Calculus 3 - Limits

In Calculus 1 we considered limits. For example

fim x%42x —2
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If we directly substitute x = 1 we get
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a simple number. However, if we consider
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with G meaning nothing. So we consider alternate approaches to derive

the limit. For example, graphically we see that (1) and from the graph we
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determined that
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Analytically, we we see
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It's important to realize that not all limits exist. For example consider

1 if x<O
f(x) = (4)
x if x>0
and the limit
lim f (x) ()

Clearly approaching zero from the left and from the right gives different
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Figure 2: Branch function (4)



values. So we created one-sided limits

lim f(x) =1lim1=1

x—0— x—0 (6)
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and since
lim f(x) # lim f(x) )
x—0— x—07t

then the limit does not exist (DNE).

In general we considered

lim f(x) =L (8)

X—a

and a very formal way (using 6 — €) of proving that limits exist.

So now we extend limits to 3D and consider

lim X, 9
S f(xy) )

and ask - do these limits exist?

Consider for example,

)
lim 10xy — 2y

10
(xy)—(1,-1)  x2+ 12 {10

Well, as a first approach, let’s try a direct substitution. Doing so yields

poo 1oy -2 -10-2 12
(xy)—(1-1) x2+y2  14+1 2

=6 (11)

and so the limit is equal to 6.



Consider

2
lim y +2xy (12)
(xy)—(1,-2) Y+ 2x
a direct substitution yields
2 . uny
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eV
so there’s that G again meaning we need to do something else. One will
notice that factoring will work here since
242 2
im L2 Ty lim —y(y + 2x)
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= lim y (14)
(xy)—(1,-2)
= -2
so the limit exists!
Consider
2_ .2 aqn
lim ¥ _ 0 (15)

(xy)—(00) X2 +y2 70"
so we need to do something else. How many ways can we approach (0,0)?
Well, there really are an infinite number of ways. For example, we could
let y = 0 and then let x — 0 so we would be approaching (0,0) along the
x-axis. We could let x = 0 and then let ¥ — 0 so we would be approaching
(0,0) along the y-axis. We could also let y = x and then let x — 0 so we

would be approaching (0,0) along the line y = x.
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Figure 3: Following different paths



So let’s see what happens in our limit (eqn. (15)) following the x and y

axes.
2 M2 2
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and since following different paths, we get different limits, the limit DNE!

Example 4
- x]/ 110//
1 = 17
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Along x = 0 (y axis) and y = 0 (x axis) we obtain
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(xy)—=(00) X2+ Y2 (xy)=(0,0) X>

and so you might be tempted to say the limit is 0 but if we follow y = x
then

2
: Xy : X 1
) ey S22 27 (19)

and so in this example, the limit DNE!
Example 5
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Along x =0,y = 0and y = x we get

2
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and so you might be tempted to say the limit is 0 but if we follow y = x>

then
2x%y 2t 2
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and so in this example, the limit DNE!
Example 6

2.2 /10//

(x,y)—(0,0) x2 + yz 0" ( )

Along x = 0,y = 0 and y = x we get the limit is zero. So maybe the limit

is actually zero. This we consider in the next class.



