
IJRECE VOL. 5 ISSUE 3 JULY.-SEPT. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 55 | P a g e

Optimization of Test Data By Flower Pollination Approach

In Structural Testing
Monika Thakur1, Sanjay2

Student, Dept. of Computer Science & Engg., Himachal Pradesh Technical University, Hamirpur, India

Assistant Professor, Dept. of Computer Science & Engg., Himachal Pradesh Technical University, Hamirpur,
India

Abstract— In this thesis work on test case convergence of test

case optimization by Ant colony approach and flower

pollination algorithm on eight different programs but as our

result analysis FPA P-value goes to more than 80% and

success rate 75% . it show that in test cases Flower pollination

algorithm.

I. INTRODUCTION

With information about the idea of the thing or organization

under test to give partners the software testing is examination

coordinated. To empower the business to recognize and grasp

the perils of software use the software testing can in like

manner give an objective, self-ruling point of view of the

software . With the point of finding software bugs (mistakes

or distinctive imperfections) the test methodology join the

route toward executing a program or application, and

watching that the software thing is fit for use. To survey no
less than one properties of interest the software testing

incorporates the execution of a software part or system

portion.

As a rule, these properties show the degree to which the part

or framework under test:

 Meets the necessities that guided its outline and

advancement,

 Responds accurately to a wide range of data sources,

 Performs its capacities inside a worthy time,

 Is adequately usable,

 Can be introduced and keep running in its proposed
surroundings, and

 Achieves the general outcome its partner's yearning.

For even fundamental software parts is essentially boundless

as the amount of possible test, for the open time and resources

all the software testing uses some framework to pick tests that

are feasible. Hence, with the objective of finding software

bugs (botches or distinctive defects) the software testing

conventionally (however not exclusively) attempts to execute

a program or application. When one bug is settled the work of

testing is an iterative methodology, more significant bugs, can

even make new ones, or it can illuminate other. About the idea
of software and risk of its failure to customers or benefactors,

the software testing can give objective, independent

information. At the point when executable software (paying

little mind to the likelihood that to a limited extent whole)

exist the software testing can be coordinated. The general way

to deal with software progression frequently chooses when

and how testing is driven. For example, in an arranged

strategy, most testing occurs after system requirements have

been described and after that realized in testable activities.

Alternately, under an Agile approach, essentials,
programming, and testing are often done at the same time.

Software Testing Methods:

White-box testing: White-box testing (generally called clear

box testing, glass box testing, direct box testing and

fundamental testing, by seeing the source code) tests internal

structures or workings of a program, instead of the helpfulness

exhibited to the end-customer. In white-box testing an internal
viewpoint of the system, and what's more programming

capacities, are used to design test cases. The analyzer picks

inputs to hone courses through the code and determine the

fitting yields. This is for all intents and purposes equal to

testing centers in a circuit, e.g. in-circuit testing (ICT).

Black-box testing:

Black-box testing sees the item as a "black box", taking a

gander at usefulness with no data of inside utilization, without
seeing the source code. The analyzers are quite recently aware

of what the item ought to do, not how it does it. Black-box

testing methods include: fairness distributing, regard

examination, all-sets testing, state move tables, decision table

testing, fuzz testing, model-based testing, use case testing,

exploratory testing and specification-based testing.

Visual testing:

The purpose of visual testing is to outfit engineers with the

ability to review what was happening at the reason for

programming dissatisfaction by displaying the data to such an
extent that the fashioner can without a lot of an extend find the

information she or he requires, and the information is

imparted clearly.

IJRECE VOL. 5 ISSUE 3 JULY.-SEPT. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 56 | P a g e

II. LITARATURE REVIEW

In [2] the fundamental ACO algorithm is transformed into
discrete form to produce test information for structural testing.

To start with, the specialized guide of joining the adjusted

ACO algorithm and test process together is presented.

Keeping in mind the end goal to enhance algorithm's
searching capacity and produce more differing test inputs, a

few techniques, for example, nearby exchange, worldwide

exchange and pheromone refresh are characterized and

connected. In [3] Search-Based Software Testing is the

utilization of a meta-heuristic upgrading search method, for

example, a Genetic Algorithm, to mechanize or halfway

robotize a testing undertaking; for instance the programmed

era of test information. Key to the optimization procedure is

an issue particular wellness work. The part of the wellness

work is to control the search to great arrangements from a

possibly unending search space, inside a commonsense time

confine. Work on Search-Based Software Testing goes back
to 1976, with enthusiasm for the region starting to assemble

pace in the 1990s. All the more as of late there has been a

blast of the measure of work. In [4] to close the crevice by

exploring the two perspectives in regards to the banquet and

cutoff points of test computerization. The scholarly

perspectives are considered with an efficient writing audit

while the experts sees are evaluated with an overview, where

it got reactions from 115 software experts. In [5]

Crowdsourcing middle people assume a key part in

crowdsourcing activities as they guarantee the association

between the crowdsourcing organizations and the group. Be
that as it may, the issue of how crowdsourcing go-betweens

oversee crowdsourcing activities and the related difficulties

has not been addresses by explore yet. It address these issues

by directing a contextual analysis with a German start-up

crowdsourcing mediator called testCloud that offers software

testing administrations for organizations planning to halfway

or completely outsource their testing exercises to a specific

group. In [6] to show and examine (some of) the best software

testing research performed since the year 2000. It is without a

doubt troublesome, if certainly feasible, to condense in any

entire way very nearly 15 years of research and refer to every

single important paper in a generally short report, for
example, this one. They in this manner did not endeavor to

cover every important subject and endeavors, but instead

concentrated on those that our partners and we thought were

especially applicable, had just had an extensive effect, or

appeared to probably have affect in the (close) future. In [7]

gives a complete review of ebb and flow ways to deal with the

prophet issue and an examination of patterns in this

imperative zone of programming testing exploration and

practice. In [8] the meaning of cloud testing was gotten from

the idea of cloud computing. It dissected the inquiries of

which programming testing undertakings can do the cloud
testing, why do clouds testing, how to do cloud testing. This

paper was an examination for the future programming testing

strategies. In [9] presents a way to deal with robotize the era

of such test-information. The test-information era depends on

the utilization of a dynamic streamlining based scan for the

required test-information. A similar approach can be summed

up to take care of other test-information era issues. In [10]
Genetic algorithms have been used to make test sets thusly by

means of looking through the space of the item for sensible

regards to satisfy a predefined testing measure. These criteria

have been set by the necessities for test educational

accumulation sufficiency of structural testing, for instance,

obtaining full branch scope and controlling the amount of

emphasess of an unexpected circle. In [11] starts with a

concise prologue to transformation investigation. It at that

point takes the peruser on a guided voyage through Mothra,

underscoring how it connects with the analyzer. At that point

it give a short exchange of Mothra's interior outline. Next, it

talked about some real issues with utilizing change
examination and talk about conceivable arrangements. It

closed by introducing an answer for one of these issues

another technique for naturally creating transformation

satisfactory test information.

III. METHODOLOGY

No No No

IJRECE VOL. 5 ISSUE 3 JULY.-SEPT. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 57 | P a g e

Step1: Take the source code.

Step2: In this step, do the static analysis of source code.

Step3: Initialized the FPA after the analysis.

Step4: When FPA is initialized pollination is started.

Step5: Error is minimized in this step.

Step6: Optimized the code.

Step7: If code is optimized the check coverage cretaration,

otherwise go to step4.

Step8: Check test case generation.

Step9: When test cases are checked then compare actual
coverage.

Step10: In final step, Analysis coverage and test case

generation.

Flower Pollination Algorithm:

min or max objective f(y), y = (y1, y2 , . . . , yd)

Initialize b flower or pollen gametes populace with irregular

solutions

Distinguish the best solution (g*) in the underlying populace

Express a switch probability p [0, 1]

While (t < Max Generation)

for i = 1 : n (all n blooms in the populace)

if rand < p,

Draw a (d-dimensional) step vector L from a Levy distribution

Global pollination by means of yi t+1 = yi t + L(g* - yi t)

else

Draw from a uniform distribution in [0,1]

Do local pollination by means of yi t+1 = yi
t + (yj t - yk t)

 end if

Evaluate new solutions

On the off chance that new solutions are better, refresh them

in populace

end for Find current best solution

end while

Yield the best solution acquired

IV. RESULTS

Table 1: Average coverage of Flower pollination algorithm

Average Coverage FPA

Data set Name X-Y(%) p-values

Bessj 1.34 2.76E-03

Calday 1.05 4.27E-03

Isvaliddate 3.05 2.76E-34

Cal 2.5 4.29E-41

Remainder 1.9 4.76E-21

Triangletype 2.12 1.57E+00

Computetax 5.62 7.23E-28

Printcalender 6.72 2.35E-105

Table 2: Average coverage of Ant Colony algorithm

Average

Coverage ACO

Data set Name X-Y(%) p-values

Bessj 0.48 1.76E-08

Calday 0.03 3.37E-11

Isvaliddate 2.3 1.58E-48

Cal 0.73 2.29E-41

Remainder 0.15 2.86E-23

triangletype 0.12 1.57E-01

Computetax 4.78 6.13E-65

Printcalender 5.54 1.59E-130

Graph 1: Comparison graph between the average coverage (p-

value) of FPA and ACO

0
1
2
3
4
5
6
7
8

B
es

sj

C
al

d
ay

is
va

lid
d

at
e

C
al

re
m

ai
n

d
er

tr
ia

n
gl

et
yp

e

C
o

m
p

u
te

ta
x

P
ri

n
tc

al
en

d
er

p-values

Data Set

Average Coverage

FPA

ACO

IJRECE VOL. 5 ISSUE 3 JULY.-SEPT. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 58 | P a g e

Graph 2: Comparison graph between the average coverage (X-

Y) of FPA and ACO

Table 3: Success rate of FPA

Success Rate

Data set Name X-Y(%) p-values

Bessj 3.5 1.04E-05

Calday 2.04 8.11E-04

isvaliddate 4.9 8.70E-20

Cal 5.7 9.68E-25

remainder 3.2 3.42E-15

triangletype 1.85 1.24E+00

Computetax 10.2 3.44E-05

Printcalender 81.02 6.1342-124

Table 4: Success rate of ACO

Graph 3: Comparison between success rate (p-value) of FPA

and ACO

Graph 4: Comparison between success rate (X-Y) of FPA and

ACO

V. REFERENCES

[1]. https://en.wikipedia.org/wiki/Software_testing.
[2]. Mao, Chengying, et al. "Adapting ant colony optimization to

generate test data for software structural testing." Swarm and

Evolutionary Computation 20 (2015): 23-36.
[3]. McMinn, Phil. "Search-based software testing: Past, present and

future." Software testing, verification and validation workshops
(icstw), 2011 ieee fourth international conference on. IEEE,
2011.

[4]. Rafi, Dudekula Mohammad, et al. "Benefits and limitations of
automated software testing: Systematic literature review and
practitioner survey." Proceedings of the 7th International

Workshop on Automation of Software Test. IEEE Press, 2012.

0
1
2
3
4
5
6
7
8

B
es

sj

C
al

d
ay

is
va

lid
d

at
e

C
al

re
m

ai
n

d
er

tr
ia

n
gl

et
yp

e

C
o

m
p

u
te

ta
x

P
ri

n
tc

al
en

d
er

X-Y(%)

Data sets

Average Coverage

FPA

ACO

0
2
4
6
8

10
12

B
es

sj

C
al

d
ay

is
va

lid
d

at
e

C
al

re
m

ai
n

d
er

tr
ia

n
gl

et
yp

e

C
o

m
p

u
te

ta
x

P
ri
n
tc
al
en

d
…

p-values

Data set

Sucess Rate

FPA

ACO

0
10
20
30
40
50
60
70
80
90

B
es

sj

C
al

d
ay

is
va

lid
d

at
e

C
al

re
m

ai
n

d
er

tr
ia

n
gl

et
yp

e

C
o

m
p

u
te

ta
x

P
ri

n
tc

al
en

d
er

X-Y(%)

Data Set

Sucess Rate

FPA

ACO

Success Rate

Data set Name X-Y(%) p-values

Bessj 2 9.41E-06

Calday 0.4 7.21E-12

isvaliddate 4.5 7.51E-45

Cal 3.5 8.48E-49

remainder 1.4 2.32E-26

triangletype 0.6 1.57E-01

Computetax 8.7 2.63E-35

Printcalender 79.1 4.9586-154

https://en.wikipedia.org/wiki/Software_testing

IJRECE VOL. 5 ISSUE 3 JULY.-SEPT. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 59 | P a g e

[5]. Zogaj, Shkodran, Ulrich Bretschneider, and Jan Marco
Leimeister. "Managing crowdsourced software testing: a case
study based insight on the challenges of a crowdsourcing
intermediary." Journal of Business Economics 84.3 (2014): 375-
405.

[6]. Orso, Alessandro, and Gregg Rothermel. "Software testing: a
research travelogue (2000–2014)." Proceedings of the on Future
of Software Engineering. ACM, 2014.

[7]. Harman, Mark, et al. "A comprehensive survey of trends in
oracles for software testing." University of Sheffield,
Department of Computer Science, Tech. Rep. CS-13-01 (2013).

[8]. Jun, Wang, and Fanpeng Meng. "Software testing based on
cloud computing." Internet Computing & Information Services

(ICICIS), 2011 International Conference on. IEEE, 2011.
[9]. Tracey, Nigel, et al. "An automated framework for structural

test-data generation." Automated Software Engineering, 1998.
Proceedings. 13th IEEE International Conference on. IEEE,
1998.

[10]. Jones, Bryan F., H-H. Sthamer, and David E. Eyres.
"Automatic structural testing using genetic
algorithms." Software Engineering Journal 11.5 (1996): 299-
306.

