

NRCA University Webinar
November 21, 2013

"R" You Aware? **Understanding R-values for Polyiso**

presented by

Mark S. Graham

Associate Executive Director, Technical Services **National Roofing Contractors Association**

Some terminology

R-value: See "thermal resistance (R)"

thermal resistance: The quantity determined by the temperature difference at steady state between two defined surfaces or a material or construction that induces a unit heat flow rate through a unit area. In English (inch-pound) units, it is expressed as F·ft²·hr/Btu.

About thermal resistance (R)

- A thermal resistance (R) value applies to a specific thickness of material or construction.
- The thermal resistance (R) of a material is the reciprocal of the thermal conductance (C) of the same material (i.e., R = 1/C).
- Thermal resistance (R) values can be added, subtracted, multiplied and divided by mathematically appropriate methods.

3

Thermal resistance (R)

ASTM C518, "Standard Test Method for Steadystate Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus"

> -- Originally published in 1963 Current edition is 2010

Theory of foam aging

ASTM C1303, Appendix X3-Theory of Foam Aging

- R-value of most foam insulations is affected by the gas mixture in the foam
 - R-value of most blowing agents is greater than that of air.
 - R-value of foam insulation is greater when there is more blowing agent and less air

Theory of foam aging -- continued ASTM C1303, Appendix X3-Theory of Foam Aging

- For rigid, closed-cell foams, diffusion plays a role:
 - Air diffuses into cells
 - Blowing agent diffuses out of cells or partially dissolves into the polymer matrix
- Diffusion rate depends upon:
 - Type of polymer
 - Type of gas
 - Foam structure
 - Temperature
 - Pressure

Long-term thermal resistance (LTTR)

R-value: same

thermal resistance: same

long-term: for the purpose of the Prescriptive

Method, long term refers to five years

MNRCA

Long-term thermal resistance (LTTR)

- ASTM C1303, "Standard Test Method for Predicting Long-Term Thermal Resistance of Closed-Cell Foam Insulation"
- CAN/ULC-S770, "Standard Test Method for Determination of Long-Term Thermal Resistance of Closed-Cell Thermal Insulating Foams

NRCA

PIMA Quality Mark^{cm} program

- Established in 2003
- Implemented on January 1, 2004
- Report LTTR values based upon CAN/ULC-S770-03
- Third party administration by FM Global

9

Insulation thickness	LTTR
1.0 inch (25 mm)	6.0
1.5 inches (38 mm)	9.0
1.7 inches (43 mm)	10.3
1.8 inches (46 mm)	10.9
2.0 inches (51 mm)	12.1
2.5 inches (64 mm)	15.3
2.7 inches (69 mm)	16.6
3.0 inches (76 mm)	18.5
3.3 inches (84 mm)	20.4
3.5 inches (89 mm)	21.7
4.0 inches (102 mm)	25.0

"Tech today," Professional Roofing, November 2002

Revision to the PIMA Quality Mark^{cm} program

- Report LTTR values based upon:
 - ASTM C1303-11
 - CAN/ULC-S770-09
- Effective date of January 1, 2014

11

New minimum LTTR values

PIMA Quality Mark^{cm} program (minimum values)

Revised LTTR values					
Thickness (inches)	New LTTR values per inch thickness	New LTTR values per thickness			
1	5.6	5.6			
2	5.7	11.4			
3	5.8	17.4			
4	5.9	23.6			

"Tech today," Professional Roofing, August 2013

Comparing existing vs. new LTTR values

Thickness	LTTR (2004 – 2013)	New LTTR (2014 –)	
1 inch	6.0	5.6	
1.5 inches	9.0	8.6	
2 inches	12.1	11.4	
3 inches	18.5	17.4	
4 inches	25.0	23.6	

13

Some concerns

Design/bid/construction scenarios:

- Projects designed in 2013, but will be constructed in 2014
- Projects bid in 2013, but will be constructed in 2014
- Projects designed and bid in 2014 using outdated LTTR values

NRCA

NRCA recommends designers specify polyisocyanurate insulation by thickness – not R-value or LTTR.

15

Some words of caution...

Do not use the terms "R-value" and "LTTR" interchangeably.

Some additional cautions...

- Is the "long-term" in LTTR really long term in the context of a roof system service life?
- LTTR may not appropriate for use for vapor retarder design.
- LTTR may not be appropriate for use for building energy calculations.

17

NRCA has not endorsed the LTTR concept

"Although the LTTR method of R-value determination and reporting may be appropriate for laboratory analysis, research comparison and procurement purposes, NRCA does not consider LTTR to be appropriate for design and in-service purposes..."

--The NRCA Roofing Manual: Membrane Roof Systems-2011

IIII NRCA

NRCA's recommended design R-values

The NRCA Roofing Manual: Membrane Roof System-2011

Polyisocyanurate				
Thickness, in.	LTTR	NRCA Recommended Design R-values		
		Heating Conditions	Cooling Conditions	
1.0	6.0	5.0	5.6	
1.25	7.5	6.3	7.0	
1.5	9.0	7.5	8.4	
1.75	10.5	8.8	9.8	
2.0	12.1	10.0	11.2	
2.3	14.0	11.5	12.9	
2.5	15.3	12.5	14.0	
2.8	17.2	14.0	15.7	
3.0	18.5	15.0	16.8	
3.25	20.1	16.3	18.2	
3.5	21.7	17.5	19.6	
3.75	23.4	18.8	21.0	
4.0	25.0	20.0	22.4	

MRCA

19

"Tech today," Professional Roofing, May 2010

NRCA 2009 R-value testing:

- 15 samples of new 2-inch polyiso. were testing according to ASTM C518
- Tested R-values at 75 F were lower than LTTR
- R-value of polyiso. is temperature sensitive
- R-values at 25 F, 40 F and 110 F are lower than Rvalue at laboratory conditions

NRCA webinar 10

In review...

- New LTTR values as of January 1, 2014
- Implementation concerns
- LTTR may not be appropriate for design purposes
- NRCA is maintaining it's longstanding design R-value recommendation

NRCA

22

NRCA webinar 11

Future NRCA webinars

- Nov. 26 Understanding OSHA's Proposed Silica Rule
- Dec. 19 Errors & Omissions and Pollution: Understanding Your Exposures
- Jan 23 NRCA Leadership: Industry Update
- Feb 20 Engaging the Latino Labor Force
- March 20 Exploring EnergyWise

NRCA

23

Mark S. Graham

Associate Executive Director, Technical Services
National Roofing Contractors Association
10255 West Higgins Road, 600
Rosemont, Illinois 60018-5607

(847) 299-9070 1-800-323-9545 (847) 299-1183

www.nrca.net mgraham@nrca.net Twitter: www.twitter.com/MarkGrahamNRCA

24

NRCA webinar 12