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Abstract—As the Industrial Internet of Things (IIot) becomes
more prevalent in critical application domains, ensuring security
and resilience in the face of cyber-attacks is becoming an
issue of paramount importance. Cyber-attacks against critical
infrastructures, for example, against smart water-distribution
and transportation systems, pose serious threats to public health
and safety. Owing to the severity of these threats, a variety of
security techniques are available. However, no single technique
can address the whole spectrum of cyber-attacks that may be
launched by a determined and resourceful attacker. In light
of this, we consider a multi-pronged approach for designing
secure and resilient IIoT systems, which integrates redundancy,
diversity, and hardening techniques. We introduce a framework
for quantifying cyber-security risks and optimizing IIoT design
by determining security investments in redundancy, diversity, and
hardening. To demonstrate the applicability of our framework,
we present two case studies in water distribution and transporta-
tion systems. Our numerical evaluation shows that integrating
redundancy, diversity, and hardening can lead to reduced security
risk at the same cost.

I. INTRODUCTION

Emerging industrial platforms such as the Industrial Internet
(II) in the US and Industrie 4.0 in Europe are creating novel
systems that include the devices, systems, networks, and
controls used to operate and/or automate Industrial Internet
of Things (IIoT) systems. IIoT systems abound in modern
society, and it is not surprising that many of these systems
are targets for attacks. Critical infrastructure such as water
management and transportation systems, in particular, have
been growing more connected following recent advances in
co-engineered interacting networks of physical and compu-
tational components. Due to the tightly coupled nature be-
tween the cyber and physical domains, new attack vectors are
emerging. Attacks can include physical destruction, network
spoofing, malware, data corruption, malicious insiders, and
others. Further, the impacts of attacks propagate because of
tight interactions. As IIoT systems become more ubiquitous,
the risks posed by cyber-attacks becomes severe. The steady
increase in the number of reported cyber-incidents evidences
how difficult it is in practice to secure such systems against
determined attackers.

A variety of techniques have been proposed for providing
resilience against cyber-attacks, ranging from hardening tech-
niques (e.g., address-space layout randomization) to increasing
system diversity (e.g., [1]). However, defending complex and
large-scale IIoT systems is particularly challenging. These sys-
tems often face a variety of threats, have large attack surfaces,
and may contain a number of undiscovered vulnerabilities. In
light of these factors, it is clear that there is no “silver bullet”
technique that could protect a complex system against every
kind of attack.

Instead of relying on a single technique, defenders must
employ multi-pronged solutions, which combine multiple tech-
niques for improving the security and resilience of IIoT. We
can divide many of existing techniques into three canonical
approaches:
• Redundancy for deploying additional redundant compo-

nents in a system, so that even if some components are
compromised or impaired, the system may retain normal
(or at least adequate) functionality;

• Diversity for implementing components using a diverse
set of component types, so that vulnerabilities which are
present in only a single type have limited impact on the
system; and

• Hardening for reinforcing individual components or com-
ponent types (e.g., tamper-resistant hardware and fire-
walls), so that they are harder to compromise or impair.

While it is possible to combine these approaches easily by
designing and implementing them independently, security and
resilience of IIoT systems can be significantly improved by
designing and implementing them in an integrated manner.
However, a sound framework and methodology for combining
techniques from different approaches is lacking. In lieu of a
unified framework or methodology, defenders must follow best
practices and intuition when integrating techniques, which can
result in the deployment of ineffective—or even vulnerable—
combinations.

In this paper, we propose a framework for integrating
redundancy, diversity, and hardening techniques for designing
secure and resilient IIoT systems. The objective is to develop a
systematic framework for prioritizing investments for reducing
security risk. The contributions of the paper are as follows:
• Establishing a system model that can capture (1) a wide
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variety of components that are found in IIoT as well as
the interactions between them, (2) a security investment
model for redundancy, diversity, and hardening, and (3) a
security risk model which quantifies the impact of attacks
and defense mechanisms (Section II).

• Formulating the resilient IIoT design problem as an
optimization problem for prioritizing security investments
and showing that the problem is NP-hard (Section III).

• Developing an efficient meta-heuristic design algorithm
based on simulated annealing for finding near-optimal
designs in practice (Section III).

• Evaluating the applicability of the approach using two
case studies in canonical IIoT domains of water distribu-
tion and transportation systems (Sections IV and V).

We give an overview of related work in Section VI and provide
concluding remarks in Section VII.

II. MODEL

An IIoT system is comprised of a variety of components:
sensors, controllers, actuators, and human-machine interfaces
for interacting with users as shown in Figure 1. Our first step
introduces a general system model for evaluating security risk.
First, we present a high-level model of IIoT systemts. Then,
we introduce a model of security investments in redundancy,
diversity, and hardening, and we quantify risks posed by cyber-
attacks, considering both probability and impact. Based on this
model, we formulate the problem of optimal system design.
For a list of symbols used in this paper, see Table I.

TABLE I
LIST OF SYMBOLS

Symbol Description

Constants

C set of components
E set of connections between components
Oc set of components connecting to component c ∈ C

Tc type of component c ∈ C

I set of implementation types
Ic set of implementation types available for component c ∈ C

Ri cost of deploying an instance of implementation type i ∈ I

Di cost of deploying at least of instance of type i ∈ I

Li set of hardening levels available for type i ∈ I

Sl probability that hardening level l ∈ Li is secure
Hl cost of attaining hardening level l ∈ Li

Deployment

rc set of implementation types deployed for component c ∈ C

li hardening level chosen for implementation type i ∈ I

A. System Model

We model the cyber part of the system as a directed graph
G = (C,E). The set of nodes C represents the components
of the system, while the set of directed edges E represents
connections between the components, which are used to send
data and control signals. For each component c ∈ C, we let
Oc ⊆ C denote the set of origin components of the incoming

edges of component c. Further, we let Tc denote the type of
component c, which is one of the following:
• sensor: components that measure the state of physical

processes (e.g., pressure sensors);
• actuator: components that directly affect physical pro-

cesses (e.g., valves);
• processing: components that process and store data and

control signals (e.g., PLCs);
• interface: components that interact with human users

(e.g., HMI workstations).
The implementation of each component is chosen from a

set of implementation types. We let Ic denote the set of types
that may be used to implement component c, and we let I
denote the set of all implementation types that may be used
in the system (i.e., I = ∪c∈CIc).

B. Security Investment Model

1) Redundancy: We model redundancy as deploying mul-
tiple instances of the same component. For simplicity, we
assume that for each component, at most one instance of
each suitable implementation type is deployed. 1 We make this
assumption because our goal is to address security risks posed
by deliberate attacks, and if a security vulnerability exists in an
implementation type, then attackers can typically compromise
all instances of that type.

We let rc ⊆ Ic denote the set of implementation types that
are deployed for component c ∈ C. To quantify the cost of
redundancy, we let Ri denote the cost of deploying an instance
of type i ∈ Ic. Then, the total cost of redundancy is

cost of redundancy =
∑
c∈C

∑
i∈rc

Ri. (1)

2) Diversity: We model diversity as deploying a diverse set
of implementation types. In other words, diversity is modeled
as selecting different implementations rc to be deployed for
each component c ∈ C (or at least attempting to use as many
distinct sets as possible).

To quantify the cost of diversity, we let Di denote the cost of
using an implementation type i ∈ I in any non-zero number
of components (i.e., Di is the cost incurred when the first
instance of type i is deployed). Then, the cost of diversity is

cost of diversity =
∑

i∈
⋃

c∈C rc

Di. (2)

3) Hardening: We model the hardening of an implementa-
tion type as decreasing the probability that a zero-day security
vulnerability is discovered by an attacker. We assume that
hardening is applied in steps (e.g., performing a code review),
resulting in a discrete set of hardening levels.

We let Li denote the set of hardening levels available
for implementation type i ∈ I , and we let li denote the
chosen level. To model the amount of security provided by
hardening level l ∈ Li, we let Sl denote the probability
that the implementation type will be secure (i.e, no zero-day

1Note that relaxing this assumption would be straightforward; however,
such a generalization would provide little further insight into security.
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Fig. 1. Example cyber-physical system. Arrows represent flows of sensor data and control signals.

vulnerability is discovered) if level l is chosen. To quantify
the cost of hardening, we let Hl denote the cost of attaining
level l ∈ Li. Then, the total cost of hardening is

cost of hardening =
∑
i∈I

Hli . (3)

C. Security Risk Model

Next, we quantify the risks faced by a system with given
redundancy, diversity, and hardening design. In principle, risk
can be quantified as

Risk =
∑

outcome

Pr[outcome] · Impact(outcome). (4)

In our model, an outcome can be represented as a set of
components that have been compromised by an attacker:

Risk(r, l) =
∑
Ĉ⊆C

Pr[Ĉ is compromised] · Impact(Ĉ), (5)

where Impact(Ĉ) is the amount of loss inflicted on the system
by an attacker who has compromised components Ĉ. In the
remainder of this subsection, we discuss how to measure
Pr[Ĉ is compromised] and Impact(Ĉ).

1) Probability: We quantify the probability that an attacker
compromises a set of components Ĉ ⊆ C implicitly by
describing a probabilistic process that models how an attacker
can take control of the components of a system one-by-one.
We consider two alternative attack models in our framework:
non-stealthy attacks and stealthy attacks. The two attack
models are summarized in Table II.

TABLE II
COMPONENT COMPROMISE RULES

Attack Component Type

Type sensor actuator processing interface

stealthy
attack

if all instances
are compromised

if all instances are compromised or all
input components are compromised

non-
stealthy
attack

if majority of in-
stances are com-
promised

if majority of instances are compro-
mised or majority of input compo-
nents are compromised

a) Non-Stealthy Attacks: First, an attacker attempts to
find exploitable vulnerabilities in the implementation types
that are deployed in the system. Based on our hardening
model, the attacker discovers a zero-day vulnerability in each
implementation type i ∈ I with probability 1− Sli (indepen-
dently of the other types). We then consider all instances of
the vulnerable implementation types to be compromised, and
let Î denote the set of vulnerable implementations.

Next, we determine the set of compromised components Ĉ.
We start with Ĉ = ∅, and then extend the set Ĉ in iterations
based on the following rules:
• a sensor component c is considered to be compromised

if the majority of its instances rc are vulnerable (i.e., if
|rc ∩ Î| ≥ |rc|/2),

• an actuator, processing, or interface component c is
considered to be compromised if the majority of its
instances rc are vulnerable or if the majority of its inputs
are compromised (i.e., if |Oc ∩ Ĉ| ≥ |Oc|/2).

We repeat the above steps until the set of compromised
components Ĉ cannot be extended any further.

b) Stealthy Attacks: For stealthy attacks, the process is
the same except that “majority” is replaced in both rules with
“all” (i.e., |rc ∩ Î| = |rc| and |Oc ∩ Ĉ| = |Oc|).

2) Impact: We let Impact(Ĉ) denote the financial and
physical loss resulting from an attack that compromises and
maliciously controls components in Ĉ. The exact formulation
of Impact(Ĉ) depends on the system and the characteristics of
its physical processes. In this paper, we consider two types of
systems, water-distribution and transportation systems, which
we will describe in detail in Section IV.

D. Optimal Design Problem

We first formulate the problem with fixed investments in
redundancy, diversity, and hardening.

Definition 1 (Optimal Design Problem (Fixed Redundancy,
Diversity, and Hardening)). Given redundancy, diversity, and
hardening investments R, D, and H , an optimal design (r, l) is

argminr,l Risk(r, l) (6)

3



subject to

∀c ∈ C : rc ⊆ Ic (7)
∀l ∈ I : li ∈ Li (8)∑
c∈C

∑
i∈rc

Ri ≤ R (9)∑
i∈∪c∈Crc

Di ≤ D (10)∑
i∈I

Hli ≤ H. (11)

Next, we introduce a more general formulation, in which we
can determine the amounts to invest in redundancy, diversity,
and hardening.

Definition 2 (Optimal Design Problem). Given security bud-
get B, an optimal design (r, l) is

argminr,l Risk(r, l) (12)

subject to

∀c ∈ C : rc ⊆ Ic (13)
∀l ∈ I : li ∈ Li (14)∑

c∈C

∑
i∈rc

Ri +
∑

i∈∪c∈Crc

Di +
∑
i∈I

Hli ≤ B. (15)

III. COMPUTATIONAL ANALYSIS AND META-HEURISTIC
ALGORITHMS

Since the number of feasible designs to choose from may be
very large even for small systems, finding an optimal design
using exhaustive search is computationally infeasible. In light
of this, a key question for the practical application of the
proposed framework is whether there exist efficient algorithms
for finding optimal or near-optimal designs. We first show that
finding an optimal design is computationally challenging by
showing that the problem is NP-hard. Then, we introduce an
efficient meta-heuristic algorithm that can find a near-optimal
solution in polynomial time.

A. Computational Complexity

The objective of the design problem depends on the impact
function, which could be any function, even one that is hard
to compute. To show that the design problem is inherently
hard (not only due to the potential complexity of computing
the impact function), we consider computational complexity
assuming a simplistic impact function, whose value is simply
the number of compromised components. Formally, we con-
sider Impact(Ĉ) = |Ĉ|.

To show that the optimal design problem is NP-hard, we
first introduce a decision version of the problem.

Definition 3 (Optimal Design Problem (Decision Version)).
Given security budget B and threshold risk Risk∗, determine
if there exists a design (r, l) such that Risk(r, l) ≤ Risk∗ and
Equations (13), (14), and (15) hold.

We will show that the above problem is NP-hard using a
reduction from a well-known NP-hard problem, the Set Cover
Problem, which is defined as follows.

Definition 4 (Set Cover Problem). Given a set U , a set F
of subsets of U , and a threshold k, find a subset G ⊆ F
consisting of at most k subsets such that G covers U (i.e., for
every u ∈ U , there exists a g ∈ G such that u ∈ g).

Theorem 1. The Optimal Design Problem is NP-hard.

Proof: Given an instance (U,F , k) of the Set Cover
Problem (SCP), we construct an instance of the Optimal
Design Problem (ODP) with stealthy attacks as follows:
• let C := U , E := ∅, and I := F ,
• for every c ∈ C, let Tc := sensor,
• for every c ∈ C, let Ic := {i ∈ F | c ∈ i},
• for every i ∈ I , let Ri := 0,
• for every i ∈ I , let Di := 0,
• for every i ∈ I , let Li := {insecure, secure},
• let Hinsecure := 0 and Sinsecure := 0,
• let Hsecure := 1 and Ssecure := 1,
• let B := k and Risk∗ := 0.

Clearly, the above reduction can be performed in a polynomial
number of steps. It remains to show that the constructed
instance of the ODP has a solution if and only if the SCP
instance has a solution.

First, suppose that the SCP instance has a solution G. Then,
we show that there exists feasible design (r, l) that is a
solution to the ODP instance. For every component c ∈ C, let
rc = Ic. For every implementation type i ∈ I , let li = secure
if i ∈ G (recall that in the construction of the ODP instance, we
let the implementation types I correspond to the set of subsets
F , and the solution G is a subset of F) and let li = insecure
if i 6∈ G. Clearly, this is a feasible design since its hardening
cost is ∑

i∈I
Hli =

∑
i∈G

Hsecure

∑
i∈I\G

Hinsecure (16)

=
∑
i∈G

1
∑

i∈I\G

0 (17)

= |G| ≤ k = B, (18)

and all other costs are zero. Since Ssecure = 0, implementation
types from G are never vulnerable, and any component c that
has at least one secure implementation type (i.e., Ic ∩ G 6= 0)
is never compromised by a stealthy attack. If G is a set cover,
then there exists at least one secure implementation type i ∈ G
for each c such that i ∈ Ic, which implies that no component
will be compromised. Therefore, Ĉ = ∅ is the only possible
outcome, which implies that Risk(r, l) = 0 as Impact(∅) = 0
by definition.

Second, suppose that the ODP instance has a solution (r, l).
Then, we can show that there exists a solution G to the
SCP instance. Let G = {i ∈ F | li = secure} (i.e., the set of
implementation types that are secure). Clearly, G is a feasible
solution due to the budget constraint. Next, using an argument
that is similar to the one that we used in the previous case, we
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can show that if G was not a set cover, then Risk(r, l) would
be greater than zero. The claim of the theorem then follows
from this readily.

B. Meta-Heuristic Design Algorithm

We propose an efficient meta-heuristic algorithm for find-
ing near-optimal designs in practice. Our algorithm is based
on simulated annealing, which requires randomly generating
feasible solutions that are “neighbors” of (i.e., similar to) a
given solution. Unfortunately, in our solution space (i.e., in the
set of designs that satisfy the budget constraints), the feasible
neighbors of a solution are not naturally defined. Hence, before
we present our meta-heuristic algorithm, we first introduce an
alternative representation of feasible designs, which we call
design plans.

Definition 5 (Design Plan). A design plan is a pair (ro, lo),
where
• ro is a list of component-implementation pairs (c, i) ∈
C × I such that i ∈ Ic holds for every pair (c, i) ∈ ro,
and each possible pair (c, i) appears exactly once in ro;

• lo is an ordered multiset of implementation types such
that each implementation type i ∈ I appears exactly
|Li| − 1 times in lo.

ALGORITHM 1: MapToDesign(ro, lo)
Data: optimal design problem, list ro, ordered multiset lo
Result: design (r, l)
∀c ∈ C : rc ← ∅
∀i ∈ I : li ← argminl∈Li

Hl
for (c, i) ∈ ro do

r′ ← r
r′c ← rc ∪ {i}
if (r′, l) is feasible then

r ← r′

end
end
for i ∈ lo do

l′ ← l
l′i ← argminl∈Li:Hl>Hli

Hl

if (r, l′) is feasible then
l← l′

end
end
output (r, l)

Next, we show how to translate a design plan (ro, lo)
into a feasible design. The translation is presented formally
in Algorithm 1. Given redundancy, diversity, and harden-
ing investments R, D, and H , we can obtain a feasible
design (r, l) as follows: start from an empty design (i.e.,
no implementations deployed and lowest-cost hardening level
chosen for every implementation type); iterate over ro in order
and for each (c, i) ∈ ro, add i to rc if it does not lead to the
violation of the budget constraints; finally, iterate over lo in
order and for each i ∈ lo, increase security level li if it does
not lead to the violation of the budget constraint. Note this
mapping is surjective.

ALGORITHM 2: Meta-Heuristic Design Algorithm
Data: optimal design problem, number of iterations kmax, initial

temperature T0, cooling parameter β
Result: design (r, l)
choose (ro, lo) at random
ρ← Risk(MapToDesign(ro, lo))
for k = 1, . . . , kmax do

(ro′, lo′)← Perturb(ro, lo)
ρ′ ← Risk(MapToDesign(ro′, lo′))
T ← T0 · e−βk
pr ← e(ρ

′−ρ)/T

if (ρ′ < ρ) ∨ (rand(0, 1) ≤ pr) then
ro← ro′

lo← lo′
end

end
output MapToDesign(ro, lo)

Finally, we present our meta-heuristic design algorithm (see
Algorithm 2), which can find a near-optimal design in polyno-
mial time. The algorithm starts by choosing a random design
plan (ro, lo). In practice, we can implement this simply as
choosing a random permutation of the list of component-
implementation pairs and a random permutation of the multiset
of implementation types. The algorithm then performs a fixed
number of iterations, in each iteration choosing a random
neighbor (ro′, lo′) of the current plan (ro, lo), and replacing
the current plan with the neighbor with some probability.
This probability depends on the risk of both the current
and the neighboring plan, and decreases with the number of
iterations, as we approach the final solution. A key step of
the algorithm is Perturb(ro, lo), which chooses a random
neighbor of (ro, lo). In practice, we implement this as taking
two elements of ro at random and switching them with each
other, by similarly switching the order of two random elements
of lo, and returning the re-ordered list and multiset as the
neighbor (ro, lo).

IV. EVALUATION

To demonstrate the applicability of our framework, we
present two case studies from two canonical IIoT domains:
water distribution and transportation systems.

A. Cyber-Physical Contamination Attacks Against Water-
Distribution Networks

IIoT systems have a particularly significant and wide ap-
plication in water distribution systems. Examples include
monitoring water quality and detecting leaks. On the one hand,
IIoT offers significant advantages, such as improved service
and better maintenance at a low cost, but on the other hand,
potential challenges include cost of the cyber infrastructure,
reliability of communications, and of course, cyber-security.

As evidenced by the recent water crisis in Flint, MI [2],
ensuring the quality of drinking water is of critical im-
portance. Compromising systems that control the treatment
and distribution of drinking water may allow adversaries to
suppress warnings about contaminations or to decrease the
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quality of water [3]. Cyber-attacks can also have a devastating
environmental impact. For example, in 2000, a disgruntled ex-
employee launched a series of attacks against the SCADA
system controlling sewage equipment in Maroochy Shire,
Australia [4], [5]. As a result of these attacks, approximately
800,000 liters of raw sewage spilt out into local parks and
rivers, killing marine life.

Here, we apply our framework to model cyber-physical
contamination attacks against water-distribution systems. The
system is modeled as a graph, in which links represent pipes,
and nodes represent junctions of pipes, residential consumers,
reservoirs, pumps, etc. IIoT components include:
• Sensors: water-quality sensors, which are located at cer-

tain nodes of the water-distribution network;
• Processing: components that collect, process, and forward

water-quality data;
• Interfaces: components with human-machine interfaces,

which can alert operators about contaminations.
We consider a malicious adversary who tries to cause harm
by contaminating the water network with harmful chemicals.
We assume that the adversary can introduce contaminants
at certain nodes, such as unprotected reservoirs or tanks,
which will then spread in the network, eventually reaching the
residential consumers. We measure the impact of this physical
attack as the amount of contaminants consumed by residential
consumers before the detection of the attack.

To detect contaminations, each sensor continuously moni-
tors the water flowing through the node at which it is deployed,
and raises an alarm when the concentration of a contaminant
reaches a threshold level. The alert generated by a sensor node
is sent to a processing node, which forwards the alert to an
interface node that can notify operators. Once operators are
alerted, they respond immediately by warning residents not to
consume water from the network.

We measure the impact of a physical attack as the amount of
contaminants consumed by residential consumers before they
are warned. This amount depends on the time between the
physical attack and its detection, the contaminant concentra-
tion levels at the consumer nodes in this time interval, and
the amount of water consumed in this interval. Note that this
impact depends on the uncompromised components C \ Ĉ
since the time of detection depends on the functionality of
these components.

To increase the impact of the physical attack, the adver-
sary launches a cyber-attack, which compromises and dis-
ables some of the components Ĉ. Since the adversary’s goal
is to suppress warnings, this attack can be modeled as a
stealthy attack (Section II-C1b). We assume that the adversary
first compromises a set of components Ĉ, and then decides
where to introduce the contaminant, maximizing the impact
Impact(Ĉ). Our goal is to minimize the risks posed by such
cyber-physical attacks by designing a resilient system based on
a systematic allocation of investments to redundancy, diversity,
and hardening. We present numerical results for this case study
in Section V.

B. Cyber-Attacks Against Transportation Networks

Transportation systems is another application domain that
can benefit greatly from IIoT by driving down costs and
minimizing system failures, while supplying vast amounts
of data for operators, drivers, and facilities that result in
significant operational improvements. Transportation systems
include multiple components that are becoming susceptible
to attacks through wireless interfaces or even remote attacks
through the Internet [6]. Indeed, recent studies have shown that
many traffic lights deployed in practice have easily exploitable
vulnerabilities, which could allow an attacker to tamper with
the configuration of these devices. Due to hardware-based
failsafes, compromising a traffic signal does not allow an
attacker to set the signal into an unsafe configuration that could
immediately lead to traffic accidents [7]. However, compromis-
ing a signal does enable tampering with its schedule, which
allows an attacker to cause disastrous traffic congestions.

Here, we apply the proposed framework to model cyber-
attacks against traffic control. The physical part of the system
may be modeled using a traffic model, such as Daganzo’s
well-known cell-transmission model [8]. The cyber-part of the
system is compromised of the following components:
• Interface: components with human-machine interfaces,

which operators use to control the schedules of traffic
lights in the transportation network;

• Processing: components that process and forward control
signals sent by operators;

• Actuator: traffic lights with software based controllers.
We consider a malicious adversary who tries to cause damage
by compromising some components Ĉ of the traffic-control
system and tampering with the schedules of traffic lights.
We measure the impact Impact(Ĉ) of this cyber-attack as the
increase in traffic congestion, which is quantified as the total
travel time of the vehicles in the network, compared to normal
congestion without an attack. We assume that the adversary
aims to cause maximum damage without attempting to hide
its attack. Hence, we model its attack as a non-stealthy attack
(Section II-C1a).

V. NUMERICAL RESULTS

In this section, we present numerical results to evaluate the
proposed approach. First, we focus on the evaluation of the
approach in terms of reducing the security risks by integrating
redundancy, diversity, and hardening. Then, we focus on the
performance of the proposed design algorithm in terms of
running time.

A. Case-Study Examples

1) Water Distribution System: We use a real-world water-
distribution network from Kentucky, which we obtained from
the Water Distribution System Research Database 2[9]. The
topology of this network, which is called KY3 in the database,
is shown by Figure 2. In addition to topology, the database also
contains hourly water-demand values for each network node.

2http://www.uky.edu/WDST/database.html
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Fig. 2. Topology of the water-distribution network. Colors show the spread
of the contaminant from the first reservoir two hours after its introduction.

We assume that the adversary can introduce a contaminant at
one of six given nodes in the network, which model three tanks
and three reservoirs. Once the contaminant is introduced, we
simulate its spread throughout the network using EPANET 3.
From the simulation, we obtain the contaminant concentration
values at the various nodes as functions of time. For a given
set of compromised components Ĉ, we then use these values
to compute the time of detection and the resulting impact
Impact(Ĉ) (i.e., amount of contaminant consumed by the
time of detection). Finally, we use the following numerical
parameter values:
• I = {i1, i2, i3, i4, i5};
• for every c ∈ C, Ic = I;
• Ri1 = Ri2 = Ri3 = 04and Ri4 = Ri5 = 1;
• Di1 = 05and Di = 1 for every i ∈ {i2, i3, i4, i5};
• for every i ∈ I , Li = {1, 2, 3, . . . , 10};
• for every l ∈ Li, Sl = 1− 0.50.5·l+1 and Hl = 4 · l2.
2) Transportation Network: We use the Grid model with

Random Edges (GRE) to generate a random network topol-
ogy [10], which closely resembles real-world transportation
networks.6 For a detailed description of this model, we refer
the reader to [10], [11]. We use Daganzo’s cell transmission
model to simulate traffic flowing through the generated net-
work [8], computing the turn decisions of the vehicles based
on a linear program that minimizes total travel time [12].
Following Daganzo’s proposition, we model traffic lights as
constraints on the inflow proportions [13], and we select the
default (i.e., uncompromised) schedules of the traffic lights to
minimize congestion. Finally, we allow the attacker to select
any valid configuration for compromised lights.

We use the following parameter values for our illustrations:
• I = {i1, i2, i3, i4, i5};
• for every c ∈ C, Ic = I;
• Di1 = 0 and Di = 20 for every i ∈ {i2, i3, i4, i5};

3https://www.epa.gov/water-research/epanet
4We set these to zero to model existing deployment since we are interested

in how to invest in improving security and resilience.
5We set this to zero so that there always exists a feasible deployment.
6We instantiated the model with W = 5, L = 5, p = 0.507, and q =

0.2761 based on [10].

• for every i ∈ I , Ri = 1, Di = 20, and Li =
{1, 2, 3, . . . , 10};

• for every l ∈ Li, Sl = 1− 0.50.5·l+2 and Hl = 10 · l2.

B. Risk Evaluation

Next, we study how security risks depend on investments
into redundancy, diversity, and hardening, as well as their
optimal combinations.
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Fig. 3. Security risk in the water-distribution network when investing only
in redundancy, only in diversity, only in hardening, or in their combination.

1) Water-Distribution Network: First, we study risks in the
water-distribution network. Figure 3 shows the security risk
in the water-distribution network for various budget values
invested into the canonical approaches (i.e., redundancy, di-
versity, or hardening) and their optimal combination. Again,
we note the logarithmic scaling on the vertical axis. We see
that investing in a combination of redundancy, diversity, and
hardening results in significantly lower risks than investing in
only one of these approaches, thus demonstrating the efficacy
and superior performance of a synergistic approach.
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Fig. 4. Optimal combination of redundancy, diversity, and hardening invest-
ments in the water-distribution network.

Figure 4 shows the optimal combination of redundancy,
diversity, and hardening investments in the water-distribution
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Fig. 5. Optimal deployment with budget B = 90.

network for various budget values. In this example, the optimal
design is primarily a combination of diversity and hardening.
However, with higher budget values, designers also need to
invest in redundancy. Note that the design approach also deter-
mines the optimal deployment of components. Figure 5 shows
the optimal deployment for budget B = 90. Colored disks
represent component instances, different colors corresponding
to different implementations.

2) Transportation Networks: Second, we consider security
risks in the transportation network. In this case, we restrict
our study to diversity and hardening since deploying multiple
instances of a traffic light may be infeasible in practice. Hence,
we assume that exactly one instance is deployed for each
component.
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Fig. 6. Security risk in the transportation network when investing only in
diversity, only in hardening, or in their combination.

Figure 6 shows the security risk in the transportation net-
work with the canonical approaches and their combinations for
various budget values. The figure shows that—similar to the
case of water-distribution networks—the combined approach
is clearly superior to canonical approaches.

Figure 7 shows the optimal combination of diversity and
redundancy in the transportation network for various budget
values. Except for very low values, the optimal combination
invests substantial amounts in both diversity and hardening.
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Fig. 7. Optimal combination of diversity and hardening investments in the
transportation network.

C. Performance

To illustrate the performance of the proposed design algo-
rithm, we use the water-distribution network with R = 10
and D = H = 100. We find that the meta-heuristic algorithm
(Algorithm 2) is very efficient: a single iteration takes less than
6.4 × 10−4 seconds (more than 1,500 iterations per second)
on an average laptop computer7. To determine the number
of iterations that are necessary to find a good solution in
practice, we focus on the solution quality (i.e., security risk)
as a function of the number of iterations.

0 200 400 600 800 1,000 1,200
102

103

104

Iteration

R
is

k

Current solution
Best solution

Fig. 8. Security risk in each iteration of one execution of the the meta-heuristic
algorithm (Algorithm 2).

Figure 8 shows the security risk in each iteration of one
particular execution of the meta-heuristic algorithm (Algo-
rithm 2) with the current solution (solid red line) and with
the best solution found so far (dashed blue line). Please note
the logarithmic scaling on the vertical axis. We have executed
the algorithm a number times, but since the results are qual-
itatively the same, we plot only one particular execution for
illustration. The figure shows that risk decreases rapidly in the

7MacBook Pro with 2.9 GHz Intel Core i5 processor.
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first few hundred iterations, but after around 400 iterations,
the decrease becomes much slower. At around one thousand
iterations, the risk reached its lowest value, so we omit the
remaining iterations from the plot. In light of this, it is clear
that the running time of the meta-heuristic algorithm is very
low since it settles in a matter of seconds.

VI. RELATED WORK

Modern technology trends such as IIoT and cyber-physical
systems (CPS) have significantly improved the overall func-
tionality, reliability, observability, and operational efficiency of
industrial control systems and critical infrastructure networks
[14], [15]. The integration and connectivity between various
system components allow data exchange and information
processing to fine tune system processes. However, this in-
tegration and connectivity also opens new threat channels in
the form of cyber- and cyber-physical attacks, against which
these systems need to be secured [16], [17]. Conventional
cybersecurity mechanisms are inadequate and thus need to be
expanded to incorporate the complexity and physical aspects
of such systems [16], [17], [18]. A detailed overview of
the security issues in industrial automation systems that are
based on open communication systems is provided in [19].
Similarly, security issues associated with various documented
standards in SCADA systems are highlighted in [20], [21],
and it is concluded that such issues cannot be resolved by
employing only IT security mechanisms. There are various
other studies that mainly highlight the security threats and
associated risk assessment in the domain of industrial IoT, for
instance [22], [23], [24], [25], [26]. All of these studies discuss
and point towards a holistic security framework to address the
security issues in industrial IoT. In this paper, we provide
a framework for synergistic security that combines various
security mechanisms to effectively secure such systems.

The water-supply industrial sector can benefit significantly
from applying the ideas and technology of industrial Internet
[27]. An intelligent urban water-supply management system,
which consists of IoT gateways connecting the water assets
(for instance, water pumps, valves, and tanks) to the cloud
service platform for advanced analytics, significantly improves
the operational efficiency, safety, and service availability of
the overall system [28], [29]. There are ongoing efforts
to develop efficient remote monitoring systems for pipeline
monitoring (such as PIPENET deployed at Boston Water and
Sewer Commission [30], [31]), water quality monitoring [32],
[33], [34], leak and burst detection [35], [36], and other
applications, for instance [37], [38], [39]. The adoption of
new technologies (such as IoT, CPS) and networking devices
enhances the monitoring capability, service reliability, and
operational efficiency of water distribution systems, but also
exposes them to malicious intrusions in the form of cyber-
and cyber-physical attacks [3], [40], [41]. A number of attack
scenarios against water distributions systems are specified and
demonstrated through simulations in [3]. Recently, in [42],
several attacks on simulated and a real water distribution
testbed (WADI [43]) are demonstrated through cyber-physical

botnets capable of performing adversarial control strategies
under CPS constraints. The security breach in the SCADA
system of Maroochy Water Services, Australia [5] is a famous
incident, which also highlights the need for effective security
mechanisms. To effectively address the security challenge in
such complex, interconnected, and spatially expanded systems,
we need to employ a combination of security mechanisms to
protect them against cyber-physical attacks.

Like other modern infrastructures, traffic networks are com-
plex and are becoming increasingly connected with traffic
lights, road sensors, and vehicles exchanging information with
each other. This interconnectedness—though useful at many
levels—has also increased the attack surface for potential
attackers that can significantly disrupt the traffic by taking
control of a few network components, such as signal lights
or sensors [6], [7], [44]. Recent studies outline the scope
of the damage that can be caused by an adversary having
an access to the traffic control infrastructure [45]. There are
studies demonstrating attacks that can realize non-existent
jams and virtual vehicles, tamper with signal schedules [46],
[47], [48], [49]. Considering the impact of successful attacks,
it is imperative to systematically understand the existence
of vulnerabilities, and design security frameworks to protect
traffic infrastructure against such malicious attacks [50], [51].

VII. CONCLUSION

In this paper, we introduced a framework that consid-
ers three canonical approaches–redundancy, diversity, and
hardening–for improving security and resilience of IIoT sys-
tems. Our goal is to provide theoretical foundations for
designing systems that combine these canonical approaches.
We showed that the problem of finding an optimal design
is computationally hard, which means that practical designs
may not be found using exhaustive searches. Therefore, we
introduced an efficient meta-heuristic algorithm, whose run-
ning time is polynomial in the size of the problem instance.
To illustrate the practical applicability of our results, we
discussed two example application domains, water distribution
and transportation systems. Our numerical evaluation shows
that integrating redundancy, diversity, and hardening can lead
to reduced security risk at the same cost.
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