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Abstract : One critical factor that influences the structural 

integrity of the boiler and has to be well understood is the wall 

temperature. It has to be predicted and modeled perfectly to 

ensure a safe and reliable operation. In this work, an expert 

system has been formulated and presented for prediction of 

wall temperatures of boiler tubes. Two Artificial Neural 

Network (ANN) models have been formulated to predict the 

wall temperature. One model uses a Feed Forward Back 

Propagation Neural Network, while the other model is based 
on Cascade Forward Back Propagation Neural Network. The 

system is modeled on inputs like internal tube diameter, 

pressure inside the boiler tubes, heat flux, mass flux and bulk 

fluid temperature. The results of the proposed models are 

validated against the results of experimentation and also been 

validated by calculating the Normalized Root Mean Square 

(NRMS) value between the experimental value and the 

temperature predicted by the proposed model. The results 

exhibit a closer correlation with values of experimentation and 

are quantified through RMSE and NRMSE. The results are 

further validated through Pearson correlation coefficient.   The 

results demonstrate the suitability of the proposed approach in 
predicting wall temperature. 

 

Key words – wall temperature, supercritical, ANN, expert 

system.  

 

I. INTRODUCTION 

Energy is the essence behind economic development of any 

nation. The growth index of any country is influenced by its 

energy means and how the needs are satisfied. The world as 

such is going through a transformation with a rapid phase of 

development happening in different countries. The speed of 
the development and the volume of development is fueling the 

need for more energy. It is becoming imperative to quench 

this ever increasing demand for energy. The only way to do 

this is to increase the energy supply to satisfy the demand. In 

spite of the developments in renewable and alternate sources 

of energy, steam still remains the primary prime mover. The 

concerns about the climate change and the necessity to shift to 

alternate sources of energy may have underlined the 

importance of renewable energy but they have not impacted 

the conventional forms of energy generation greatly. Heat 

transfer of water at super critical pressure has remained one of 

the active areas of research. It is primarily due to this fact that 

it is important to understand the behavior of water at 

supercritical pressures so that we can ensure optimal design 

and safe operation of systems at supercritical pressure. This is 

more complicated by the fact that the Thermo-physical 

properties exhibit random and rapid changes there by 

rendering the heat transfer of supercritical pressure water 

flowing inside a tube a unique one [1,2]. It is important to 

predict the metal temperature for such complex heat transfer 
conditions. In most of the conventional approaches to predict 

metal temperature, usually experimentation is conducted for a 

desired range and a variety of influencing parameters. These 

parameters include fluid pressure, temperature, heat flux, mass 

flux, tube inner diameter etc. Also in an experimental setup 

the metal temperature at different / each combination of these 

parameters are usually measured. Typically experimental 

Nusselt Number is calculated using heat flux and the 

difference between inner wall and fluid temperature. In 

addition to this non – dimensional Reynolds Number and 

Prandtl Number are also computed for corresponding fluid 

parameters and flow conditions. Based on these numbers, an 
experimental correlation is developed which is subsequently 

used for predicting the metal temperature for a given 

condition. This is a very complex process which involves lots 

of data reduction and calculations for ensuring correlation 

from these experiments. Also there is a chance of 

computational errors and other possible inaccuracies creeping 

into the process. Similarly, there are different experimental 

formulae that can possibly be chosen depending upon a 

particular range of operating parameter. In addition to this, 

most of these experimental formulations have been based on 

linear assumptions and most of which may not be suitable in a 
highly non – linear situation experienced in supercritical heat 

transfer. Another way of predicting metal temperature is 

Analytical Models. Unfortunately, Analytical Models for 

predicting heat transfer encountered in a supercritical 

turbulent flow have a very limited scope. This is due to the 

fact that the complex nature of the flow and abrupt changes in 

fluid properties render the analytical models less effective. 

This is also complicated by the fact that heat transfer behavior 

at supercritical condition is much different and cannot be 

correlated to the changes in wall temperature. Since the 

prediction of wall temperature using Analytical route is not 
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reliable and using the experimentation setup is complex, it is 

imperative to engineer methods that can predict the wall 

temperatures accurately with enough robustness and 

reliability. In this work, an expert system that uses two ANN 

models one based on Feed Forward Back Propagation Neural 

Network and other based on Cascade Forward Back 

Propagation Neural Network to predict the wall temperature 

of metal tubes used in supercritical boilers is presented. The 

training data set for the proposed ANN model has been drawn 

from different experimentations conducted for different tube 

diameters, heat flux, mass flux, pressure and fluid bulk 
temperature. The experimental results presented in [6, 19, 20] 

are harvested and used as training data set for the ANN 

models. The heterogeneous nature of the data set has rendered 

the model the ability to deliver better prediction of fluid wall 

temperature. The proposed ANN model considers the tube 

internal diameter, pressure of the fluid, heat flux and mass 

flux as inputs to predict the tube wall temperature. The results 

of the proposed system are validated by comparing with 

experimentation results available in [6, 19, and 20] 

 

II. STATE OF ART OF SUPERCRITICAL BOILERS 

 
In the quest for efficiency enhancement in energy conversion, 

supercritical fluids are attractive options. Schuster et al. [3] 

have investigated the supercritical Organic Rankine Cycles 

(ORC), which primarily use the low-temperature heat sources 

(such as geothermal energy, solar desalination and waste heat 

recovery) and the supercritical organic fluids. The thermal 

efficiency is improved by more than 8%, compared with the 

subcritical state. Chen et al.[4]  have proposed a supercritical 

Rankine Cycle (SRC) based on zeotropic mixture working 

fluids, which shows 10 -30% enhancement in the thermal 

efficiency over the conventional subcritical ORC.For 
supercritical fluids, often the Brayton or supercritical Rankine 

cycle is suggested. In both the cycles, either heat rejection or 

heat addition takes place at constant pressure in the near-

critical region (Feher [5]). This region is prone to heat transfer 

deterioration due to the abrupt changes of thermophysical 

properties, as evidenced by the erstwhile experiments tracing 

back to the 1960s (Swenson et al, [1]; Ackerman, [25]; 

Yamagata et al [6]; Hall and Jackson, [7]). The tube wall 

temperature significantly increases due to the poor heat 

transfer between the tube wall and the bulk fluid. The heat 

transfer deterioration not only reduces the thermal efficiency 

but also presents a threat to the safety of the system. 
Therefore, prior identification of such a problem will help the 

engineers to mitigate it. Along this direction, advanced 

correlations considering non-constant properties have been 

developed based on the experimental data (Krasnoshchekov 

and Protopopov [8], Bishop et al. [9] Jackson [10] ) and are 

still extensively used after half a century. Large efforts have 

been made in the past to predict the heat transfer of 

supercritical water and CO2 with CFD (Heet al [11]; 

Pucciarelli et al [12]; Zhang et al., [13]). However, CFD 

studies using turbulence models seem to be unreliable at the 

supercritical pressure. Recently, Artificial Neural Networks 

(ANN) has received overwhelming attention 

(Schmidhuber,[14] Deng and Yu,[15]). Among the limited 

studies that investigate heat transfer of supercritical fluids 

with ANNs, most target supercritical CO2. A multi-layer feed 

forward neural network has been developed in Scalabrin and 

Piazza [16] for forced convection heat transfer to supercritical 

CO2. An ANN is proposed in Pesteei and Mehrabi [17] for 
calculating local heat transfer coefficient of supercritical CO2 

in a vertical tube with the diameter of 2 mm at low Reynolds 

numbers (<2500). In a paper by Dhanuskodi et al. [18]  an 

ANN is trained with in-house experimental data for a 

supercritical boiler design. The authors report 100% 

prediction accuracy for the training data at a deviation level of 

± 7 ◦ C, which drops to about 80% in the validation. 

Experimental, numerical and analytical methods are complex, 

cumbersome and time consuming. Models based on historical 

data have widely been used in different domains of science 

and technology for forecasting and prediction.  

 
III. DATA SET 

The data set that is required for training has been obtained 

from different experimental results available in the literature. 

The experimental conditions along with the test parameters 

and Tube inner diameter applicable for each experimentation 

were individually tabulated and subsequently used for training 

the Artificial Neural Network (ANN) .The different 

experimentations used for forming the data set can be listed as 

below –  

 

a. Experiments of Vikherv et. al [19] 
b. Experiments of Yamagata et. al [6] 

c. Experiments of Loewenberg et. al [20] 

 

a. Experiments of Vikherv et. al  [19]  

Two sets of data were populated from this experimentation. 

The Bulk Fluid Temperature was correlated with Inner Wall 

Temperature (oC) for two different set of test conditions. For 

Test Condition – 1, a tube Inner Wall Diameter (ID) of 20.4 

mm, the Pressure (P) of 265 bar, Heat Flux (q) of 570 KW/m2, 

Mass Flux (G) of 495 Kg/m2s were selected. For Test 

Condition – 2, the Tube Inner Wall Diameter and Pressure 

were maintained same as that of Condition – 1 while the Heat 
Flux (q) of 1160 KW/m2 and the Mass Flux (G) of 1400 

Kg/m2s were opted.  

 

b. Experiments of Yamagata et. al  [6] 

Yamagata et. al performed experiments under two different 

operating conditions. For Test Condition – 1, a tube Inner 

Wall Diameter (ID) was 7.5 mm, the Pressure (P) was 245 
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bar, Heat Flux (q) was 233 KW/m2, Mass Flux (G) was 1260 

Kg/m2s. For Test Condition – 2, the Tube Inner Wall 

Diameter and Pressure are same as that of Condition – 1 while 

the Heat Flux (q) was 930 KW/m2 and the Mass Flux (G) was 

1260 Kg/m2s. For this experimentation, the Bulk Fluid 

Temperature was considered between 340 oC to 380 oC.  

 

c. Experiments of Loewenberg et. al [20] 

Experiments were conducted under two different operating 

conditions and two sets of data were obtained.  A tube Inner 

Wall Diameter (ID) of 20 mm, the Pressure (P) of 250 bar, 
Heat Flux (q) of 300 KW/m2, Mass Flux (G) of 1000 Kg/m2s 

were considered for Test Condition – 1. The tube Inner Wall 

Diameter (ID) was same as that of Test Condition – 1 while a 

Pressure (P) of 235 bar, Heat Flux (q) of 1200 KW/m2, Mass 

Flux (G) of 2250 Kg/m2s were considered for Test Condition 

– 2. The experiments were carried out for Bulk Fluid 

Temperature variation from around 270 oC to 410 oC.  

 

IV. PROPOSED  PREDICTION  MODEL 

Artificial neural networks are biologically inspired; they are 

composed of elements that perform in a manner that is 

analogous to the most elementary functions of the biological 
neuron. The important characteristics of artificial neural 

networks are learning from experience; generalize from 

previous examples to new ones, and abstract essential 

characteristics from inputs containing irrelevant data. Neural 

networks commonly have three layers: input, hidden, and 

output layers as shown in Figure 1. The numbers of nodes in 

each layer varies and are user-dependent [21]. The input 

variables can be PV array parameters like VOC and ISC, 

atmospheric data like irradiance and temperature, or any 

combination of these. The output is usually one or several 

reference signal(s) like a duty cycle signal used to drive the 

power converter to operate at or close to the MPP. How close 

the operating point gets to the MPP depends on the algorithms 

used by the hidden layer and how well the neural network has 

been trained 

 
Figure (1):  A Simple Neural Network illustration 

An artificial neural network (ANN) includes selection of 

inputs, outputs, network topology and weighed connection of 

node. Input features will correctly reflect the characteristics of 

the problem. Another major work of the ANN design is to 

choose network topology. This is done experimentally through 

a repeated process to optimize the number of hidden layers 

and nodes according to training and prediction accuracy. In 

this work two types of neural networks are considered ANN 

model-1 uses a Feed Forward Back Propagation Neural 
Network illustrated using figure 2, while ANN model- 2 is 

based on Cascade Forward Back Propagation Neural Network 

illustrated using figure 3. The details of the ANN used this 

work is list in the table 1. 

 
Figure (2): ANN Model -1 employing Feed Forward Back Propagation Neural Network 
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Figure (3): ANN Model -2 employing Cascade Forward Back Propagation Neural Network 

 

Table 1: Details about the ANN model used in this work 

 ANN Model-1 ANN Model-2 

1 Number of Neurons in the Input 5 5 

2 Number of Neurons in the Hidden Layer 50 10 

3 Type of  Neural Network Feed Forward Back 

Propagation 

Cascade Forward Back 

Propagation 

4 Activation function used for the input layer tansig tansig 

5 Activation function used for the output 

layer 

purelin purelin 

6 Training  function trainlm 

Levenberg-Marquardt 

(LM) optimization. 

trainlm 

Levenberg-Marquardt (LM) 

optimization. 

 

The proposed prediction model considered 5 inputs in the 

form of the Bulk Fluid Temperature (BFT), Inner Wall 

Diameter (ID Pressure (P), Heat Flux (q) and Mass Flux (G). 

Wall temperature is predicted based on these inputs. 

Regression plot, which shows the relationship between the 

outputs of the network and the targets, is depicted in Figure 4 

while the performance plot is depicted in Figure 5. The dashed 

line in each axis represents the perfect result – outputs = 
targets. The solid line represents the best fit linear regression 

line between outputs and targets. The R value is an indication 

of the relationship between the outputs and targets. If R = 1, 

this indicates that there is an exact linear relationship between 

outputs and targets. If R is close to zero, then there is no linear 

relationship between outputs and targets. From Figure 4  it can 

be observed that R values are above 0.9 and close to 1 

indicating a liner relationship pointing to an accurate fit and 

subsequently better prediction.  

 

Figure (4): Regression Plot of ANN Model -2 
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Figure (5): Performance Plot of ANN Model -2 

 
V. RESULTS AND DISCUSSION 

The forecasting model is coded using Matlab R 2012 b and 

the simulations are run in a Pentium i3 system with a RAM of 

4 GB. For the experiments of Vikherv et. al [6] the  data 

points that are considered for prediction and the results of the 

prediction using the proposed model is tabulated using table 2 

and table 3. For the experiments of Yamagata et. al [6]  the  

data points that are considered for prediction and the results of 

the prediction using the proposed model is tabulated using 

table 4 and table 5. For the experiments of Loewenberg et. al  

[20] the  data points that are considered for prediction and the 

results of the prediction using the proposed model is tabulated 

using table 6 and table 7. It is observed that, the predicted wall 

temperatures using proposed models are very close to 

experimental values. It is worth full to note that, the % Error is 

low at high temperature and high at low temperature.  Further 

the proposed model is quantified by calculating Root Mean 

Square Error (RMSE) (also called the root mean square 

deviation, RMSD) and Normalized Root Mean Square Error 

(NRMSE). The ANN model -2 shown better performance than 

ANN Model -1 

 

 
Table 2: Results of wall temperature prediction for experimental data set 1 of Vikherv et. al [19] 

 

Tube Internal Diameter ( ID) = 20.4 mm, Pressure (P) =265 bar, Heat Flux (q) =570 KW/m2, Mass Flux (G) =495 

Kg/m2s 

S.No Bulk Fluid Temperature 

(oC) 

Wall Temperature 

Experimental 

(oC) 

Wall Temperature 

predicted using ANN 

Model 1 
(oC) 

Wall Temperature 

predicted using ANN 

Model 2 
(oC) 

1 62 226.68 232.56 231.67 

2 108 246.59 251.98 250.32 

3 248 362.07 368.34 365.53 

4 285 387.51 390.71 390.23 

5 330 451.26 455.86 453.23 
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Table 3: Results of wall temperature prediction for experimental data set 2 of Vikherv et. al [19] 

 

Tube Internal Diameter ( ID) = 20.4 mm, Pressure (P) =265 bar, Heat Flux (q) =1160 KW/m2, Mass Flux (G) =1400 

Kg/m2s 

S.No Bulk Fluid Temperature 

(oC) 

Wall Temperature 

Experimental 

(oC) 

Wall Temperature 

predicted using ANN 

Model 1 

(oC) 

Wall Temperature 

predicted using ANN 

Model 2 

(oC) 

1 148 259.14 264.65 263.98 

2 225 320.16 329.26 327.54 

3 358 458.67 456.73 454.87 

4 395 513.26 516.72 514.99 

5 405 551.26 553.86 553.12 

Table 4: Results of wall temperature prediction for experimental data set 1 of Yamagata et. al [6] 

 

Inner Wall Diameter (ID) :7.5 mm,  Pressure (P) :245 bar, Heat Flux (q) :233 KW/m2, Mass Flux (G) =1260 Kg/m2s 

S.No Bulk Fluid Temperature 

(oC) 

Wall Temperature 

Experimental 

(oC) 

Wall Temperature 

predicted using ANN 

Model 1 

(oC) 

Wall Temperature 

predicted using ANN 

Model 2 

(oC) 

1 335 350 356.65 354.38 

2 350 358 361.72 360.79 

3 393 385 382.98 381.90 

4 400 391 394.13 393.87 

5 405 399 401.99 401.82 

 

Table 5: Results of wall temperature prediction for experimental data set 2 of Yamagata et. al [6] 
 

Inner Wall Diameter (ID) :7.5 mm,  Pressure (P) :245 bar, Heat Flux (q):930KW/m2, Mass Flux (G) =1260 Kg/m2s 

S.No Bulk Fluid Temperature 

(oC) 

Wall Temperature 

Experimental 

(oC) 

Wall Temperature 

predicted using ANN 

Model 1 

(oC) 

Wall Temperature 

predicted using ANN 

Model 2 

(oC) 

1 341 392 394.12 393.19 

2 358 400 401.87 400.93 

3 376 411 415.68 414.83 

4 380 419 421.46 421.21 

5 382 421 422.85 422.28 

 

Table 6: Results of wall temperature prediction for experimental data set 1 of Loewenberg et. al [20] 

 

Inner Wall Diameter (ID) : 20 mm, the Pressure (P) :250 bar, Heat Flux (q) : 300 KW/m2, Mass Flux (G) : 1000 

Kg/m2s 

S.No Bulk Fluid Temperature 

(oC) 

Wall Temperature 

Experimental 

(oC) 

Wall Temperature 

predicted using ANN 

Model 1 

(oC) 

Wall Temperature 

predicted using ANN 

Model 2 

(oC) 

1 273 300 308.12 307.68 

2 312 334 337.21 337.07 

3 381 384 392.23 391.88 

4 385 399 405.54 404.21 
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5 406 427 430.76 431.23 

Table 7:  Results of wall temperature prediction for experimental data set 1 of 
Loewenberg et. al [20] 

 

Inner Wall Diameter (ID) : 20 mm, the Pressure (P) :235 bar, Heat Flux (q) : 1200 KW/m2, Mass Flux (G) : 2250 

Kg/m2s 

S.No Bulk Fluid Temperature 

(oC) 

Wall Temperature 

Experimental 

(oC) 

Wall Temperature 

predicted using ANN 

Model 1 

(oC) 

Wall Temperature 

predicted using ANN 

Model 2 

(oC) 

1 273 321 325.67 324.88 

2 370 396 399.11 398.76 

3 382 402 405.34 405.01 

4 390 433 438.36 437.24 

5 407 467 469.18 467.37 

  
Figure (6): RMSE for the proposed prediction model for different data sets for the two ANN models 

 

 

 

The Root Mean Square Error (RMSE) (also called the root 

mean square deviation, RMSD) is a frequently used measure 

of the difference between values predicted by a model and the 
values actually observed from the environment that is being 

modeled. These individual differences are also called 

residuals, and the RMSE serves to aggregate them into a 

single measure of predictive power.  

The RMSE of a model prediction with respect to the estimated 

variable Xmodel is defined as the square root of the mean 

squared error: 

 

n

XX
RMSE

n

i
idelmoiobs 


 1

2
,, )(

       (1) 

Where Xobs is observed values and Model is modeled values at 

time/place i. 

 

The RMSE for the prediction model is illustrated using the 

figure 6, it can be inferred from the figure that for all the data 
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sets that have been tested the RMSE error is below 10 oC  

Similarly it can be observed the least RMSE value is 2.16 oC  

while the highest being 6.33 oC 

 

 

In order to further validate the proposed model since the data 

points considered are of different range and heterogeneous, 

Normalized Root Mean Square Error (NRMSE). In this work 

the  RMSE is normalized to the range of observed value and is 

given as; 

     
(2) 

 

 

The NRMSE % as illustrated using figure 7 also validates the 

performance of the proposed approach. 

It can also be observed from the measurements that 

average RMSE, for all the data sets for prediction using ANN 

model -1 is  4.57 oC and for ANN model -2 it stands at 3.74 
oC. Similarly the average NRMSE % for ANN model-1 is 

4.95 % and ANN model -2 is 3.99% 

 

The performance of the proposed model is also 
evaluated using Pearson correlation coefficient (r) Correlation 

– often measured as a correlation coefficient . This indicates 

the strength and direction of a linear relationship between two 

variables (for example model output and observed values). 

The Pearson product-moment correlation coefficient (also 

called Pearson correlation coefficient or the sample correlation 

coefficient), is obtained by dividing the covariance of the two 

variables by the product of their standard deviations. The 

Pearson product-moment correlation coefficient can be used to 

estimate the correlation between model and observations.  The 

Pearson product-moment correlation is represented using 

equation (3) 

 

                  (3) 

The correlation is +1 in the case of a perfect increasing linear 

relationship, and -1 in case of a decreasing linear relationship, 

and the values in between indicates the degree of linear 

relationship between for example model and observations. A 

correlation coefficient of 0 means the there is no linear 

relationship between the variables. The Pearson product-

moment for the three methods discussed here are presented in 

the figure 8. From the figure (8) it can be inferred that the 

Pearson product-moment correlation is higher for the 

proposed method validating the veracity of the proposed 

approach in predicting the wall temperature that correlates 

well with experimental value. 

 
Figure (7): NRMSE % for the proposed prediction model for different data sets for the two ANN 

models 
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Figure (8): Plot of Pearson correlation coefficient for the two ANN models 

 

VI. CONCLUSION 

In this work, a prediction model based on ANN has been 

designed and presented. Since the model was trained using 

heterogeneous data derived from different experimentations, it 

was able to successfully capture the nonlinear variation of 

tube wall temperature. This has been clearly demonstrated and 

can be inferred through comparative analysis of the results. 
The proposed approach has delivered results with a lesser 

error % captured using NRMSE and that are closer to results 

of experimentation. It can be inferred from the results, that 

though both model deliver a satisfactory prediction, the ANN 

model -2 delivers a slightly better prediction as quantified 

through average RMSE and NRMSE. The results of Pearson 

correlation coefficient also demonstrate the performance of 

the proposed model. 
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