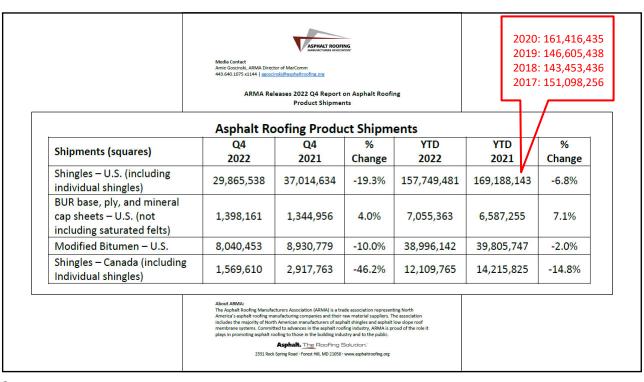
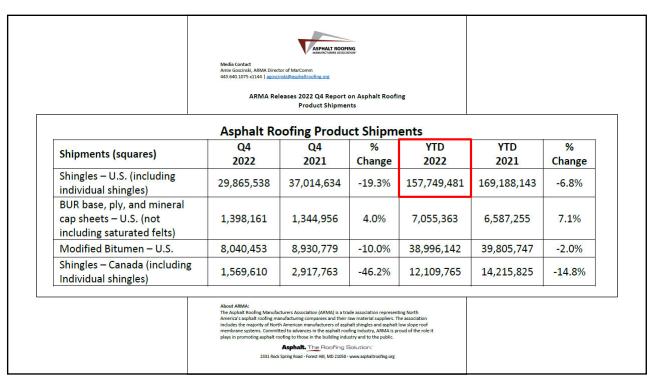


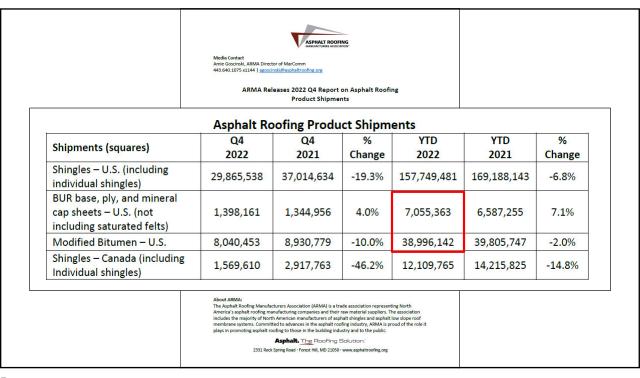
Project Manager/Estimator Meeting

Oglebay Resort, Wheeling, WV March 24, 2023

Emerging Technical Issues and Risks

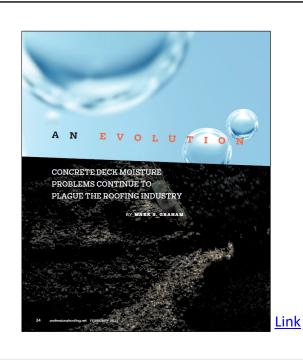



Mark S. Graham


Vice President, Technical Services National Roofing Contractors Association Rosemont, Illinois


1

Market condition update



Participate in the quarterly survey...

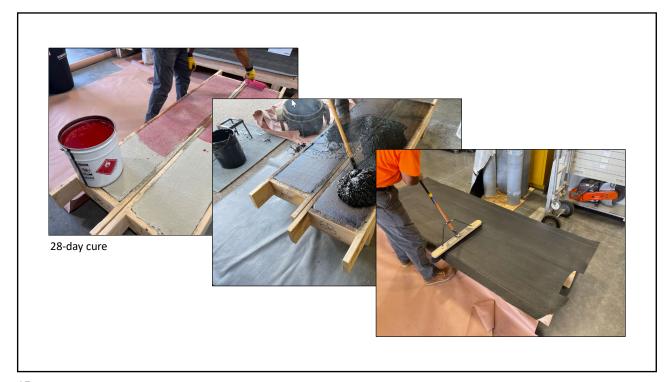
9

Moisture-related issues with concrete roof decks

<u>Professional Roofing</u> February 2022

11

NRCA recommends designers specify an adhered vapor retarder... but isn't adhesion of the vapor retarder still a concern?


Vapor retarder adhesion testing

Moisture-related issues with concrete roof decks

13

What we tested... Vapor retarder adhesion testing

- 2-ply asphalt BUR membrane
- Manufacturer A-SA vapor retarder
- Manufacturer B-SA vapor retarder
- Manufacturer C-SA vapor retarder
- Manufacturer D-SA vapor retarder

Sample conditioning

After vapor retarder application; 28 days after concrete placement

- Conditioned for 60-days
- One set of each at standard laboratory conditions
- Other set of each at a 30 F temperature differential
 - The temperature differential creates an upward vapor pressure drive

Test results Vapor retarder adhesion

Sample	Tested pull resistance		Difference	
	Lab. conditions 60-day conditioning (Average of 5 specimens)	Vapor drive 60-day conditioning (Average of 5 specimens)	Differential	Percent differential
2-ply built-up membrane	1,421 psf	833 psf	-588 psf	-41%

Conclusions

Vapor retarder adhesion


- Results vary
- For 4 of 5 samples, vapor drive conditioning resulted in lower values, but Manufacture 3-SA VR is higher
- All results greater than 90 psf (i.e., FM 1-90)

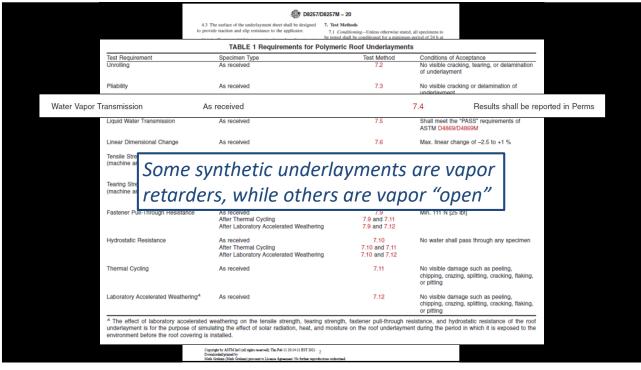
19

Recommendations

Vapor retarder adhesion

- Designers should specify vapor retarders after considering vapor retarder adhesion both at the time of application and inservice.
- Manufacturers should incorporate some form of vapor drive conditioning assessment in their product development and assessment, and make that information available to specifiers.
- The vapor drive conditioning used in this testing is one possible assessment method.

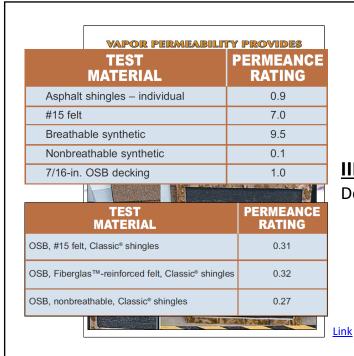
Synthetic underlayment



ASTM D8257, "Standard Specification for Mechanically Attached Polymeric Roof Underlayment Used in Steep Slope Roofing"

Published in December 2020

23



Measurement of a vapor retarder's effectiveness

Classification	Permeance ¹
Class I vapor retarder	0.1 perm or less
Class II vapor retarder	1.0 perm or less and greater than 0.1 perm
Class III vapor retarder	10 perm or less and greater than 1.0 perm
¹ Permeance determined accordin	g to ASTM E-96 Test Method A (the

¹ Permeance determined according to ASTM E-96 Test Method A (the desiccant method or dry cup method)

<u>IIBEC (formerly RCI) Interface</u> December 2011

27

ASTM E96, "Standard Test Methods for Gravimetric Determination of Water Vapor Transmission Rate of Materials"

ASTM E96 Procedure A results

NRCA permeance testing of asphalt shingle roof assemblies

Sample	Water vapor permeance (Perms)
7/16" OSB sheathing	1.4
15/32" CDX plywood sheathing	0.9

29

ASTM E96 Procedure A results -- continued

NRCA permeance testing of asphalt shingle roof assemblies

Sample	Water vapor permeance (Perms)
Non-breathable synthetic underlayment	0.02
Breathable synthetic underlayment	0.5

ASTM E96 Procedure A results -- continued

NRCA permeance testing of asphalt shingle roof assemblies

Sample	Water vapor permeance (Perms)
Non-breathable synthetic underlayment over 7/16" OSB sheathing	0.03
Non-breathable synthetic underlayment over 15/32" CDX plywood sheathing	0.05
Breathable synthetic underlayment over 7/16" OSB sheathing	0.50
Breathable synthetic underlayment over 15/32" CDX plywood sheathing	0.22

31

ASTM E96 Procedure A results -- continued

NRCA permeance testing of asphalt shingle roof assemblies

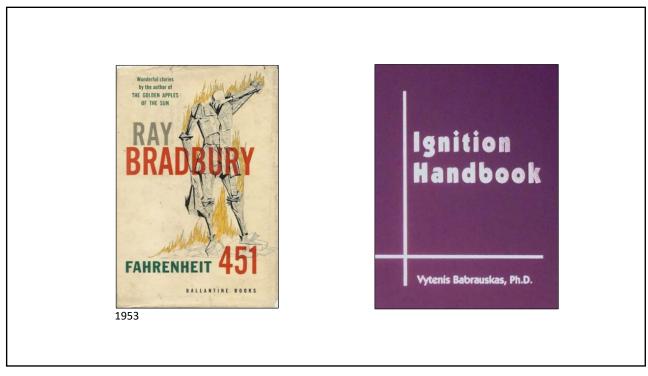
Sample	Water vapor permeance (Perms)
Laminated asphalt shingle over non-breathable synthetic underlayment over 7/16" OSB sheathing	0.05
Laminated asphalt shingle over non-breathable synthetic underlayment over 15/32" CDX plywood sheathing	0.04
Laminated asphalt shingle over breathable synthetic underlayment over 7/16" OSB sheathing	0.40
Laminated asphalt shingle over breathable synthetic underlayment over 15/32" CDX plywood sheathing	0.09

ASTM E96 Procedure A results -- continued

NRCA permeance testing of asphalt shingle roof assemblies

Sample	Water vapor permeance (Perms)
Laminated asphalt shingle over non-breathable synthetic underlayment	0.05
over 7/16" OSB sheathing	0.10 with nail
Laminated asphalt shingle over non-breathable synthetic underlayment	0.04
over 15/32" CDX plywood sheathing	0.10 with nail
Laminated asphalt shingle over breathable synthetic underlayment	0.40
over 7/16" OSB sheathing	0.50 with nail
Laminated asphalt shingle over breathable synthetic underlayment	0.09
over 15/32" CDX plywood sheathing	0.18 with nail

33


"Preliminary" conclusions

NRCA permeance testing of asphalt shingle roof assemblies

- There is a potential for condensation development at the roof deck level when using synthetic underlayment
- Functional below-deck ventilation is (even more) important for mitigating condensation development at the roof deck level when using synthetic underlayment

MRCA/NRCA ignition temperature research

35

Some known roof application temperatures

Mopping bitumen:

• EVT: 375 F to 455 F (typ.)

• Flash point: 525 F (min.)

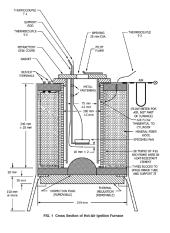
Hot-air welding:

Equipment settings up to 600 C (1,112 F)

Torch application:

• Blue flame: 3,596 F

• Yellow/orange flame: 1,800 F


37

4. Significance and Use

- 4.1 Tests made under conditions herein prescribed can be of considerable value in comparing the relative ignition characteristics of different materials. Values obtained represent the lowest ambient air temperature that will cause ignition of the material under the conditions of this test. Test values are expected to rank materials according to ignition susceptibility under actual use conditions.
- 4.2 This test is not intended to be the sole criterion for fire hazard. In addition to ignition temperatures, fire hazards include other factors such as burning rate or flame spread, intensity of burning, fuel contribution, products of combustion,

ASTM D1929, "Standard Test Method for Determining Ignition Temperature of Plastics"

ASTM D1929 results

Sample	Test result
Extruded polystyrene	865 F
HD polyiso with glass facer	865 F
Wood fiberboard	875 F
Polyiso with coated glass facer	895 F
Perlite board	905 F
Expanded polystyrene	910 F
Polyiso with cellulose/glass facer	920 F
Cellular glass with facer	965 F
Mineral fiber board	1,040 F
Gypsum-fiber board	Greater than 1,740 F
Gypsum board with coated fiberglass facer	Greater than 1,740 F
Cellular glass (no facer)	Greater than 1,740 F

39

Recommendations

- When hot-air welding or torching roofing products, realize the relative differences in ignition temperatures of various insulation substrates
- Share this information/concept with field workers

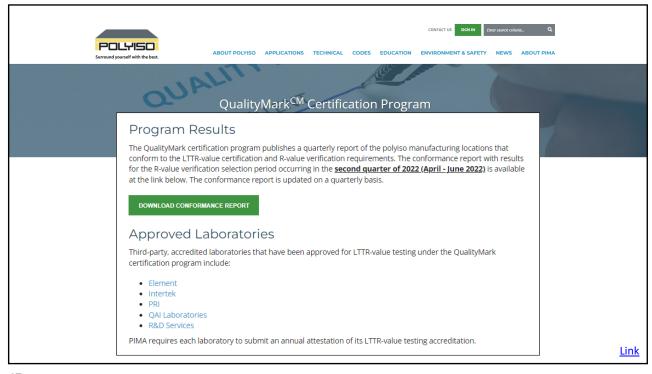
Field uplift testing ASTM E907 or FM 1-52

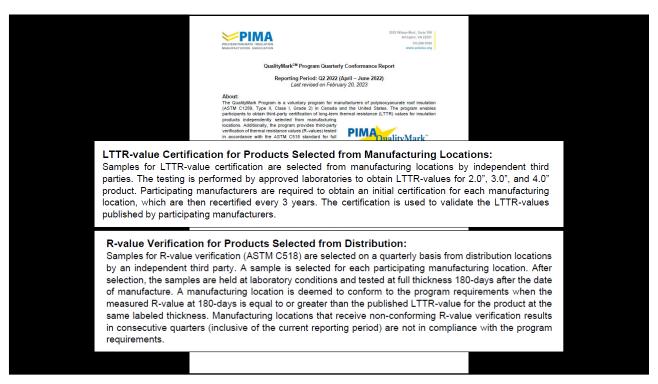
41

<u>Professional Roofing</u>
December/January 2022-23

Link

43


In the ASTM ILS, two-thirds of the FM 1-90 specimens tested "failed" the field uplift test below the 90 psf test level.

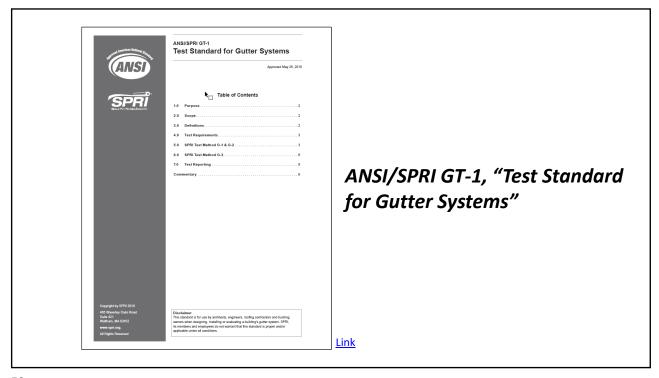

Field uplift test results did not correlate with FM Approvals' classification; field uplift testing showed lower results.

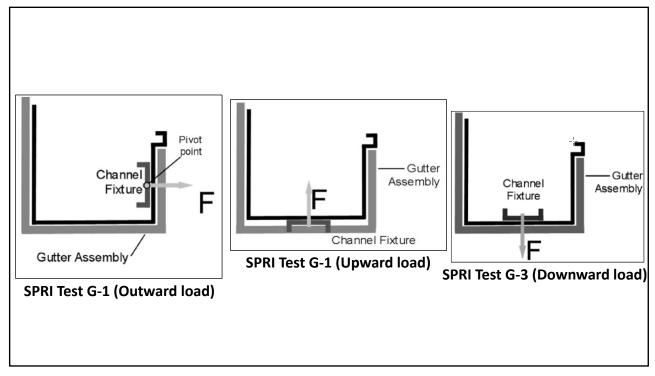
Watch for more information on this after the June ASTM Committee D08 meeting...

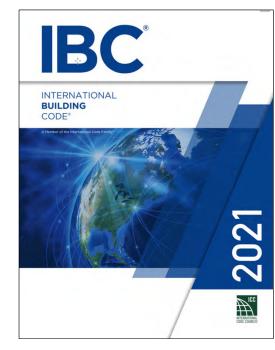
45

Revisions to PIMA's QualityMark^{CM} program

Qualit	yMark Program Quarterly	Conformance Report ¹
	porting Period: Q2 2022	
Manufactur	ring Location	i i
City	State/Province	Manufacturer
High River*	Alberta	IKO Industries Ltd.
Phoenix	Arizona	Atlas Roofing Corporation
Vancouver	British Columbia	Atlas Roofing Corporation
Northglenn	Colorado	Atlas Roofing Corporation
Bristol	Connecticut	Holcim Building Envelope
Jacksonville	Florida	Holcim Building Envelope
Jacksonville*	Florida	Johns Manville
Lake City	Florida	Carlisle Construction Materials
LaGrange	Georgia	Atlas Roofing Corporation
Statesboro	Georgia	GAF
Florence	Kentucky	Holcim Building Envelope
East Moline	Illinois	Atlas Roofing Corporation
Franklin Park	Illinois	Carlisle Construction Materials
Bremen*	Indiana	Johns Manville
Fernlev*	Nevada	Johns Manville
Montgomery	New York	Carlisle Construction Materials
Cornwall*	Ontario	Johns Manville
Toronto	Ontario	Atlas Roofing Corporation
Camp Hill	Pennsylvania	Atlas Roofing Corporation
Hazleton*	Pennsylvania	Johns Manville
Smithfield	Pennsylvania	Carlisle Construction Materials
Youngwood	Pennsylvania	Holcim Building Envelope
Drummondville	Quebec	SOPREMA
Corsicana	Texas	Holcim Building Envelope
Diboll	Texas	Atlas Roofing Corporation
Gainesville	Texas	GAF
Terrell	Texas	Carlisle Construction Materials
Cedar City	Utah	GAF
Tooele	Utah	Carlisle Construction Materials
Puvallup	Washington	Carlisle Construction Materials
<u> </u>		
Last revised on February 20), 2023. Current report availa	ble at www.polyiso.org/QUALITYMARK
	has a pending result for its L R-value certifications are com	TTR-value certification. The table above pleted.


Table Note 1: The manufacturing locations listed below have recently been brought on-line. The time represented by the current reporting period was prior to the date the location either started commercial production or completed its initial LTTR-value certification. Results for these plants will be included in future reporting periods. Hagerstown, Maryland – IKO Industries Ltd. New Columbia, Pennsylvania – GAF Hillsboro, Texas – Johns Manville Outsticker Processors reporting the OutstyMas Program, please contact PMA using the "Contact On" from on the website 2025.


Recommendations


- Watch for updates to PIMA's Quarterly Conformance Report
- Consider asking polyiso. manufacturers to certify their <u>current</u> compliance

51

New gutter testing requirements

International Building Code, 2021 Edition

| 1584.5 Balland low-dops (and begin to 12) (super) void systems coverings installed in accordance with Serion 1907.1 shall be designed in accordance with Serion 1907.1 shall be designed in accordance with Serion 1907.4. | 1504.6 Edge systems for low-slope roofs. Metal edge systems, except gutters and counterflashing, installed on built-up, modified bitumen and single-ply roof systems having a slope less than 2 units vertical in 12 units horizontal

systems, except gutters and counterflashing, installed on built-up, modified bitumen and single-ply roof systems having a slope less than 2 units vertical in 12 units horizontal (2:12) shall be designed and installed for wind *loads* in accordance with Chapter 16 and tested for resistance in accordance with Test Methods RE-1, RE-2 and RE-3 of ANSI/SPRI ES-1, except basic design *wind speed*, V, shall be determined from Figures 1609.3(1) through 1609.3(12) as applicable.

Link

1504.6.1 Gutter securement for low-slope roofs. Gutters that are used to secure the perimeter edge of the roof membrane on low-slope (less than 2:12 slope) built-up, modified bitumen, and single-ply roofs, shall be designed, constructed and installed to resist wind loads in accordance with Section 1609 and shall be tested in accordance with Test Methods G-1 and G-2 of SPRI GT-1.

must be more direction and service and service on the pumper of the approprie Europeans C and the pumper benefit shall not be less than 12 inches (95 mm).

2021 MITERNATIONAL BUILDING COCE*

INTERNATIONAL BUILDING

SERVICE STATEMATIONAL BUILDING COCE*

153

INTERNATIONAL BUILDING COCE*

STATEMATIONAL BUILDING COCE*

56

NRCA has completed GT-1 testing of gutters and just launched GT-1 certification programs as companions to our UL Solutions and Intertek certification programs for shop-fabricated edge metal

Contact Andrea Khalil at NRCA for more information akhalil@nrca.net

57

Contractor-reported problems...

Questions... and other topics

59

Mark S. Graham

Vice President, Technical Services National Roofing Contractors Association 10255 West Higgins Road, 600 Rosemont, Illinois 60018-5607

(847) 299-9070 mgraham@nrca.net www.nrca.net

Personal website: www.MarkGrahamNRCA.com LinkedIn: linkedin.com/in/MarkGrahamNRCA