This pneumatically operated beam stop was designed by ADC. The water cooled copper block will absorb an undulator white beam with a peak heat flux (in a plane perpendicular to the beam propagation) of 155 W/mm² and total power delivery into the copper of 2 kW. Surfaces of the copper block struck by the beam are sloped at 6° relative to the beam axis in order to reduce the flux intensity at the surfaces. Four inches of vertical acceptance are provided to allow the block to stop either the white beam, pink beam, or one of two monochromatic beams to be used, each of which runs at a different height in the flight path tube. The horizontal acceptance of the block is 1 inch, and the travel is adjustable within the 5 inch maximum stroke of the pneumatic piston using the hard stop bolts. Water cooling is provided by two coaxial tube circuits, one into each half of the copper block. These circuits could be tied together, or connected individually to the facility cooling system, and numerous connection fitting options could easily be substituted. The pneumatic cylinder requires a minimum of 40 psi supplied pressure, and connects with ½” NPT female ports. It has built-in flow adjustment valves. Two sets of position sensing switches are provided for redundancy. The chamber consists of a 6-way cross with 8 inch CF flanges, and the additional openings can be fitted with view ports, pumps, or other instrumentation, or simply capped. Advantages of the design include: robust construction, an extra-long bellows to extend its lifetime, pneumatic actuation which fails closed, and modularity which allows maintenance without removing the chamber from the beamline.