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Abstract: Run efficient second order designs suitable for both factor screening 
and the fitting of a second-order response model are of interest in complex 
system characterisation efforts particularly when those efforts encounter 
budgetary constraints limiting their test programme. Leading designs are the 
smaller sized definitive screening design and the larger sized design, fractional 
Box-Behken design. When specific domain knowledge of system factor 
interactions is available, either a priori or a posteriori, that domain knowledge 
can be exploited to generate the definitive screening design plus. This paper 
describes how to generate the single DSD+, how to augment a DSD to arrive at 
the DSD+ and compares the performance of the two designs under a variety of 
effect sparsity, effect heredity and model noise conditions. The DSD+, with its 
extra k – 1 runs for k factors is shown to greatly improve the screen and model 
fitting capabilities of the DSD. 
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1 Introduction 

Response surface methodology (RSM) focuses on approximating a real world system 
response typically with either a first-order or second-order polynomial model. While the 
choice of experimental designs for first-order models is fairly straight forward depending 
upon the shape of the experimental design region and number of available experimental 
runs, choosing an experimental design to fit a second-order model, 
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is more complex due to the variety of design criteria and characteristics to consider. 
Usually, the experimenter does not have a priori knowledge regarding the appropriate 

polynomial model to use to approximate the system response. As such it is common 
practice in RSM to employ experiments sequentially. Box and Liu (1999) illustrated the 
RSM philosophy of sequential learning where first-order designs are typically used to 
perform factor screening and second-order designs are used to fit a response surface 
exhibiting some degree of curvature. Since the a posteriori knowledge about a system 
response possessing curvature comes from analysis of the first-order design, the typically 
sequential nature of RSM allows developing second-order designs by augmenting  
first-order designs with additional experimental runs. 

Unfortunately, whether due to time, budget, or other constraints, there are times when 
conducting multiple experiments is unrealistic. For instance, Lawson (2003) points out 
fixed deadlines for scale up and production of prototype engineering designs may not 
allow the possibility of follow-up experimentation. Couple this with the fact that military 
systems, particularly aerodynamic systems, are complex and often exhibit nonlinear 
behaviour, there are times when a single experimental design capable of performing both 
factor screening and higher order response surface exploration may be required. 



   

 

   

   
 

   

   

 

   

    Augmentation of definitive screening designs (DSD+) 93    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Recent literature has proposed second-order screening design methodologies, 
sometimes referred to as one-step RSM or definitive screening, employing a single 
experimental design capable of both factor screening and fitting a second-order 
polynomial model. 

Edwards and Truong (2011) performed a simulation study examining several  
second-order screening designs focusing on the design’s ability to correctly identify 
active factors under a variety of conditions. The truth models used assumed both factor 
sparsity and strong effect heredity. 

Sparsity and heredity are two important principles considered during the development 
of successful screening designs. The sparsity principle stems from the Pareto principle 
which has led to an assumption in screening designs that only a small number of factors, 
factor sparsity, are significant in their contribution to an appropriate polynomial model 
approximation of a system response. However, the degree to which factor sparsity holds 
as the number of factors being investigated grows has been debated. The term effect 
sparsity has been used to identify with the assumption that instead of the number of 
active factors being relatively small in the polynomial model approximation, the number 
of active effects is relatively small. As a result, it is possible for the assumption of effect 
sparsity to hold while factor sparsity does not. 

Heredity, either strong or weak, is the second screening principle considered during 
model selection. Strong heredity means that if a model includes a two-factor interaction, 
then its constituent main effects are included in the model. Conversely, weak heredity 
requires only one of the two constituent main effects be included in the model. 

Dougherty et al. (2013) examined the robustness of definitive screening designs 
(DSDs) and fractional Box-Behken designs (FBBD), two second order screening designs, 
with respect to the assumptions of sparsity (factor or effect) and heredity (strong or 
weak). Dougherty et al. (2013) showed that regardless of the heredity (weak or strong), 
sparsity (effect or factor), or noise level combination, the DSD is robust in its ability to 
correctly identify active main effects. At lower noise levels, the DSD performs 
favourably in identifying active two-factor interactions but as the noise level increases the 
DSD performance suffers. Additionally, the run-efficient DSD had trouble identifying 
active pure quadratic effects when two-factor interactions are present. However, if the 
experimenter has a priori knowledge regarding the importance of a particular factor, or 
that factor’s second-order effects, augmentation of the DSD could reduce the correlation 
between a factors second-order effects without sacrificing too much in the way of design 
run efficiency while maintaining the requirement for a single design. Alternatively, if the 
experimenter has a posteriori knowledge about a particular factor to include any  
second-order effects, augmenting the DSD demonstrates the feasibility of follow-up 
design runs for DSD. 

The remainder of this paper is organised as follows: Section 2 briefly discusses the 
literature relevant to second order screening designs while Section 3 focuses on the DSD 
generation and augmentation. In Section 4, we present a side-by-side comparison of the 
DSD examined in Dougherty et al. (2013) with an augmented design focusing on 
improved robustness to the assumptions of heredity and sparsity and significant  
second-order factor identification. Section 5 examines the effect of replicating the 
analysis on the designs ability to identify important factors of interest and Section 6 
concludes the article. 
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2 Second order screening designs 

Initial attempts at identifying second-order screening designs relied upon the design’s 
projection capacity. When the factor sparsity principle holds any regular fractional 
factorial design of resolution R, projects onto any subset of R – 1 factors as a full 
factorial. For example, a 3 12III

−  design (R = 3) can project into a 22 design (Myers et al., 
2009). This projection property extends to non-regular designs like the Plackett-Burman 
designs discussed in Lin and Draper (1992), and Wang and Wu (1995). 

Cheng and Wu (2001), hereafter referred to as CW, studied three orthogonal array 
(OA) designs (OA(18, 37), OA(27, 38), and OA(36, 312)). The OA(N, 3k) connotation 
shows the design’s number of runs N and number of factors k. In contrast to 3n–k designs 
which have defining contrast subgroups to describe the design structure, the OA(N, 3k) 
designs studied by CW required computer search to classify the possible projected 
designs. 

Because a design can project onto many different combinations of factors, CW 
developed a projection-efficiency criterion to compare designs based upon: 

1 the number of eligible projected designs 

2 the estimation efficiency for eligible projected designs determined by the ratio of 
each designs D- and G-efficiencies (Cheng and Wu 2001). 

Eligible designs are designs to fit a second-order model and the D- and G-efficiencies, 
denoted Deff and Geff, respectively, criteria compare the performance of a design against a 
corresponding optimal design (Myers et al., 2009). 

Under the assumptions of factor sparsity and strong heredity, CW introduced a  
two-stage analysis method. The first stage consisted of performing a main effect factor 
screening analysis and the second stage involved fitting a second-order model with the 
identified main effects from the first stage. The key linkage between stage one and two 
was the ability to project the initial larger factor space onto a smaller factor space capable 
of fitting a second-order model. Unfortunately, the designs CW studied have no 
guarantee as to their ability to project down to a specific subset of the original factors and 
no flexibility in modifying the number of design runs. 

Improving on the designs of CW, Xu et al. (2004), hereafter referred to by XCW, 
proposed a combinatorial method for constructing new and efficient OA designs and a 
design selection approach based upon a projection aberration criterion which combines 
the generalised word-length pattern of the generalised minimum aberration criterion (Xu 
and Wu, 2001) for factor screening and the projection-efficiency criteria (Cheng and Wu, 
2001) for interaction detection. XCW assessed the projection performance of three 
combinatorially non-isomorphic OA(18, 37)s and three combinatorially non-isomorphic 
OA(27, 313)s. Their three-step approach involves: 

1 screening out poor orthogonal arrays for factor screening using the generalised  
word-length pattern 

2 applying the projection aberration criterion to select a best design from step 1 

3 determining the best level permutations of the design from step 2 to improve design 
projection eligibility and estimation efficiency under the second-order polynomial 
model. 
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Ye et al. (2007), hereafter referred to as YTL, also examined 3-level 18-run and 27-run 
orthogonal designs; however, in addition to considering the projection properties of 
designs, their design choices were based on both model estimation and model 
discrimination criteria. The two model estimation criteria employed examine the 
proportion of estimable models, estimation capacity (EC), and average D-efficiency of all 
models, information capacity (IC). YTL employed two of the six non-Bayesian criteria, 
average expected prediction differences (AEPD) and minimum maximum prediction 
difference (MMPD), proposed by Jones et al. (2007) for model discrimination. 

While previous work focused primarily on the designs projection capacity, Edwards 
and Truong (2011) applied the method of Jones and Nachtsheim (2011b) for finding 
efficient designs with minimal aliasing between main effects and two-factor interactions. 
Deemed MA designs, Edwards and Truong (2011) constructed 18, 27, and 30-run designs 
for simultaneous screening and response surface optimisation for k = 4 – 7, k = 4 – 13, 
and k = 6 – 14 factors, respectively, by minimising the sum of squares of the elements of 
the alias matrix, A, subject to a lower bound on the primary model D-efficiency. Edwards 
and Truong (2011) compared the 27-run OAs of XCW and YTL with MA designs in 
terms of D-efficiency of projection and, via a simulation study, the proportion of active 
factors declared significant (Power 1) as well as the proportion of simulations in which 
only the true active factors are declared significant (Power 2). Although ranked last in 
terms of D-efficiency, the MA designs showed superior performance in their ability to 
detect active factors (Edwards and Truong, 2011). 

For simplicity, the CW, XCW, YTL, and MA designs use linear and quadratic  
main-effects only analysis for factor screening but the Bayesian approaches of Box and 
Meyer (1993) or Chipman et al. (1997) can also be used to screen for significant factors 
outside of main effects. However, these methods are not readily available in statistical 
software packages and are computationally intensive procedures, thus likely making their 
use impractical (Edwards and Truong, 2011). Unfortunately, as shown by Truong (2010), 
if the strong heredity principle fails to hold important effects can be missed leading to a 
mis-specified second-order polynomial model. 

Edwards and Mee (2011) introduced the spherical FBBD aimed at overcoming the 
projection deficiencies and main/quadratic effect only analysis issues found in the 
CW/XCW/YTL/MA designs. The FBBD provide the ability to explore interactions 
during the screening stage and to fit second-order models via a backward elimination 
analysis strategy to each of the (k – 1)-factor projections. In contrast to the 
CW/XCW/YTL/MA designs, Edwards and Mee (2011) assumed an effect sparsity vice 
factor sparsity model and searched for designs having eligible projections greater than the 
up to p = 5 factor projections provided by the CW/XCW/YTL/MA designs by taking 
subsets of the two-level fractional factorial designs which compose a BBD. While 
FBBDs require more runs than CW/XCW/YTL/MA designs, their ease of construction 
and aliasing structure facilitate an analysis strategy which cannot be applied to the 
CW/XCW/YTL/MA designs. 

Jones and Nachtsheim (2011a) introduced a class of three-level designs referred to as 
‘DSDs’ where main effects are not biased by second-order effects and all quadratic 
effects are estimable. For k ≥ 6, the DSD can project down to a full quadratic model in 
any three factors. It is this design we augment, adding runs to improve effects 
estimability under specified conditions. 
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3 DSD augmentation 

Jones and Nachtsheim (2011a) used a computerised search algorithm to create the DSD, 
with 2k + 1 runs to investigate k factors. The DSD consists of k fold-over pairs for k 
factors and a single centre point. The search algorithm forces each run to maintain a 
single factor at its centre point while forcing the remaining factors to their extremes (± 1). 
The DSD is constructed using a variant of the coordinate exchange algorithm of Meyer 
and Nachtsheim (1995) to maximise the determinant of the information matrix of the 
main effects model while maintaining the desired design structure. 

To guard against local maxima, Jones and Nachtsheim (2011a) use multiple random 
starting designs for each k-factor design; however, Xiao et al. (2012) demonstrate a 
method for generating global optimum DSD for an even value of k through the use of 
conference matrices. Table 1 shows the nine-factor DSD generated by JMP 10. JMP 10 
uses the conference matrices method of Xiao et al. (2012) even when k is odd by 
producing a DSD for k + 1 factors and removing the last column of factor settings. As a 
result when k is odd, the DSD has 2k + 3 runs. When k is even, the DSD maintains the  
2k + 1 number of runs original proposed by Jones and Nachtsheim (2011a). 
Table 1 Nine-factor DSD 

A B C D E F G H J 

0 1 1 1 1 1 1 1 1 

0 –1 –1 –1 –1 –1 –1 –1 –1 

1 0 –1 –1 –1 –1 1 1 1 

–1 0 1 1 1 1 –1 –1 –1 

1 –1 0 –1 1 1 –1 –1 1 

–1 1 0 1 –1 –1 1 1 –1 

1 –1 –1 0 1 1 1 1 –1 

–1 1 1 0 –1 –1 –1 –1 1 

1 –1 1 1 0 –1 –1 1 –1 

–1 1 –1 –1 0 1 1 –1 1 

1 –1 1 1 –1 0 1 –1 1 

–1 1 –1 –1 1 0 –1 1 –1 

1 1 –1 1 –1 1 0 –1 –1 

–1 –1 1 –1 1 –1 0 1 1 

1 1 –1 1 1 –1 –1 0 1 

–1 –1 1 –1 –1 1 1 0 –1 

1 1 1 –1 –1 1 –1 1 0 

–1 –1 –1 1 1 –1 1 –1 0 

1 1 1 –1 1 –1 1 –1 –1 

–1 –1 –1 1 –1 1 –1 1 1 

0 0 0 0 0 0 0 0 0 
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Table 2 Nine-factor augmented definitive screening design (DSD+) 

A B C D E F G H J 

0 1 1 1 1 1 1 1 1 

0 –1 –1 –1 –1 –1 –1 –1 –1 

1 0 –1 –1 –1 –1 1 1 1 

–1 0 1 1 1 1 –1 –1 –1 

1 –1 0 –1 1 1 –1 –1 1 

–1 1 0 1 –1 –1 1 1 –1 

1 –1 –1 0 1 1 1 1 –1 

–1 1 1 0 –1 –1 –1 –1 1 

1 –1 1 1 0 –1 –1 1 –1 

–1 1 –1 –1 0 1 1 –1 1 

1 –1 1 1 –1 0 1 –1 1 

–1 1 –1 –1 1 0 –1 1 –1 

1 1 –1 1 –1 1 0 –1 –1 

–1 –1 1 –1 1 –1 0 1 1 

1 1 –1 1 1 –1 –1 0 1 

–1 –1 1 –1 –1 1 1 0 –1 

1 1 1 –1 –1 1 –1 1 0 

–1 –1 –1 1 1 –1 1 –1 0 

1 1 1 –1 1 –1 1 –1 –1 

–1 –1 –1 1 –1 1 –1 1 1 

0 0 0 0 0 0 0 0 0 

1 –1 1 –1 –1 –1 –1 –1 –1 

–1 1 1 1 1 –1 1 1 1 

–1 –1 1 –1 –1 –1 –1 –1 1 

–1 1 –1 –1 –1 –1 –1 1 –1 

1 –1 1 1 1 1 –1 1 1 

1 1 1 1 –1 1 1 1 –1 

–1 –1 –1 1 1 –1 –1 –1 –1 

1 1 1 –1 1 –1 1 1 1 

The 2k + 1 or 2k + 3 runs for when k is even or odd, respectively, provide a sufficient 
number of degrees of freedom for estimates of the intercept, all k main effects, and all k 
pure quadratic effects. However, Dougherty et al. (2013) showed that when both  
two-factor interactions and pure-quadratic effects are active, regardless of heredity 
(strong or weak) or sparsity (factor or effect), the standard DSD may not have enough 
degrees of freedom to decouple the correlation between two-factor interactions and  
pure-quadratic effects. As a result, the DSD, when used as a single experimental design, 
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is susceptible to making Type-II errors particularly with regards to active pure-quadratic 
effects. Because the DSD is very run efficient when compared to other second-order 
screening designs, augmenting the original DSD to improve detection of active quadratic 
effects (both two-factor interactions and pure-quadratic) is desirable. 

If the experimenter has a priori knowledge regarding the importance of a particular 
factor or factors second-order effects, augmentation of the DSD, hereafter referred to as 
DSD+, can reduce the correlation between a factors second-order effects without 
sacrificing too much in the way of design run efficiency while maintaining the 
requirement for a single design. Conversely, if the experimenter has a posteriori 
knowledge about a particular factor or factors second-order effects, augmenting the DSD 
demonstrates the feasibility of follow-up design runs for DSD. 

Common approaches to design augmentation to clarify model ambiguity involves the 
augmentation of the design with runs specifically designed to de-alias a specific alias 
chain or using complete or fractional foldovers of the design. Since the DSD are basically 
already full foldover designs, using the foldover approach on DSD does not reduce 
aliasing between second-order effects. Additionally, the alias chains for DSD are very 
complex due to the nature of the design construction. Therefore, an alternative approach 
using a D-optimal strategy for selecting augmentation points is employed. 

Similar to Jones and Nachtsheim (2011a), a computerised search algorithm is used to 
add k – 1 runs to the DSD. However, instead of the information matrix being based only a 
main effects model, our information matrix is based on the main effects and the k – 1 
two-factor interactions involving a particular factor. The DSD+ were constructed using a 
variant of the coordinate exchange algorithm of Meyer and Nachtsheim (1995) to 
maximise the determinant of the updated information matrix. Multiple random starting 
designs for each k-factor design were explored to guard against local maxima; however, 
the generated designs were still not unique. Multiple designs were generated which were 
equivalent based upon both D-optimal and interestingly I-efficient criteria as well; 
although, as k increased the number of different designs decreased. 

Table 2 shows the k = 9 factor DSD generated by JMP 10 plus k – 1 = 8 augmentation 
runs after updating the information matrix to include the 8 two-way interactions 
involving factor A. 

4 Case comparison 

Dougherty et al. (2013) conducted an empirical study of the nine-factor DSD generated 
using conference matrices based on Xiao et al. (2012) focusing on the design’s robustness 
to detect important effects in models exhibiting different combinations of heredity and 
sparsity. Using Jones and Nachtsheim (2011a) recommended analysis methodology, the 
cases and scenarios studied are reexamined using the DSD+. 

Jones and Nachtsheim (2011a) suggest performing a forward stepwise regression, 
which considers all terms in a second-order model of k = 9 factors. With a p-value of 0.1 
to enter, effects are added into the second-order model while forcing a strong heredity 
model. As such, when either two-factor interactions or pure-quadratic effects are included 
in the model, the lower order terms must also be included. 
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Table 3 Nine-factor simulated response 
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Four cases were considered to represent different combinations of model heredity (strong 
or weak) and sparsity (factor or effect). In addition, each model was examined with four 
different noise levels scenarios; however, the noise level vector used for each scenario 
was identical across each model for each design. The 21 and 29 treatment combinations 
for the DSD and DSD+ designs are given in Tables 1 and 2, respectively. Table 3 shows 
the simulated response values for the 16 combinations of case and noise level scenario for 
the original DSD runs and the eight additional runs for the DSD+. 

Case 1 data was simulated based on the model 
2 2 22 1.5 2 3 2.5 4 4 3.5 5 ,i i i i i i i i i i ii i iy A E G A E G A E A G E G ε= − + − + − + + − +  (2) 

thereby representing a response which exhibits factor sparsity and strong heredity 
between active two-factor interactions or pure quadratic effects and main effects. The 
model exhibits factor sparsity because only 3 of the 9 factors are active within the nine 
effects contained in the model. 

Jones and Nachtsheim (2011a) perform forward stepwise regression with a p-value of 
0.1 to enter while forcing a strong heredity model. Table 4 shows the forward stepwise 
regression steps for the Case 1 data for all four noise level scenarios of Table 3. 
Table 4 Forward stepwise results: Case 1 

 Scenario 

ε ~ N(0, 1)  ε ~ N(0, 2)  ε ε ~ N(0, 3) 

Design DSD DSD+  DSD DSD+  DSD DSD+ 

Step Effects added 

1 EG EG  AG AG  EG EG 

2 AG AG  EG EG  AG AG 

3 AE AE  EJ AE  AE AE 

4 G2 G2  AE G2  DF H2 

5 AJ AJ  – DF  H2 AH 

6 DH GJ  – CJ  – BG 

7 AD A2  – –  – DE 

8 F AD  – –  – FH 

9 C CH  – –  – AF 

10 – –  – –  – B2 

Since the ‘combined’ option rule is used for the forward stepwise regression, the 
inclusion of two-way interaction or pure quadratic effects result in the inclusion of all the 
factors which comprise the two-way interaction or pure quadratic effects. For example, 
when considering the original DSD Scenario 3, where εi ~ N(0, 3), the EG and H2 effects, 
which entered the regression model in steps 1 and 5, respectively, would require the E, G, 
and H factors to also be in the model. 

Case 2 data was simulated according to the model 
22 01.5 2 4 3 2.5 4 3.5 5 ,i i i i i i i i i i i i iiy A E G C H E G H E H C G ε= + + − + − + − +  (3) 
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to represent a response exhibiting effect sparsity and strong heredity between active  
two-factor interactions or pure quadratic effects and their associated main effects. The 
model exhibits effect sparsity vice factor sparsity because although over 50% of the 
factors (5 of 9) are active only 9 of 54 total effects are active, not coincidentally the same 
number as Case 1. 

Table 5 provides the forward stepwise regression results using the Case 2 response 
data associated with each design for all four noise level scenarios in Table 3. 

Case 3 data was simulated according to the model 
2 22 2 1.5 2.5 3.5 4 5 ,i i i i i i i i i ii iy A E A E A E A G E G ε= + − + − + − +  (4) 

thereby representing a response which exhibits factor sparsity and weak heredity between 
active two-factor interactions or pure quadratic effects and main effects. The model 
exhibits factor sparsity because only 3 of the 9 factors are active within the seven effects 
contained in the model. Since not all factors, which comprise the two-factor interactions, 
are present as a main effect, the model exhibits weak heredity. For instance, although 
factor G is significant within two two-factor interactions, factor G by itself is not 
significant. 
Table 5 Forward stepwise results: Case 2 

 Scenario 
ε ~ N(0, 1)  ε ~ N(0, 2)  ε ~ N(0, 3) 

Design DSD DSD+ DSD DSD+ DSD DSD+ 
Step Effects added 

1 CG CG  C2 CG  C2 CG 
2 GH GH  GH GH  E2 GH 
3 EH EH  CG EH  DH EH 
4 A A  CJ AE  A2 A2 
5 E2 E2  A H2  DG DE 
6 J2 J2  GJ DF  AF E2 
7 DH DH  – DE  – AH 
8 CF CH  – BJ  – AE 
9 – CD  – –  – CF 
10 – CJ  – –  – – 
11 – D2  – –  – – 

Table 6 provides the forward stepwise regression results using the Case 3 response data 
associated with each design for all four noise level scenarios in Table 3. 

Case 4 data was simulated according to the model 
2 22 1.5 2 3 2.5 4 3.5 5 4i i i i i i i i i i i i ii iy A E G H E A C E H C G G H ε= − + − + + + − − +  (5) 

to represent a response which exhibits effect sparsity and weak heredity between active 
two-factor interactions or pure quadratic effects and main effects. 

Table 7 provides the forward stepwise regression results using the Case 4 response 
data associated with each design for all four noise level scenarios in Table 3. 
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Table 6 Forward stepwise results: Case 3 

 Scenario 

ε ~ N(0, 1)  ε ~ N(0, 2)  ε ~ N(0, 3) 

Design DSD DSD+ DSD DSD+ DSD DSD+ 

Step Effects added 

1 AE EG  AE AE  EG EG 

2 BF AG  CH AG  AG AG 

3 J2 AE  EJ EG  AE AE 

4 A2 E2  J2 D2  DF – 

5 FH J2  E2 AF  H – 

6 DJ CE  – DF  AF – 

7 E2 –  – BE  – – 

Table 7 Forward stepwise results: Case 4 

 Scenario 

ε ~ N(0, 1)  ε ~ N(0, 2)  ε ~ N(0, 3) 

Design DSD DSD+ DSD DSD+ DSD DSD+ 

Step Effects added 

1 GH GH  GH AC  GH GH 

2 AH CG  AE CG  AH CG 

3 AF AC  EG EH  DE AC 

4 EF EH  HJ GH  AD EH 

5 G2 J2  E2 AE  DG DE 

6 AC E2  J2 DF  FH A2 

7 DF H2  – BH  A2 E2 

8 J EJ  – –  – AH 

9 – FH  – –  – FJ 

10 – CD  – –  – – 

11 – EF  – –  – – 

12 – DE  – –  – – 

Tables 8, 9, 10, and 11 show which effects from Cases 1 through 4’s four different noise 
level scenarios were properly identified, incorrectly identified (Type I error), and not 
identified (Type II error), for both the DSD and DSD+ based upon Jones and Nachtsheim 
(2011a) suggested analysis methodology. 

In all four cases, regardless of noise level, the DSD+ performance in identifying 
active effects met or exceeded the DSD performance. However, similar to the DSD, the 
DSD+ was still susceptible to increased Type II errors as the noise level increased, even 
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with the increased design size. Fortunately, the DSD+ was more robust to the heredity 
(strong or weak) or sparsity (factor or effect) assumption than the DSD. When comparing 
strong heredity to weak heredity for DSD, the DSD performed better when strong 
heredity was exhibited, particularly when effect sparsity was present. In contrast, the 
DSD+ performed equally well under the heredity assumption. With regards to the 
sparsity assumption, the DSD+ showed better performance under effect sparsity than 
factor sparsity which was counter to the DSD. However, the DSD+ performance under 
factor sparsity assumption was still better than the DSD. Interestingly, all the Type II 
errors across all scenarios and cases made by the DSD+ involved not identifying active 
pure-quadratic effects. 
Table 8 Second order screening design results: Case 1 

Strong heredity, factor sparsity model: Rep 1 
2A – 1.5E + 2G – 3A2 + 2.5E2 – 4G2 + 4AE + 3.5AG – 5EG + ε 

Scenario  DSD DSD+ 

ε ~ N(0, 1) Identified A, E, G, G2, AE, AG, EG A, E, G, A2, G2, AE, AG, EG 
Type I errors C, D, F, H, J, AD, AJ, DH C, D, H, J, AD, AJ, CH, GJ 
Type II errors A2, E2 E2 

ε ~ N(0, 2) Identified A, E, G, AE, AG, EG A, E, G, G2, AE, AG, EG 
Type I errors J, EJ C, D, F, J, CJ, DF 
Type II errors A2, E2, G2 A2, E2 

ε ~ N(0, 3) Identified A, E, G, AE, AG, EG A, E, G, AE, AG, EG 
Type I errors D, F, H, H2, DF B2, D2, AH, BG, DG 
Type II errors A2, E2, G2 A2, E2, G2 

Table 9 Second order screening design results: Case 2 

Strong heredity, effect sparsity model: Rep 1 

2A – 1.5E + 2G + 4C – 3H + 2.5E2 – 5CG + 3.5EH – 4GH + ε 

Scenario  DSD DSD+ 

ε ~ N(0, 1) Identified A, E, C, G, H, E2, CG, EH, 
GH 

A, E, C, G, H, E2, CG, EH, 
GH 

Type I errors D, F, J, J2, CF, DH D, J, D2, J2, CD, CH, CJ, 
DH 

Type II errors None None 

ε ~ N(0, 2) Identified A, C, G, H, CG, GH A, E, C, G, H, CG, EH, GH 

Type I errors J, C2, CJ, GJ B, D, F, J, H2, AE, BJ, DE, 
DF 

Type II errors E, E2, EH E2 

ε ~ N(0, 3) Identified A, E, C, G, H, E2 A, E, C, G, H, E2, CG, EH, 
GH 

Type I errors D, F, A2, C2, AF, DG, DH D, F, A2, AE, AH, CF, DE 

Type II errors CG, EH, GH None 
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Table 10 Second order screening design results: Case 3 

Weak heredity, factor sparsity model: Rep 1 
2A + 2E – 1.5A2 + 2.5E2 – 3.5AE + 4AG – 5EG + ε 

Scenario  DSD DSD+ 
ε ~ N(0, 1) Identified A, E, A2, E2, AE A, E, E2, AE, AG, EG 

Type I errors B, D, F, H, J, J2, BF, DJ, F, 
H 

C, G, J, J2, CE 

Type II errors AG, EG A2 
ε ~ N(0, 2) Identified A, E, E2, AE A, E, AE, AG, EG 

Type I errors C, H, J, J2, CH, EJ B, D, F, G, D2, AF, BE, DF 
Type II errors A2, AG, EG A2, E2 

ε ~ N(0, 3) Identified A, E, AE, AG, EG A, E, AE, AG, EG 
Type I errors D, F, G, H, AF, DF G 
Type II errors A2, E2 A2, E2 

Table 11 Second order screening design results: Case 4 

Weak heredity, effect sparsity model: Rep 1 
2A – 1.5E + 2G + 2.5E2 – 3H2 + 4AC – 5CG + 3.5EH – 4GH + ε 

Scenario  DSD DSD+ 
ε ~ N(0, 1) Identified A, E, G, AC, GH A, E, G, E2, H2, AC, CG, 

EH, GH 
Type I errors C, D, F, H, J, G2, AF, AH, 

DF, EF 
C, D, F, H, J, J2, CD, DE, 

EF, EJ, F, H 
Type II errors E2, H2, CG, EH None 

ε ~ N(0, 2) Identified A, E, G, E2, GH A, E, G, AC, CG, EH, GH 
Type I errors H, J, J2, AE, EG, HJ B, C, D, F, H, AE, BH, DF 
Type II errors H2, AC, CG, EH E2, H2 

ε ~ N(0, 3) Identified A, E, G, GH A, E, G, E2, AC, CG, EH, 
GH 

Type I errors D, F, H, A2, AD, AH, DE, 
DG, FH 

C, D, F, H, J, A2, AH, DE, 
FJ 

Type II errors E2, H2, AC, CG, EH H2 

5 Analysis replication results 

In order to insure the improved performance in identifying active effects in the presence 
of heredity and sparsity assumption we note as exhibited by the DSD+ over the DSD was 
not limited to a single instance, the response data was replicated four additional times. 
Table 12 displays the average percentage of all active effects, second-order effects, and 
pure-quadratic effects correctly identified from five replications of all four cases and 
three scenarios. For instance, Case 3 (weak heredity, factor sparsity model), Scenario 1  
(ε ~ N(0, 1)) shows on average the DSD correctly identified 80% of the active effects in 
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model, 72% of the active second-order effects (two-way interactions and pure-quadratic 
effects), and 50% of the active pure-quadratic effects. Additionally, Table 12 displays the 
average number of Type I errors made. Overall, the percentages show the DSD+ 
improves over the DSD with regards to identifying active effects and their various 
subsets across the board with little to no increase in Type I errors. However, when the 
noise level increases neither the DSD nor the DSD+ are consistently finding the active 
pure-quadratic effects. The individual replication results are found in Tables 13 to 28 in 
the Appendix. 
Table 12 Second order screening design results: average 

Strong heredity, factor sparsity model: 5 Rep Avg 
Scenario  DSD DSD+ 

ε ~ N(0, 1) Identified 67%, 50%, 20% 91%, 87%, 73% 
Type I errors 9.6 10.6 

ε ~ N(0, 2) Identified 58%, 37%, 20% 84%, 77%, 53% 
Type I errors 7.4 5.6 

ε ~ N(0, 3) Identified 51%, 33%, 27% 62%, 43%, 13% 
Type I errors 6.4 4.8 

Strong heredity, effect sparsity model: 5 Rep Avg 

Scenario  DSD DSD+ 
ε ~ N(0, 1) Identified 98%, 95%, 80% 98%, 95%, 80% 

Type I errors 6.6 7.6 
ε ~ N(0, 2) Identified 78%, 55%, 20% 91%, 80%, 20% 

Type I errors 4.0 5.4 
ε ~ N(0, 3) Identified 84%, 70%, 40% 93%, 85%, 40% 

Type I errors 4.2 4.2 
Weak heredity, factor sparsity model: 5 Rep Avg 

Scenario  DSD DSD+ 
ε ~ N(0, 1) Identified 80%, 72%, 50% 94%, 92%, 80% 

Type I errors 9.8 10 
ε ~ N(0, 2) Identified 60%, 44%, 20% 77%, 68%, 20% 

Type I errors 8.0 7.0 
ε ~ N(0, 3) Identified 51%, 32%, 0% 77%, 68%, 20% 

Type I errors 7.4 4.6 
Weak heredity, effect sparsity model: 5 Rep Avg 
Scenario  DSD DSD+ 
ε ~ N(0, 1) Identified 49%, 23%, 0% 93%, 90%, 70% 

Type I errors 10.6 11.2 
ε ~ N(0, 2) Identified 47%, 23%, 10% 84%, 77%, 30% 

Type I errors 8.4 7.0 
ε ~ N(0, 3) Identified 44%, 20%, 10% 82%, 73%, 20% 

Type I errors 7.6 6.6 

Note: Identified percentages correspond to percentage of active effects, second-order 
effects, and pure quadratic effects. 
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6 Conclusions 

For a second-order polynomial model, if a factor screening design is not used, a design 
must contain enough degrees of freedom to estimate all effects. For k factors this equates 
to ( 1)( 2)

2
k k+ +  design runs. As k increases, the number of required runs can quickly exceed 

the number of available runs provided to an experimenter, particularly within the DoD 
testing realm. As such, as k increases, a screening design must be employed while 
maintaining the ability to estimate a second-order polynomial model when constraints 
dictate a single experiment. Jones and Nachtsheim (2011a) proposed the economical 
three-level DSD for screening quantitative factors in the presence of active second-order 
effects. Dougherty et al. (2013) showed the DSD quite effective in identifying active 
main effects regardless of the heredity and sparsity assumption but lacked the power to 
differentiate between active second-order effects when both two-factor interactions and 
pure-quadratic effects are active. We introduce a way to augment the DSD, deemed 
DSD+, with k – 1 runs which increased the detection performance of active second-order 
effects involving a particular factor of interested. The k – 1 additional runs can be run as 
part of a single experiment with the original DSD if the experimenter has a priori 
knowledge or as part of a follow-on experiment based upon a posteriori knowledge. 
Furthermore, while the additional runs are optimised for two-factor interactions, the 
impact of adding additional centre point runs, or other design points, on identifying active 
pure-quadratic effects requires further investigation. 

One might also consider potentially examining methods to build a DSD+-capability 
without necessarily replying on an initial DSD. Our approach took the run efficient DSD 
as a baseline and augmented it. It is worth looking at allocating the runs from a DSD+, 
again based on a presumed form of the underlying model, into a fully new design robust 
to model misspecification. 

While the k – 1 runs are associated with the k – 1 two-factor interactions of a single 
factor of interest in a k factor experiment, the manner in which the DSD is augmented can 
easily be extended to additional factors. For instance, the DSD can be augmented with  
k – 1 + k – 2 = 2k – 3 runs for all the two-factors interactions of two factors and so on 
until a total of ( )( 1)

2
k k−  runs are added for all the two-factor interactions in a k factor 

experiment. As such, the DSD can be tailored with augmentation runs which take the 
DSD from the standard 2k + 1 runs all the way to ( 1)( 2)

2
k k+ +  runs for a saturated  

second-order design. 
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Appendix 

Table 13 Second order screening design results: Case 1 

Strong heredity, factor sparsity model: Rep 2 
2A – 1.5E + 2G – 3A2 + 2.5E2 – 4G2 + 4AE + 3.5AG – 5EG + ε 

Scenario  DSD DSD+ 
ε ~ N(0, 1) Identified A, E, G, A2, EG A, E, G, A2, E2, G2, AE, AG, 

EG 
Type I errors B, C, D, F, B2, D2, BE, BF, 

CE, DF 
B, C, F, H, F2, BE, BF, CG, 

EH, FH 
Type II errors E2, G2, AE, AG None 

ε ~ N(0, 2) Identified A, E, G, EG A, E, G, A2, G2, AE, AG, EG 
Type I errors B, D, F, J, F2, J2, AF, BD, BF, 

DJ, FG 
D, J, J2, DG, DJ 

Type II errors A2, E2, G2, AE, AG E2 
ε ~ N(0, 3) Identified E, E2 A, E, G, AE, AG, EG 

Type I errors C, H, J, CH, EJ B, F, BF 
Type II errors A, G, A2, G2, AE, AG, EG A2, E2, G2 

Table 14 Second order screening design results: Case 2 

Strong heredity, effect sparsity model: Rep 2 
2A – 1.5E + 2G + 4C – 3H + 2.5E2 – 5CG + 3.5EH – 4GH + ε 

Scenario  DSD DSD+ 
ε ~ N(0, 1) Identified A, E, C, G, H, E2, CG, EH, 

GH, EH, GH 
A, E, C, G, H, E2, CG, EH, 

GH, EH, GH 
Type I errors B, F, AF, BC, BG B, D, F, J, AH, BE, DJ, EG, 

FG 
Type II errors None None 

ε ~ N(0, 2) Identified A, E, C, G, H A, E, C, G, H, CG, EH, GH 
Type I errors B, D, J, AD, BE, CE, CH, DG, 

EJ 
B, D, AB, AD, BD, DG 

Type II errors E2, CG, EH, GH E2 
ε ~ N(0, 3) Identified E, C, G, H, CG, EH, GH A, E, C, G, H, CG, EH, GH 

Type I errors CH A2, CH 
Type II errors A, E2 E2 
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Table 15 Second order screening design results: Case 3 

Weak heredity, factor sparsity model: Rep 2 
2A + 2E – 1.5A2 + 2.5E2 – 3.5AE + 4AG – 5EG + ε 

Scenario  DSD DSD+ 

ε ~ N(0, 1) Identified A, E, A2, E2, AE, AG, EG A, E, A2, E2, AE, AG, EG 
Type I errors B, C, F, G, BE, CE, CF, BE, 

BF, CG, FH 
B, C, F, G, H, J, J2 

Type II errors None None 
ε ~ N(0, 2) Identified A, E, A2, AE, AG, EG A, E, A2, AE, AG, EG 

Type I errors B, D, G, J, B2, BD, EJ D, G, J, J2, DG 
Type II errors E2 E2 

ε ~ N(0, 3) Identified A, E, AE, AG, EG A, E, AE, AG, EG 
Type I errors C, G, H, CH B, F, G, BF 
Type II errors A2, E2 A2, E2 

Table 16 Second order screening design results: Case 4 

Weak heredity, effect sparsity model: Rep 2 
2A – 1.5E + 2G + 2.5E2 – 3H2 + 4AC – 5CG + 3.5EH – 4GH + ε 

Scenario  DSD DSD+ 
ε ~ N(0, 1) Identified A, E, G, EH, GH A, E, G, E2, H2, AC, CG, EH, 

GH 
Type I errors B, C, F, H, G2, AF, AH, BE, 

CF, EF 
B, C, F, H, B2, AB, BC, BE, 

BG, CF 
Type II errors E2, H2, AC, CG None 

ε ~ N(0, 2) Identified A, E, G, GH A, E, G, E2, AC, CG, EH, GH 
Type I errors B, C, D, F, H, J, D2, AB, AJ, 

BF, CE 
B, C, D, H, J, G2, AB, AH, BD, 

BG, BH 
Type II errors E2, H2, AC, CG, EH H2 

ε ~ N(0, 3) Identified A, E, G A, E, G, AC, CG, EH, GH 
Type I errors B, D, AD, BD, BE C, H, CH 
Type II errors E2, H2, AC, CG, EH, GH E2, H2 
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Table 17 Second order screening design results: Case 1 

Strong heredity, factor sparsity model: Rep 3 
2A – 1.5E + 2G – 3A2 + 2.5E2 – 4G2 + 4AE + 3.5AG – 5EG + ε 

Scenario  DSD DSD+ 
ε ~ N(0, 1) Identified A, E, G, AE, AG, EG A, E, G, G2, AE, AG, EG 

Type I errors B, C, D, F, H, J, J2, AB, DH, 
EJ 

C, D, F, H, J, AH, CF 

Type II errors A2, E2, G2 A2, E2 
ε ~ N(0, 2) Identified A, E, G, G2, EG A, E, G, G2, AE, AG, EG 

Type I errors B, D, F, H, B2, AH, BF, EF, 
EH 

B, C, D, F, AF, BC, CD, CF 

Type II errors A2, E2, AE, AG A2, E2 
ε ~ N(0, 3) Identified A, E, G, A2, G2, EG A, E, G 

Type I errors B, C, D, F, H, J, BF, CJ, DF, 
EH 

B, F, H, J, J2, BJ, EH, EJ, FG 

Type II errors E2, AE, AG A2, E2, G2, AE, AG, EG 

Table 18 Second order screening design results: Case 2 

Strong heredity, effect sparsity model: Rep 3 
2A – 1.5E + 2G + 4C – 3H + 2.5E2 – 5CG + 3.5EH – 4GH + ε 

Scenario  DSD DSD+ 
ε ~ N(0, 1) Identified A, E, C, G, H, E2, CG, EH, GH A, E, C, G, H, E2, CG, EH, GH 

Type I errors B, D, F, BH, CD, FG B, D, F, J, G2, AB, AJ, FG 
Type II errors None None 

ε ~ N(0, 2) Identified A, E, C, G, H, CG, EH, GH A, E, C, G, H, CG, EH, GH 
Type I errors F, AF B, D, F, G2, AE, AF, AH, BF, 

DH 
Type II errors E2 E2 

ε ~ N(0, 3) Identified A, E, C, G, H, E2, CG, EH, GH A, E, C, G, H, E2, CG, EH, GH 
Type I errors B, F, J, AB, CE, CF A2 
Type II errors None None 
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Table 19 Second order screening design results: Case 3 

Weak heredity, factor sparsity model: Rep 3 
2A + 2E – 1.5A2 + 2.5E2 – 3.5AE + 4AG – 5EG + ε 

Scenario  DSD DSD+ 

ε ~ N(0, 1) Identified A, E, AE, AG, EG A, E, E2, AE, AG, EG 
Type I errors D, F, G, H, J, D2, AJ, DH B, C, D, F, G, H, J, B2, D2, AJ, 

CD, DG, FH, GJ 
Type II errors A2, E2 A2 

ε ~ N(0, 2) Identified A, E, AE A, E, AE, AG, EG 
Type I errors B, D, F, G, J, G2, AD, BE, BF, 

DJ, EF 
B, C, D, F, G, B2, AC, AD, AF, 

BC, BF, DF 
Type II errors A2, E2, AG, EG A2, E2 

ε ~ N(0, 3) Identified A, E A, E, E2, AE, AG, EG 
Type I errors B, C, D, F, G, H, J, B2, F2, J2, 

AD, AJ, CE, DH 
G, H, EH 

Type II errors A2, E2, AE, AG, EG A2 

Table 20 Second order screening design results: Case 4 

Weak heredity, effect sparsity model: Rep 3 
2A – 1.5E + 2G + 2.5E2 – 3H2 + 4AC – 5CG + 3.5EH – 4GH + ε 

Scenario  DSD DSD+ 

ε ~ N(0, 1) Identified A, E, G, GH A, E, G, AC, CG, EH, GH 
Type I errors C, D, F, H, AD, AH, CE, DE, 

DG 
B, C, D, F, H, J, G2, AB, AG, 

AJ, DJ, FJ, GJ 
Type II errors E2, H2, AC, CG, EH E2, H2 

ε ~ N(0, 2) Identified A, E, G A, E, G, AC, CG, EH, GH 
Type I errors B, C, D, F, D2, AG, BD, BF, 

CE, CF, FG 
C, H, J, J2 

Type II errors E2, H2, AC, CG, EH, GH E2, H2 
ε ~ N(0, 3) Identified A, E, G, AC, CG, EH, GH A, E, G, AC, CG, EH, GH 

Type I errors B, C, D, F, H, J, AF, CE, DJ B, C, F, H, AB, AH, BF, CF, 
EF, FH 

Type II errors E2, H2 E2, H2 
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Table 21 Second order screening design results: case 1 

Strong heredity, factor sparsity model: Rep 4 

2A – 1.5E + 2G – 3A2 + 2.5E2 – 4G2 + 4AE + 3.5AG – 5EG + ε 

Scenario  DSD DSD+ 

ε ~ N(0, 1) Identified A, E, G, E2, AG, EG A, E, G, E2, G2, AE, AG, EG 
Type I errors B, C, D, F, H, J, AD, BF, BG, 

CH, EJ, FJ 
B, C, D, F, H, J, F2, H2, AC, 

BC, CD, CG, DE, EH 
Type II errors A2, G2, AE A2 

ε ~ N(0, 2) Identified A, E, G, G2, AE, EG A, E, G, G2, AE, AG, EG 
Type I errors B, D, F, AB, BF, DF B, F, H, BF, FH, GH 
Type II errors A2, E2, AG A2, E2 

ε ~ N(0, 3) Identified A, E, G, G2, AG A, E, G, E2, AG, EG 
Type I errors B, F, BE, BF J, AJ, GJ 
Type II errors A2, E2, AE, AG A2, G2, AE 

Table 22 Second order screening design results: Case 2 

Strong heredity, effect sparsity model: Rep 4 
2A – 1.5E + 2G + 4C – 3H + 2.5E2 – 5CG + 3.5EH – 4GH + ε 

Scenario  DSD DSD+ 
ε ~ N(0, 1) Identified A, E, C, G, H, CG, EH, GH A, E, C, G, H, CG, EH, GH 

Type I errors B, D, F, J, A2, J2, BG, EG, FG J, A2, G2, J2, AC 
Type II errors E2 E2 

ε ~ N(0, 2) Identified A, E, C, G, H, CG, EH, GH A, E, C, G, H, CG, EH, GH 
Type I errors B None 
Type II errors E2 E2 

ε ~ N(0, 3) Identified A, E, C, G, H, CG, EH, GH A, E, C, G, H, CG, EH, GH 
Type I errors F, AF, EF, FH D, F, CD, FH 
Type II errors E2 E2 

Table 23 Second order screening design results: Case 3 

Weak heredity, factor sparsity model: Rep 4 
2A + 2E – 1.5A2 + 2.5E2 – 3.5AE + 4AG – 5EG + ε 

Scenario  DSD DSD+ 
ε ~ N(0, 1) Identified A, E, E2, AE, AG, EG A, E, A2, E2, AE, AG, EG 

Type I errors B, C, D, F, H, J, J2, AC, BD, 
BJ 

B, C, D, F, G, H, J, B2, C2, G2, 
J2, BG, CE, DF, EH, EJ, HJ 

Type II errors A2 None 
ε ~ N(0, 2) Identified A, E, AE A, E, AE, AG, EG 

Type I errors B, F, H, J, B2, J2, AH, BF G, H, GH 
Type II errors A2, E2, AG, EG A2, E2 

ε ~ N(0, 3) Identified A, E, AE A, E, AE, AG, EG 
Type I errors B, F, BE, BF F, G, J, J2, FJ, GJ 
Type II errors A2, E2, AG, EG A2, E2 
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Table 24 Second order screening design results: Case 4 

Weak heredity, effect sparsity model: Rep 4 
2A – 1.5E + 2G + 2.5E2 – 3H2 + 4AC – 5CG + 3.5EH – 4GH + ε 

Scenario  DSD DSD+ 

ε ~ N(0, 1) Identified A, E, G, GH A, E, G, H2, AC, CG, EH, GH 
Type I errors B, C, D, F, H, J, B2, AD, AH, 

CD, DE, DG, GJ 
C, D, H, J, A2, AD, AH, CE, 

CJ 
Type II errors E2, H2, AC, CG, EH E2 

ε ~ N(0, 2) Identified A, G, CG, GH A, E, G, AC, CG, EH, GH 
Type I errors B, C, H, J, A2, AB, CJ C, D, H, AD, CD 
Type II errors E, E2, H2, AC, EH E2, H2 

ε ~ N(0, 3) Identified A, E, E2 A, E, G, H2, AC, CG, EH, GH 
Type I errors F, H, AF, AH, FH C, D, F, H, CD, FH 
Type II errors G, H2, AC, CG, EH, GH E2 

Table 25 Second order screening design results: Case 1 

Strong heredity, factor sparsity model: Rep 5 
2A – 1.5E + 2G – 3A2 + 2.5E2 – 4G2 + 4AE + 3.5AG – 5EG + ε 

Scenario  DSD DSD+ 

ε ~ N(0, 1) Identified A, E, G, AE, AG, EG A, E, G, A2, E2, G2, AE, AG, 
EG 

Type I errors B, C, F, J, B2, J2, CE, EJ B, C, D, F, H, J, C2, D2, AB, 
AC, BJ, DE, FJ, HJ 

Type II errors A2, E2, G2 None 
ε ~ N(0, 2) Identified A, E, G, A2, EG A, E, G, A2, E2, G2, AE, AG, 

EG 
Type I errors B, C, D, F, J, F2, BF, CJ, DF C, F, AF 
Type II errors E2, G2, AE, AG None 

ε ~ N(0, 3) Identified A, E, G, EG A, E, G, A2, AE, AG, EG 
Type I errors C, D, J, D2, AJ, CE, CG, EJ D, J, J2, EJ 
Type II errors A2, E2, G2, AE, AG E2, G2 
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Table 26 Second order screening design results: Case 2 

Strong heredity, effect sparsity model: Rep 5 
2A – 1.5E + 2G + 4C – 3H + 2.5E2 – 5CG + 3.5EH – 4GH + ε 

Scenario  DSD DSD+ 
ε ~ N(0, 1) Identified A, E, C, G, H, E2, CG, EH, 

GH 
A, E, C, G, H, E2, CG, EH, 

GH 
Type I errors B, D, F, J, BD, CH, FG B, F, J, A2, AF, BC, BG, EJ 
Type II errors None None 

ε ~ N(0, 2) Identified A, E, C, G, H, E2, CG, EH A, E, C, G, H, E2, CG, EH, 
GH 

Type I errors F, AC, CE, EF F, G2, AF 
Type II errors GH None 

ε ~ N(0, 3) Identified A, E, C, G, H, CG, EH, GH A, E, C, G, H, CG, EH, GH 
Type I errors J, J2, AJ B, D, J, J2, AE, BG, CD 
Type II errors E2 E2 

Table 27 Second order screening design results: Case 3 

Weak heredity, factor sparsity model: Rep 5 
2A + 2E – 1.5A2 + 2.5E2 – 3.5AE + 4AG – 5EG + ε 

Scenario  DSD DSD+ 

ε ~ N(0, 1) Identified A, E, A2, AE, EG A, E, A2, E2, AE, AG, EG 
Type I errors B, C, D, F, G, J, B2, J2, BD, 

BF, CE 
B, C, F, G, J, BJ, CF 

Type II errors E2, AG None 
ε ~ N(0, 2) Identified A, E, AE, AG, EG A, E, E2, AE, AG, EG 

Type I errors C, F, G, J, F2, AC, AJ, CF C, F, G, H, AF, CF, GH 
Type II errors A2, E2 A2 

ε ~ N(0, 3) Identified A, E, AE A, E, A2, AE, AG, EG 
Type I errors B, C, F, G, J, G2, BF, EJ, GJ B, C, G, J, J2, AB, BC, BG, EJ 
Type II errors A2, E2, AG, EG E2 
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Table 28 Second order screening design results: Case 4 

Weak heredity, effect sparsity model: Rep 5 
2A – 1.5E + 2G + 2.5E2 – 3H2 + 4AC – 5CG + 3.5EH – 4GH + ε 

Scenario  DSD DSD+ 

ε ~ N(0, 1) Identified A, E, G, GH A, E, G, E2, H2, AC, CG, EH, 
GH 

Type I errors B, C, F, H, J, B2, G2, AE, AF, 
AH, EF 

B, C, D, F, H, J, D2, AF, BE, 
CE, DF, DH, FJ 

Type II errors E2, H2, AC, CG, EH None 
ε ~ N(0, 2) Identified A, E, G, AC, CG A, E, G, E2, H2, AC, CG, EH, 

GH 
Type I errors C, F, C2, G2, AF, CE, FG C, F, H, A2, G2, AF, CE 
Type II errors E2, H2, EH, GH None 

ε ~ N(0, 3) Identified A, E, G A, E, G, AC, CG, EH, GH 
Type I errors B, C, D, F, J, G2, AB, BD, BF, 

CE 
C, H, J, J2, EG 

Type II errors E2, H2, AC, CG, EH, GH E2, H2 

 


