs:sequence>
</xs:complexType>

<xs:simpleType name="AType">
<xs:union memberTypes="xs:string xs:integer" />

</xs:simpleType>

Translation:
<A>3 becomes "A": 3
<A>450-3 becomes "A": "450-3"

Generation:
A=number 34 becomes "A": 34
A=string String becomes "A": "String"
If the generator wants a number interpreted as a string, then the following translation could be
created:A=string 345 becomes "A": "345"

3.3.13 Facets

Facets in XML schemas are used to further constrain the value of a simple type. These constraints

should be used in generating JSON content. For example, if the maxLength in the schema for an

element is 80, the value for that corresponding JSON property should not be greater than 80 characters.

String Facets:
xs:length, xs:minLength, xs:maxLength, xs:enumeration, xs:pattern, xs:whitespace

Number Facets:
xs:totalDigits, xs:fractionDigits, xs:minInclusive, xs:maxInclusive

Postsecondary Electronic Standards Council (PESC)
PESC Compliant JSON

Version: 1.0.0 03/04/2019

Status: Approved Page 9

Schema:
<xs:complexType name="top">

<xs:sequence>
<xs:element name="A" type="AType" minOccurs="0" nillable="true"/>

</xs:sequence>
</xs:complexType>

<xs:simpleType name="Atype">
<xs:restriction base="xs:decimal">

<xs:totalDigits value="9"/>
<xs:fractionDigits value="3"/>

<xs:restriction>
</xs:simpleType>

Valid: {"A": 3.45}, {"A": 123456.123}
Invalid:

{"A": 0.12345}, {"A": 123456789.123}, {"A": "Three point five"}

Note: fractionDigits is the maximum number of digits to the right of the decimal, not the
required number of digits.

3.3.14 Namespaces

Namespace definitions will be treated like any other attribute and added as properties to the JSON

object. Namespace prefixes in XML will be part of the name used for JSON properties. Namespace

definitions with prefixes not used in the XML instance document may be excluded from the JSON

instance.

3.3.15 Schema Information

Attributes related to XML Schemas (e.g., xmlns:xsi namespace and xsi:SchemaLocation) may be excluded

from the JSON instance.

3.3.16 Root Element

The XML root element name shall be included as a property of the top level JSON object.

3.3.17 XPath Expressions

Some PESC standards use XPath expressions to identify a particular element in an XML instance

document. While there could be an interpretation of XPath for JSON, JSON tools are using other

expressions to identify elements in a more straight-forward manner. JSONPath appears to be

implemented in most programming languages. Since XPath expressions appear to be just strings in XML,

it may require schema-specific code to identify and translate XPath to JSONPath.

/AcademicEPortfolio/Competencies[CompetencyID="Competency1"] becomes
$.AcademicEPortfolio.Competencies[?(@.CompencyID == "Comptency1")] or
$["AcademicEPortfolio"]['Competencies'][?(@.CompetencyID =="Comptency1")]

Postsecondary Electronic Standards Council (PESC)
PESC Compliant JSON

Version: 1.0.0 03/04/2019

Status: Approved Page 10

The JSONPath specification is found here:
http://goessner.net/articles/JsonPath/

This translation table was extracted from Goessners's JSONPath specification (above):

XPath JSONPath Description

/ $ the root object/element

. @ the current object/element

/ . or [] child operator

.. n/a parent operator

// .. recursive descent. JSONPath borrows this syntax from E4X.

* * wildcard. All objects/elements regardless their names.

@ n/a attribute access. JSON structures don't have attributes.

[] []
subscript operator. XPath uses it to iterate over element collections and
for predicates. In Javascript and JSON it is the native array operator.

| [,]
Union operator in XPath results in a combination of node sets.
JSONPath allows alternate names or array indices as a set.

n/a [start:end:step] array slice operator borrowed from ES4.

[] ?() applies a filter (script) expression.

n/a () script expression, using the underlying script engine.

() n/a grouping in Xpath

3.3.18 XML Features Not Translated

XML has several notations that do not have a corresponding construct in JSON. Therefore, to meet the

"no special names" requirement, the following XML notations will not be translated from XML to JSON.

 Processing instructions

 Comments

 xsi attributes: xsi:lang, xsi:type, xsi:schemaLocation

4 Tools Support
To assist with the creation of data model aware JSON, various software tools may be used to encode the

XML schema rules into language objects that can then be serialized into JSON, XML, or other language.

Our experience with these tools indicates they may not enforce all constraints in their objects and that

some additional code or post processing may be needed to meet this specification.

4.1 Java JAXB

Currently, a combination of JAXB (Java object model creation from XML Schema) and MoXY (JSON

serialization) have been successfully used to create data-model-aware JSON. The PESC EdExchange

program uses this tool to create JSON for transcript exchanges.

Postsecondary Electronic Standards Council (PESC)
PESC Compliant JSON

Version: 1.0.0 03/04/2019

Status: Approved Page 11

4.2 Python

The xmlschema package for Python has been used to translate between XML instance documents and

JSON using the XML schema to drive the translation. This solution appears to implement most of the

rules above. It has the advantage that XML is translated into Python dictionaries where additional

transformations can be applied before converting to JSON. Unfortunately, some XML Schema Language

constructs such as xs:union are not supported.

4.3 A4L Tool Set

The Access 4 Learning Community is excited enough about this JSON representation that they have

already developed a set of reference tools for it. These tools start with their internal schema

representation and produce both a flat file with all the needed information to properly serialize JSON

from one of their standards plus code and transforms capable of doing the work. While these serve as

great examples between starting with an internal format and the performance concerns of the resulting

code, the expectation is that people will create native solutions using the flat file to process things

correctly. This exercise can be found at GitHub here: https://github.com/nsip/sifxml2pescjson.

4.4 CAMV Editor

The CAMV editor uses OASIS-defined templates to provide a data model from XML Schema (and other

sources) that can be used to translate between various data exchange respresentions including XML and

JSON. This software is freely available as an open source project on SourceForge. The JSON Task Force

plans to examine this software for compatibility with this PESC standard.

Appendix A: Revision History

DATE SECTION/
PAGE

DESCRIPTION Version MADE BY

02/04/2019Initial Release Approved by PESC
Community

1.0.0 Michael Morris
Steve Margenau
Doug Holmes
Jerald Bracken
Alex Jackl

Appendix B: References
[1] PSEC, PESC Standards Forum for Education, PESC Policies and Procedures, 2015
[2] IETF, RFC8259, The JavaScript Object Notation (JSON) Data Interchange Format, 2018
[3] Chomsky, Noam, Current Issues in Linguistic Theory, 1964

