CAP 4630
Artificial Intelligence
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Schedule

10/12: Wrap-up logic (logical inference), start optimization
(integer, linear optimization)

10/17: Continue optimization (integer, linear optimization)

10/19: Wrap up optimization (nonlinear optimization), go over
homework 1, midterm review

10/24: Midterm

10/26: Go over exam, start planning module
Next week: HW?2 back, HW3 out

Class project due 12/7

Final exam on 12/14

Class withdrawal deadline is 11/6



Integer programming

« Special case of a CSP where domain set for each
variable Is a set of integers

— Often 1t 1s finmite {0,1,2,...,n} but could be infinite,
{0,1,2,3,.....}

— Often it is just binary {0,1}

e Constraints are all LINEAR functions of the variables
~ E.g.,4X1+3X2<=9
— -2.5X1 +2X2 - 19X3 <= 22

— Cannot raise variables to powers or multiply variables
together



Objective functions

 |In most CSP examples we saw, the goal was just to
find a single assignment of values to variables that
satisfied all the constraints, and it did not matter which
solution was found. We also considered the more
general setting where we have “preference constraints”
which are encoded as costs on individual variable
assignments, leading to an overall objective function
that want would like minimize, subject to all of the
constraints being adhered to.



CSP variations

The constraints we have described so far have all been absolute
constraints, violation of which rules out a potential solution.
Many real-world CSPs include preference constraints
Indicating which solutions are preferred. For example, in a
university class-scheduling problem there are absolute constraints
that no professor can teach two classes at the same time. But we
also may allow preference constraints: Prof. R might prefer
teaching in the morning, whereas Prof. N prefers teaching in the
afternoon. A schedule that has Prof. R teaching at 2 p.m. would
still be an allowable solution (unless Prof. R happens to be the
department chair) but would not be an optimal one.



CSP variations

 Preference constraints can often be encoded as costs on
Individual variable assignments—for example,
assigning an afternoon slot for Prof. R costs 2 points
against the overall objective function, whereas a
morning slot costs 1. With this formulation, CSPs with
preferences can be solved with optimization search
methods, either path-based or local. We call such a
problem a constraint optimization problem, or COP.
Linear/integer/nonlinear programming problems do
this kind of optimization.



Integer programming

« Special case of a CSP where domain set for each (or
some) variable is a set of integers

— Often 1t 1s finmite {0,1,2,...,n} but could be infinite,
{0,1,2,3,.....}

— Often it is just binary {0,1}

— Some variables do not have integer restrictions and can be
any real number

« Constraints are all LINEAR functions of the variables
— E.g.,,4X1+3X2<=9
— -2.5X1 +2X2 - 19X3 <= 22
— Cannot raise variables to powers or multiply variables

 Objective function of the variables to optimize 7



Integer linear programming

 (Often the constraints and the objective are both
LINEAR functions of the variables, and we referring to
Integer programming (IP) as integer linear
programming in this case (ILP). One could also
consider other forms for the constraints and objective
(e.g., quadratic program, quadratically-constrained
program, conic program). Specialized algorithms exist
for these as well, though more attention has been given
to the linear case and typically those algorithms are
much more effective In practice.



Manufacturing site selection

« A manufacturer is planning to construct new buildings at four
local sites designated 1, 2, 3, and 4. At each site, there are three
possible building designs labeled A, B, and C. There is also the
option of not using a site. The problem is to select the optimal
combination of building sites and building designs. Preliminary
studies have determined the required investment and net annual
Income for each of the 12 options. This information is shown In
Table 7.1 with Al, for example, denoting design A at site 1. The
company has an investment budget of $100 million ($100M).
The goal Is to maximize total annual income without exceeding
the investment budget. As the optimization analyst, you are
given the job of finding the optimal plan.



Manufacturing site selection

e |t Is an obvious requirement here that only whole
buildings may be built and only whole designs may be
selected. To begin creating a model, variables must be
defined to represent each decision. Let | = {A,B,C} be
the set of design options, and let J = {1,2,3,4} be the
set of site options.

« Letylj =1 if design i Is used at site J, and O otherwise

 Also, denote by pij the annual net income and by aij
the investment required for the design/site combination
1,]. As a first try, you propose the following model for

finding the maximum of annual income:
10



Manufacturing site selection

* Maximize z = sum; sum; plj yij
 Subject to:
— sum; sum;aij yij <= 100
—yijin{0,1} forallrinlandjinJ

11



Manufacturing site selection

 Solving the model with an appropriate algorithm for
the parameter values given in the table, the optimal
solution Is:
— yYAl=yA3=yB3=yB4=yC1=1, with all other values of yij
equal to zero and z = 40. Of the available budget, $99M is
used.

Table 7.1 Data for Site Selection Example

_————_———-———_—_—\
Option Al A2 A3 A4 Bl B2 B3 B4 Cl 2 3 g

Net income ($M) 6. SR [ IO b TP 8 12 16 19 9
Investment ($M) 13 20 24 30 .. 3945 il e 30 44 48 55
-_— -

12



Manufacturing site selection

 Your supervisor reviews the solution and questions your basic
reasoning. You seem to have omitted some of the logic of the
problem, because two designs are built on the same site—that Is,
Al and C1, and also A3 and B3, are all in the solution. In
addition, your supervisor now realizes that you were not alerted
to several other logical restrictions imposed by the owners and
architects—I.e., site 2 must have a building, design A can be
used at sites 1, 2, and 3 only if it is also selected for site 4, and at

most two of the designs may be included in the plans.

« Your solution violates all of these restrictions and must be
discarded. The following additional constraints are needed to
guarantee a feasible solution:

13



Manufacturing site selection

Site 2 must have a building: sum; yi2 =1

There can be at most one building at each of the other
sites: sum. yij<=1forj=1,3,4

Design A can be used at sites 1, 2, and 3 only if it is
also selected for site 4. yAl + yA2 + yA3 <= 3yA4.

To formulate the constraints associated with design
selection, three new binary variables are introduced.
— Letwi =1 if design i is used, O otherwise, fori=A,B,C
— At most two designs may be used: wA + wB + wC <=2

— Finally, the yij and wi variables must be tied together: sum,;
yij<=4wifori=A, B, C
14



Manufacturing site selection

* The new model has 15 variables and 10 constraints not
Including the integrality requirement. Solving, you find
that the optimal solution Is
yAl=yA4=yB2=yB3=wA=wB=1 with all other
variables equal to zero and z = 37. All the budget Is
spent, but the profit has decreased.

15



Traveling salesman problem

» The travelling salesman problem (TSP) asks the following
question: "Given a list of cities and the distances between each
pair of cities, what is the shortest possible route that visits each
city exactly once and returns to the origin city?*

» The problem was first formulated in 1930 and is one of the most
Intensively studied problems in optimization. It is used as a
benchmark for many optimization methods. Even though the
problem is computationally difficult, a large number of
heuristics and exact algorithms are known, so that some
Instances with tens of thousands of cities can be solved
completely and even problems with millions of cities can be
approximated within a small fraction of 1%.

16



Traveling salesman problem

Solution of a travelling salesman
problem: the black line shows the
shortest possible loop that connects
every red dot

17



Traveling salesman problem

« The TSP has several applications even in its purest formulation,
such as planning, logistics, and the manufacture of microchips.
Slightly modified, it appears as a sub-problem in many areas,
such as DNA sequencing. In these applications, the concept city
represents, for example, customers, soldering points, or DNA
fragments, and the concept distance represents travelling times
or cost, or a similarity measure between DNA fragments. The
TSP also appears in astronomy, as astronomers observing many
sources will want to minimize the time spent moving the
telescope between the sources. In many applications, additional
constraints such as limited resources or time windows may be
Imposed.

18



Traveling salesman problem

TSP can be formulated as an integer linear program ['00"I12] | apel the cities with the numbers 1, ..., 1 and define:

- 1 the path goes from city i to city j
Y 0 otherwise

Fori=1, .., n letwu; be adummy variable, and finally take ¢;; to be the distance from city /1o city /. Then TSP can be written as the following integer linear programming problem:

T T
min E E CijTiy:

=1 jij=1
0 = Tij = 1
u; € &

n

Z ;=1

i=1irj
n

Z E..;'_f =1

J=1g#
u—uj+nr;<n-—1 2<i#Fj<n

The first set of equalities requires that each city be arrived at from exactly one other city, and the second set of equalities requires that from each city there is a departure to exactly one other city.
The last constraints enforce that there is only a single tour covering all cities, and not two or more disjointed tours that only collectively cover all cities. To prove this, it is shown below (1) that every
feasible solution contains only one closed sequence of cities, and (2) that for every single tour covering all cities, there are values for the dummy variables w; that satisfy the constraints.

To prove that every feasible solution contains only one closed sequence of cities, it suffices to show that every subtour in a feasible solution passes through city 1 (noting that the equalities ensure
there can only be one such tour). For if we sum all the inequalities corresponding to Tij = 1 for any subtour of k steps not passing through city 1, we obtain:

nk < (n— 1)k,

which is a contradiction.

It now must be shown that for every single tour covering all cities, there are values for the dummy variables u; that satisfy the constraints.

Without loss of generality. define the four as originating (and ending) at city 1. Choose u; = t if city 7 is visited in step { (1. t=1. 2, ..., n). Then
w—u; <n—1,

since w; can be no greater than n and w; can be no less than 1; hence the constraints are satisfied whenever z;; = 0. For z;; = 1, we have:
w —uj+neg =(t)—(t+1)+n=n—1,

satisfying the constraint.




Linear programming

« Similar to ILP (both constraints and objective are linear
functions of the variables). However, for LP the
variables are not restricted to be integers; they can be
any real number. So not only are the domains infinite
for each variable, they are uncountably infinite. Integer
(and e.g., binary) variables are not allowed for LP.

— Often there are nonnegativity constraints on some of the
variables, e.g., Xi >=0.

— Cannot impose Iintegrality constraints, e.g., for manufacturing
problem could not use binary variables to ensure whole
buildings are built, and may end up with solution such as

y1]=0.8, which 1s nonsensical (can’t build 0.8 of a building).
20



LP vs ILP

 \Which 1s easier to solve, LP or ILP?

21



LP vs. ILP

« Every LPisalso an ILP (can just not include any integer
variables), so clearly ILP is at least as hard as LP. It turns out
that LP can be solved in polynomial-time, while ILP is NP-hard.
In fact, several algorithms for ILP involve solving a series of LP
“relaxations,” where several of the integer variables are assigned
to specific values and the resulting optimization formulation is
solved as a linear program without any integrally-constrained
variables.

 This is perhaps counterintuitive, as for LP variables all have
Infinite domain, but for ILP they may even just have domains of
Size 2.

« That said, of course huge LPs are more difficult to solve than
tiny ILPs In practice, and worst-case complexity does not tell the
full story. 22



ILP algorithms

« EXxhaustive enumeration: can be performed if all
variables have finite domain (can’t be done if there are
non-integral variables or integral variables over infinite
domain). Can iterate over all possible combinations of
variable values. For each combination, test for
feasibility (whether it satisfies all constraints). If it Is
feasible, compute the objective value, and ultimately
output the assignment that has highest objective value
out of feasible solutions.

* |s this algorithm efficient?

23



ILP algorithm

 Unfortunately, the number of possible solutions
IS 2", where n Is the number of variables. For n
= 20, there are more than 1,000,000 candidates;
for n=30, the number Is greater than
1,000,000,000, which is too large to be solved
by computers.

24



0-1 integer program example

Maximize 7 =

subject to

25



|LP search tree

009@@@@

R 1,0, 1) (1,0,0) (0,1,1) (0,1,0) (0,0,1) (0,0,0)

Figure 8. 3 Exhaustive search tree




|LP search tree

« \We draw the tree with the root at the top and the leaves
at the bottom. The circles are called nodes, and the
lines are called branches. At the very top of the tree,
we have node 0 or the root. As we descend the tree,
decisions are made as indicated by the numbers on the
branches. A negative number, -, implies that the
variable x; has been set equal to O, whereas a positive
number, +], Implies that x; has been set equal to 1.

27



ILP algorithm

« The nodes are numbered sequentially as the variables are fixed
to either O or 1. The sequence will vary depending on the
enumeration scheme. Each node k inherits all the restrictions
defined by the branches on the path joining it to the root. This
path is given the designation Pk. For example, at node 1 the
decision +1 is indicated y the branch joining node 0 to node 1.
This means we have set variable x1 equal to 1. At node 5, the
decision -2 Is indicated by the branch joining nodes 1 and 5, so
we have the additional restriction x2 = 0. The leaves at the
bottom of the tree signal that all variables have been fixed. Each
of these eight nodes represents a complete solution that can be
Identified by tracing the path from the leaf node to the root and
noting the decisions associated with the branches traversed
along the way. Thus, node 6 represents the solution x = (1,0,1),
whereas node 10 represents x = (0,1,1). 28



ILP algorithm

 Can perform a recursive DFS backtracking search
algorithm (similar to both CSP backtracking search and
minimax search) on this search tree.

« Could always branch to the left, arbitrary branching, or
use more Iintelligent heuristics.

 Can Integrate various pruning techniques like we did
for minimax search (e.g., alpha-beta pruning) and for
CSP search.

29



Branch and bound

LP relaxation: the ILP but without the integrality constraints
Suppose we have an incumbent solution with objective value

zB, and zK is the objective value of the LP relaxation at node k.

Four alternatives:

LP has no feasible solution (in which IP also has no feasible solution)

LP has an optimal solution with lower objective value (in which the
current IP optimal solution is better than the LP optimal one and cannot
provide an improvement over the incumbent).

Optimal solution to the LP is integer valued and feasible, and yields
Improved solution.

None of the above: I.e., the optimal LP solution improves the objective
but is not integer-valued.

 For first 3 cases nothing more to be done. Only for case 4 is
further branching needed. 30



Branch and bound

» Note that the relaxed problem associated with each
node does not have to be an LP. A second choice could
be an IP that is easier to solve than the original. Typical
relaxations of the traveling salesman problem, for
Instance, are the assignment problem and the minimum
spanning tree (MST) problem.

31



Branch and bound (B&B)

« \We now elaborate and present the basic steps that are
needed for solving a 0-1 integer program using B&B
(can also be used for IPs with larger domains).
Although most steps are general in that they are
appropriate for a variety of problem classes, several
computational procedures are problem dependent.
Although a maximization objective Is assumed, if the
goal Is to minimize, the problem can be solved with the
same algorithm after making a few modifications, or
directly by converting it to a maximization problem.
The five routines below are used to guide the search for
the optimal solution and to extract information that can
be used to reduce the size of the B&B tree. 32



Branch and Bound

« Bound: This procedure examines the relaxed problem
at a particular node and tries to establish a bound on
the optimal solutions. It has two possible outcomes:

1. An indication that there is no feasible solution in the set of
Integer solutions represented by the node

2. A value z;,z—an upper bound on the objective for all
solutions at the node and its descendent nodes

33



Branch and Bound

 Approximate: This procedure attempts to find a
feasible integer solution from the solution of the
relaxed problem. If one is found, it will have an
objective value, call it Z LB, that is a lower bound on
the optimal solution for a maximization problem.

« Variable fixing: This procedure performs logical tests
on the solution found at a node. The goal Is to
determine If any of the free binary variables are
necessarily 0 or 1 in an optimal integer solution at the
current node or at its descendants, or whether they
must be set to 0 or 1 to ensure feasibility as the
computations progress. 34



Branch and Bound

« Branch: A procedure aimed at selecting one of the free
variables for separation. Also decided is the first

direction (O or 1) to explore.

« Backtrack: This is primarily a bookkeeping procedure
that determines which node to explore next when the
current node Is fathomed. It is designed to enumerate
systematically all remaining live nodes of the B&B tree
while ensuring that the optimal solution to toe original
IP Is not overlooked.

35



Branch and bound algorithm

celeton of a generic branch and bound algorithm for minimizing an arbitrary objective function £% To obtain an actual algorithm from this, one requires a bounding function g,
ounds of fon nod as a problem-s fic branching rule.
is available, set B to infinity.) B will denote the best solution found so far, and will be

ic, find a solutior o the optimization problem. Store its value, B =

5 an upper bound on candidate solutions.
2. Initialize a queue to hold a partial solution with none of the variables of the problem a

3. Loop until the queue is empty:
1. Take a node NN off the queue.
2 x is the best solution so far. Record it and set B «—

N to produce new nodes V. For each of these:

eater than the upper bound of the problem, it will never lead to the optimal solution, and can be discarded.

B, do nothin ince the lower bound on this node

Several different queue data structure IFO queue) will yield a depth-first algorithm. A be and bound algorithm can be obtained by using a priority queue that
sorts nodes on their g-value. '~ The depth-first variant is recommended when no good heuristic is available for producing an initial solution, because it qui prod full solutions, and therefore

upper bound

36



Linear programming (LP)

« Countless real-world applications have been successfully
modeled and solved using LP techniques. This has produced an
ongoing revolution in the way decisions are made throughout all
sectors of the economy. Typical applications include the
scheduling of airline crews, the distribution of products through
a manufacturing supply chain, and production planning in the
petrochemical industry.

« Because of the simplicity of the LP model, software has been
developed that is capable of solving problems containing
millions of variables and tens of thousands of constraints.
Computer implementations are widely available for most
mainframes, workstations, and microcomputers. A variety of
problems with nonlinear functions, multiple objectives,
uncertainties, or multiple decision makers, such as those arising
In game theory, can be modeled as linear programs. 37



P solution concepts

 Solution: An assignment of values to the decision variables is a
solution to the LP model. Given a solution, the expressions
describing the objective function and the constraints can be
evaluated. A solution is feasible if all the constraints, the non-
negativity restrictions, and the simple upper bounds are satisfied.
If any one of the restrictions is violated, the solution is infeasible.

« Optimal solution: A feasible solution that maximizes or
minimizes the objective function (depending on the criterion).
The purpose of an LP algorithm is to find the optimal solution or
to determine that no feasible solution exists.

38



P solution concepts

« Alternative optima: If there is more than one optimal solution
(solutions that yield the same value of the objective z), the model
IS said to have multiple or alternative optimal solutions. Many
practical problems have alternative optima.

* No feasible solution: If there is no specification of values for the
decision variables that satisfies all the constraints, the problem is
said to have no feasible solution. In practical problems, it is
possible that the set of constraints does not allow for a feasible
solution (e.g., X >= 3, X <=2). Such a situation might result from a
mistake in the problem statement or an error in data entry.
Redundant equality constraints or nearly identical inequality
constraints in the problem formulation may lead to a false
Indication that no feasible solution exists. Although the set of
equalities may have a solution in theory, rounding errors inherent
In computer computations may make the simultaneous satisfaction
of these equalities (and sometimes inequalities) impossible?



P solution concepts

« Unbounded model: If there are feasible solutions for which the
objective function can achieve arbitrarily large values (if
maximizing) or arbitrarily small values (if minimizing), the
model Is said to be unbounded. When all variables are restricted
to be nonnegative and have finite simple upper bounds, this
condition is impossible. If no bounds are specified for some
variables, the model may have an unbounded solution. However,
since most decisions must take into account limitations on
resources and laws of nature, such a model is probably a poor
representation of the real problem.

40



Simplex algorithm

The simplex algorithm, developed by George Dantzig in 1947, solves LP
problems by constructing a feasible solution at a vertex of the polytope and then
walking along a path on the edges of the polytope to vertices with non-
decreasing values of the objective function until an optimum is reached for sure.
In many practical problems, "stalling" occurs: Many pivots are made with no
Increase in the objective function. In rare practical problems, the usual versions
of the simplex algorithm may actually "cycle". To avoid cycles, researchers
developed new pivoting rules.

In practice, the simplex algorithm is quite efficient and can be guaranteed to find
the global optimum if certain precautions against cycling are taken. The simplex
algorithm has been proved to solve "random" problems efficiently, i.e. in a cubic
number of steps, which is similar to its behavior on practical problems.

However, the simplex algorithm has poor worst-case behavior: Klee and Minty
constructed a family of linear programming problems for which the simplex
method takes a number of steps exponential in the problem size. In fact, for some
time it was not known whether the linear programming problem was solvable in
polynomial time, i.e. of complexity class P. 41



Interior point algorithm

 |In contrast to the simplex algorithm, which finds an optimal
solution by traversing the edges between vertices on a
polyhedral set, interior-point methods move through the interior
of the feasible region.

« The ellipsoid algorithm (Khachiyan) is the first worst-case
polynomial-time algorithm for linear programming. To solve a
problem which has n variables and can be encoded in L input
bits, this algorithm uses O(n"™4 L) pseudo-arithmetic operations
on numbers with O(L) digits. Khachiyan's algorithm and his
long standing issue was resolved by Leonid Khachiyan in 1979
with the introduction of the ellipsoid method. The convergence
analysis has (real-number) predecessors, notably the iterative
methods developed by Naum Z. Shor and the approximation

algorithms by Arkadi Nemirovski and D. Yudin. 1



Nonlinear optimization

« Maximize (or minimize) f(x)
subject to g 1(x) <=0 for each11n {I1,...,m}
h j=0 for eachjin {I,...,p)}
X In X
* N,m,p positive integers
« X s subset of R*n (e.g., [0,1], or [-infinity,Infinity]
* F, g I, h jreal-valued functions on X for each | and
each |, with at least one of f, g_1, h_j being nonlinear

43



Nonlinear optimization

If the objective function f is linear and the constrained space Is a
polytope, the problem is a linear programming problem, which
may be solved using well-known linear programming techniques
such as the simplex method.

If the objective function is concave (maximization problem), or
convex (minimization problem) and the constraint set Is convex,
then the program is called convex and general methods from
convex optimization can be used in most cases.

If the objective function Is quadratic and the constraints are
linear, quadratic programming techniques are used.

If the objective function is a ratio of a concave and a convex
function (in the maximization case) and the constraints are
convex, then the problem can be transformed to a convex
optimization problem using fractional programming techgéilques.



Nonlinear optimization

Several methods are available for solving nonconvex problems. One
approach is to use special formulations of linear programming
problems. Another method involves the use of branch and bound
techniques, where the program is divided into subclasses to be solved
with convex (minimization problem) or linear approximations that
form a lower bound on the overall cost within the subdivision. With
subsequent divisions, at some point an actual solution will be obtained
whose cost Is equal to the best lower bound obtained for any of the
approximate solutions. This solution is optimal, although possibly not
unigue. The algorithm may also be stopped early, with the assurance
that the best possible solution is within a tolerance from the best point
found; such points are called e-optimal. Terminating to e-optimal
points is typically necessary to ensure finite termination. This is
especially useful for large, difficult problems and problems with
uncertain costs or values where the uncertainty can be estimated with
an appropriate reliability estimation. 45



Nonlinear programming

« Quadratic programming: For positive definite Q, the ellipsoid
method solves the problem in polynomial time. If, on the other
hand, Q Is indefinite, then the problem is NP-hard. In fact, even
If Q has only one negative eigenvalue, the problem is NP-hard.

« Convex optimization: variability complexity, often solved by
gradient or subgradient methods.

» The following problems are all convex minimization problems,
or can be transformed into convex minimizations problems via a
change of variables: Least squares, Linear programming,
Convex guadratic minimization with linear constraints,
quadratic minimization with convex quadratic constraints, Conic
optimization, Geometric programming, Second order cone
programming, Semidefinite programming, Entropy

maximization with appropriate constraints 46



Planning

Al planning arose from investigations into state-space search,
theorem proving, and control theory and from the practical
needs of robotics, scheduling, and other domains.

« Shakey the robot was the first general-purpose mobile robot to
be able to reason about its own actions. While other robots
would have to be instructed on each individual step of
completing a larger task, Shakey could analyze commands and
break them down into basic chunks by itself.

« Due to Its nature, the project combined research in robotics,
computer vision, and natural language processing. Because of
this, it was the first project that melded logical reasoning and
physical action. Some of the most notable results of the project
Include the A* search algorithm, the Hough transform, and the

visibility graph method.
47



Shakey

* https://www.youtube.com/watch?v=7bsENSmwUBS
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Planning example: air cargo transport

 Three actions:
— Load, Unload, Fly

Two predicates:
— In(c,p) means that cargo c is inside plane p

— At(x,a) means that object x (either plane or cargo) is at
alrport a.

Initial state

— Conjunction (AND) of ground atoms. (Atoms that are not
mentioned are false).

« Goal
— Conjunction of literals

* Preconditions and effects
— Must be specified for each action

49



AIr cargo transport problem

e
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A Airport(JFK) A Avrport(SF 0))
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AIr cargo transport problem

» Note that some care must be taken to make sure the At
predicates are maintained properly. When a plane flies
from one airport to another, all the cargo inside the
plane goes with it. In first-order logic it would be easy
to quantify over all objects that are inside the plane.
But basic PDDL (Planning Domain Definition
Language) does not have a universal quantifier, so we
need a different solution. The approach we use Is to say
that a piece of cargo ceases to be At anywhere when it
IS In a plane; the cargo only becomes At the new
alrport when it is unloaded. So At really means
“available for use at a given location.”

ol



AIr cargo transport problem

« \What is a solution for this problem?

52



AIr cargo transport problem

 One solution (there may be others):
[Load(C1,P1,SFO), Fly(P1,SFO,JFK), Unload(C1,P1,JFK),
Load(C2,P2,JFK), Fly(P2,JFK,SFO), Unload(C2,P2,SFO)].

53



AIr cargo transport problem

* What about “degenerate” actions like
Fly(P1,JFK,JFK)?

 This should be a no-op (no operation), but it
apparently has contradictory effects according to the

definition (the effect would include At(P1,JFK) AND
IAt(P1,JFK)).

* |t 1S common to ignore such problems and assume that
the effects just cancel out. A perhaps better approach is
to add inequality preconditions saying that the from
and to airports must be different. We will see another
similar example shortly.
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Spare tire problem

« The goal Is to have a good spare tire properly mounted
onto the car’s axle, where the 1nitial state has a flat tire
on the axle and a good spare tire in the trunk.

 Four actions:
— Removing the spare tire from the trunk
— Removing the flat tire from the axle
— Putting the spare on the axle
— Leaving the car unattended overnight

« Assume that the car is parked in a particularly bad
neighborhood, so that the effect of leaving it overnight

IS that the tire disappear.
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Spare tire problem

’V -
Init( Tire(Flat) N Tire(Spare) N At(Flat,A:Ele) A At(Spare, Trunk))

Goal(At(Spare, Azle))

Action(Remove(obj, loc),

PRECOND: At(obj, loc)
EFFECT: — At(obj,loc) A At(obj, Ground))
Action(PutOn(t, Azle),
PRECOND: Tire(t) A At(t, Ground) A — At(Flat, Azle) A — At(Spare, Azle
EFFECT: - At(t, Ground) N At(t, Azle))
Action(LeaveOvernight,
PRECOND:
EFFECT: = At(Spare, Ground) A — At(Spare, Azle) A — At(Spare, Trunk)
A~ At(Flat, Ground) A - At(Flat, Azle) A — At(Flat, Trunk))

Figure 10.2  The simple spare tire problem.




Spare tire problem

e Solution?

S



Spare tire problem

« [Remove(Flat, Axle), Remove(Spare, Trunk),
PutOn(Spare, Axle)].
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Blocks world

 One of the most famous planning domains is known as
the blocks world. This domain consists of a set of
cube-shaped blocks sitting on a table. The blocks can
be stacked, but only one block can fit directly on top of
another. A robot arm can pick up a block and move it
to another position, either on the table or on top of
another block. The arm can pick up only one block at a
time, so It cannot pick up a block that has another one
on it. The goal will always be to build one or more
stacks of blocks, specified in terms of what blocks are
on top of what other blocks. For example, a goal might

be to get block A on B and block B on C. -



Blocks world

.I.'il e

Start State

Goal State

Figure 104  Diagram of the blocks-world problem in Figure 10.3.
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Blocks world

« We use On(b,x) to indicate that block b Is on x, where x
IS either another block or the table. The action for
moving block b from the top of x to the top of y will be
Move(b,X,y). One of the preconditions on moving b Is
that no other block be on it. In first-order logic, this
would be !'Exists x On(x,b), or alternatively, ForAll x
~On(x,b). Basic PDDL does not allow quantifiers, so
Instead we introduce a predicate Clear(x) that is true
when nothing is on X.
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Blocks world

- 7<J’,7——‘_’_’———N——
mit(On(A, Table) N On(B, Table)
(Onie 3, Table) A On(C, A) A
\ Block(A) A Block o |
| . _( ) A\ Block(B) A Block(C) A Clear(B) A Clear(C) A Clear(T
Goal(On(A,B) A On(B,C)) ' S} & Clesr (T aic))
Action(Move(b, z,y),
PRECOND: On(b,z) A Clear(b) A Clear(y) A Block(b) A Block(y) A

(bz) A (bAy) A (@#Y),
EFreCT: On(b,y) A Clear(z) A —On(b,z) A ~Clear(y))

Action(MoveTo Table (b, x),

b,z) A Clear(b) N Block(b) A Block(z),

PRECOND: On(
A =On(b,x))

EFFeCT: On(b, Table) N Clear(x)

62



e Solution?

Blocks world
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Blocks world

« [MoveToTable(C,A), Move(B,Table,C), Move(A,Table,B)]
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Blocks world

« The action Move moves a block b from x to y if both b
and y are clear. After the move iIs made, b is still clear
but y Is not. A first at the Move schema is

« Action(Move(b,X,y),

— Precond: On(b,x) AND Clear(b) AND Clear(y)

— Effect: On(b,y) AND Clear(X) AND ~On(b,x) AND
~Clear(y).
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Blocks wo

 Unfortunately, this does not mal
when x or y Is the table. When x

rid

ntain Clear properly
IS the Table, this

action has the effect Clear(Table), but the table should

not become clear; and when y="
precondition Clear(Table), but t

"able, 1t has the

ne table does not have

to be clear for us to move a bloc

K onto It. To fix this,

we do two things. First we introduce another action to
move a block b from x to the table:

« Action (MoveToTable(b,x),
— Precond: On(b,x) AND Clear(b)

— Effect: On(b,Table) AND Clear(x) AND ~On(b,x))
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Blocks world

» Second, we take the interpretation of Clear(x) to be
“there 1s a clear space on x to hold a block.” Under this
Interpretation, Clear(Table) will always be true. The
only problem is that nothing prevents the planner from
using Move(b,x, Table) instead of MoveToTable(b,x),
which leads to a larger than needed search space,
though functionally iIs not problematic. We can fix this
by Introducing the predicate Block and add Block(b)
AND Block(y) to the precondition of Move.
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Planning In relation to other class modules

« \We have seen that planning and search are very intertwined for
robotics (e.g., Shakey implements A* search).

* Resemblance between Planning Domain Definition Language
and First Order Logic.

 Planning graph can be represented as a Satisfiability problem in
Conjunctive-Normal Form (conjunction (or AND) of clauses),
which Is an instance of constraint satisfaction.

 Certain Al planning models also solved by integer programming
http://www.cs.umd.edu/~nau/papers/vossen1999use.pdf
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Have cake and eat cake too

Init( Have( Cake))
Goal( Have(Cake) N FEaten(Cake))
Action(Fat( Cake)

PRECOND: Have(Cake)

EFFECT: - Have(Cake) A Faten(Cake))
Action(Bake( Cake)

PRECOND: — Have(Cake)

EFFECT: Have( Cake)

Figure 10.7  The “have cake and eat cake too” problem.




Planning graph

So S As S,

/ Bake(Cake)
Have(Cake) Have(Cake)

Have(Cake
X

- Have(Cake) — Have(Cake)

Eat(Cake)
Eaten(Cake) Eaten(Cake

Eat(Cake)

- Eaten(Cake)

— Eaten(Cake) - Eaten(Cake!

Figure 10.8  The planning graph for the ¢

\
‘have cake and eat cake too’ * problem up 10 level
S2. Rectangles indicate actions (sm

lu
all squares indicate persistence actions), and st
lines indicate preconditions and effects. Mutex links are shown as curved gray lines. Not &

mutex links are shown, because the graph would be too cluttered. In general, if two iter

are =Y ‘ ¥y > “‘
are mutex at .5;, then the persistence actions for those literals will be mutex at 4i and
need not draw that mutex link.
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Satisfiability

« A sentence (in logic) is satisfiable if it Is true in, or satisfied by,
some model. For example, the knowledge base, (R1 AND R2
AND R3 AND R4 AND R5), is satisfiable because there are
three models in which it s true.

« Satisfiability can be checked by enumerating the possible
models until one is found that satisfies the sentence. The
problem of determining the satisfiability of sentences in
propositional logic — the SAT problem—was the first problem
proved to be NP-complete. Many problems in computer science
(including the planning graph one, and integer programming)
are really satisfiability problems.
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Truth table for wumpus world

‘ B1 1 2, : 2 35 3 ' : R3 1y

_/fl/.\‘( | : false : rue | true | true
| false ; | false rue | false | true

false UE 2 | : true | false | true

false ue | 2 R : true | true | true
false - 5 o : ; true true | true

false r L L ' trive true true

false | false

f”/</ ' , |

LriLe L7 LriLe LriLe L1
l‘igllrc 19 A truth table constructe | 101 | ledee base given 11
if R, through 5 are true, whic h occul
right-hand column). In all 3 rows, /’
there might (or might not) be a pitin 12,

> 128 rows (the on
is {2 reisnopitin[1,2]. O




Homework for next class

« Chapter 13 from Russel/Norvig
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