Calculus 3 - Divergence Theorem

Flux

Last class we introduced flux
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and a particular problem was to find the flux across the unit cube 0 < x <

,0<y<land0<z< 1 where F = (x,xy,xyz)
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Soln: Since there are 6 sides to the cube we must do all 6 fluxes separately.

The nice thing is that the unit normal’s are easy to pick off and so are dS.

Top: Here N = (0,0,1). Since z = 1, then F = (x,xy,xy) and F-N=
(0,0,1) - {x, xy, xy) = xy
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Bottom: Here N = (0,0, —1). Since z = 0, then F = (x,xy,0) and
F-N=(0,0,-1) - (x,xy,0) = 0
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Right: Here N = (0,1,0). Since y = 1, then F = (x,x,xz) and F-N=
(0,1,0) - {x,x,xz) = xy
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Left: Here N = (0, —1,0). Since y = 0, then F = (x,0,0) and F-N =
(0,~1,0) - (x,0,0) = 0
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Front: Here N = (1,0,0). Since x = 1, then [ = (1,y,yz) and F-N=
(1,0,0) - (1, y,yz) =1
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Back: Here N = (—1,0,0). Since x = 0, then F = (0,0,0) and F-N=
(~1,0,0) - (0,0,0) = 0

- — 1 rl
//F-NdS://Odzdy:O )
0 0
S

Total Flux //f-ﬁd5:31+0+%+0+1+0:2. (8)
S



Divergence Theorem
Let V be a solid region bound by a closed surface S oriented by a outward
unit normal N. If F is a vector field whose components have continuous

first derivatives in V then
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Example 1.
We consider the problem stated above. We first calculate the divergence of

ﬁ
F so
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We integrate this over the volume of the cube so
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which is the same answer found on the previous page.



Example 2. Verity the Divergence theorem where the vector field is F =
(xz, yz, 1) and the volume bound by the surfaces z = x* +y*> and z = 1.

Soln. We first calculate the flux integrals. As there are two surfaces there
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will be two fluxes.
Top. Here the normal is N = (0,0, 1) and on this surface (z = 1) F =
(x,y,1)so0 F -N = 1and the flux is
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Side. If we define G = x* + y* — z then the normal is

VG (2x2y, —1)
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and it is outward! Next we calculate dS which is give by

4S = \J1+ f2+ f2d Ay = 1+ 402 + dy?d A, (14)




thus, the flux out of the paraboloid is
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For the second part, we calculate the divergence of F so
V- F=z+4z=2z
The volume integral is
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verifying the Divergence theorem.



Example 3. Verity the Divergence theorem where the vector field is F =
(2xy, —y?, z*) and the volume bound by the surfaces x +y +z = 1 and

the xy, xz and yz planes.

Soln. We first calculate the flux integrals. As there are four surfaces there

will be four fluxes.

Bottom: Here N = (0,0, —1). Since z = 0, then F = (2xy, —y?*, 0) and
F-N= (0,0,—1) - (2xy, —y?, 0) = 0 so no flux.

Left: Here N = (0,—1,0). Since y = 0, then F = <O, 0, zz> and F-N =
(0,—1,0) - (0,0,z*) = 0 so no flux.

Back: Here N = (—1,0,0). Since x = 0, then F = (0, —y?, z*) and
F-N= (—=1,0,0) - (0, —y?, z2) = 0 so no flux.

Plane: ~ Since the surface is given as x +y +z = 1 we create G as G =

x+y+z—1.5 VG = (1,1,1) and the unit normal is given by
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Next, we calculate dS. Since the surface is given by z = 1 — x — y then

dS = \/1+ f2+ f2dA,, = VI+ 1+ 1dA,,. (19)

Now the flux integral becomes
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The total flux out of the tetrahedren is TR For the second part, we calculate

the divergence of FsoV-F = 2y — 2y + 2z = 2z. The volume integral is
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verifying the Divergence theorem.



