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Abstract - With the popularity of social media (e.g., 

Facebook and Flicker), users can easily share their check-in 

records and photos during their trips. In view of the huge 

number of user historical mobility records in social media, 

we aim to discover travel experiences to facilitate trip 

planning. When planning a trip, users always have specific 

preferences regarding their trips. Instead of restricting users 

to limited query options such as locations, activities or time 

periods, we consider arbitrary text descriptions as keywords 

about personalized requirements. Moreover, a diverse and 

representative set of recommended travel routes is needed. 

Prior works have elaborated on mining and ranking existing 
routes from check-in data. To meet the need for automatic 

trip organization, we claim that more features of Places of 

Interest (POIs) should be extracted. Therefore, in this paper, 

we propose an efficient Keyword-aware Representative 

Travel Route framework that uses knowledge extraction 

from users’ historical mobility records and social 

interactions. Explicitly, we have designed a keyword 

extraction module to classify the POI-related tags, for 

effective matching with query keywords. We have further 

designed a route reconstruction algorithm to construct route 

candidates that fulfill the requirements. To provide befitting 
query results, we explore Representative Skyline concepts, 

that is, the Skyline routes which best describe the trade-offs 

among different POI features. To evaluate the effectiveness 

and efficiency of the proposed algorithms, we have 

conducted extensive experiments on real location-based 

social network datasets, and the experiment results show 

that our methods do indeed demonstrate good performance 

compared to state-of-the-art works. 

 

Keywords - Location-based Social Network, Text Mining, 

Travel Route Recommendation. 
 

I. INTRODUCTION 

Location-based social network (LBSN) services allow users 

to perform check-in and share their check-in data with their 

friends. In particular, when a user is traveling, the check-in 

data are in fact a travel route with some photos and tag 

information. As a result, a massive number of routes are 

generated, which play an essential role in many well-

established research areas, such as mobility prediction, 

urban planning and traffic management. In this paper, we 

focus on trip planning and intend to discover travel 

experiences from shared data in location-based social 
networks. To facilitate trip planning, the prior works in [5] 

[11] [22] [13] [40] provide an interface in which a user 

could submit the query region and the total travel time. In 

contrast, we consider a scenario where users specify their 

preferences with keywords. For example, when planning a 

trip in Sydney, one would have “Opera House”. As such, we 

extend the input of trip planning by exploring possible 

keywords issued by users. 

However, the query results of existing travel route 

recommendation services usually rank the routes simply by 

the popularity or the number of uploads of routes. For such 

ranking, the existing works [37] [32] [29] derive a scoring 

function, where each route will have one score according to 

its features (e.g., the number of Places of Interest, the 

popularity of places). Usually, the query results will have 
similar routes. Recently, [28] aimed to retrieve a greater 

diversity of routes based on the travel factors considered. As 

high scoring routes are often too similar to each other, this 

work considers the diversity of results by exploiting Skyline 

query. 

In this paper, we develop a Keyword-aware Representative 

Travel Route (KRTR) framework to retrieve several 

recommended routes where keyword means the 

personalized requirements that users have for the trip. The 

route dataset could be built from the collection of low-

sampling check-in records. 

 
Figure. 1. Keyword-aware travel routes query running 

example. 

 

Definition 1. (Travel route): Given a set of check -in points 

recorded as a series of travel routes, each check-in point 

represents a POI p and the user’s checked-in time t. The 

check-in records were grouped by individual users and 

ordered by the creation time. Each user could have a list of 

travel routes fT g = fT0; T1; :::g, where T0 = (p0; t 0); (p1; 
t1); :::; (pi; ti), T1 = (pi+1; ti+1); (pi+2; ti+2);  :::   and ti+1 
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ti is greater than a route-split threshold. We set the route-

split threshold to one day in this paper. 

 

Table 1: Example of route dataset 

 
 

 
Figure. 2. An extended example of skyline travel routes 

built by Table 1. 

 

Consider the example illustrated in Figure 1, the related 

route information of which is stored in Table 1. For ease of 
illustration, each POI is associated with one keyword 

(though our model can support multiple keywords) and a 

two-dimensional score vector (each dimension represents 

the rank of a feature). Assume a tourist plans a date with a 

set of keywords [“Whisky” “Sydney Cove” “Sunset”]. First, 

we can find that these keywords vary in their semantic 

meaning: “Sydney Cove” is a geographical region; “Sunset” 

is related to a specific time period (evening) and locations 

such as beach; “Whisky” is the attribute of POI. 

We argue that knowing semantics is important, as some 

query keywords do not need to be matched in the POI 
keyword. For example, p9, even though its name does not 

include “Whiskey”, is a good match, as it is an important 

attribute of Bar POIs. Similarly, “Sydney Cove” is not 

mentioned, but based on the location of Opera House, p8 

matches the requirement. As a result, T3 matches all the 

requirements, which could not be supported by existing 

simple keyword-based matches. In this example, the key-

word “Sunset” can be easily matched. Although the other 

two words are not stored in the database, we want to 

correspond them to Drinking whisky at a bar and Opera 

House in Sydney Cove. Finally, T 3 matches all the 

requirements. Meanwhile, there is still a possibility that no 

existing route is in accordance with the query keywords. For 

this challenge, we propose a candidate route generation 
algorithm to increase the number of routes. For instance, a 

travel sequence T 0 = fp1 ! p3 ! p4 ! p5 ! p8 ! p9g, which is 

aggregated from the route segments of T1 to T3, also 

matches all the keywords specified. 

Additionally, we have mentioned that the final results may 

have similar characteristics and be monotonous due to the 

fact that all of the factors are aggregated into one score for 

each travel route. Consequently, the system will retrieve the 

top-k routes with the highest score as the results. Users may 

not understand the characteristic of these routes through the 

final single score (e.g., Which one has the most interesting 

landmarks? Which one is well-connected to the place I want 
to go?) so it may be hard to choose a route from the final 

results. Furthermore, users need to pre-define the weight for 

each factor, although it is hard to select a suitable weight in 

most cases. Since travel route recommendation has to take 

several factors into consideration to emphasize the unique 

travel factors of travel routes, we borrowed the concept of 

Distance-based Representative Skyline [21] to retrieve 

travel routes. Distance-based Representative Skyline search 

on the travel routes also includes a small number k of 

skyline routes that best describe the full optimal (Skyline) 

results in terms of the features derived. Consider an exam-
ple in Figure 1, where the score vector of POIs represents 

the attractiveness score and the visiting time information. 

To compute the average POI score of T1, T2 and T3, we get 

the final score values (0.1, 0.34), (0.15, 0.44), and (0.18, 

0.3) respectively. For example, with k = 3, the skyline 

points in Figure 2 can be divided into three subsets fT4g, 

fT2,T5,T6g and fT 3,T8g. Our representative skyline travel 

route solution will report fT2; T 3; T4g. 

This paper builds on and significantly improves the KSTR 

framework [28] of recommending a diverse set of travel 

routes based on several score features mined from social 

media. KSTR then constructs travel routes from different 
route segments. Specifically, we extend KSTR to consider 

representative and approximate results under an optional k 

limit in Section 5. Additionally, resources including passive 

check-ins such as GPS-tagged photos are discussed in 

Section 6. This addition would enable KRTR to consider a 

larger input including active and passive check-ins with 

high efficiency and scalability. 

 

The contributions of this paper are summarized as follows: 

We propose a KRTR framework in which users are able to 

issue a set of keywords and a query region, and for which 
query results contain diverse trip routes. Check-in 

information is mined from passive check-ins to enrich the 

input data. GPS-tagged photos are larger in scale than 

foursquare check-ins. This mining thus improves the 

coverage of the input data. 
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We propose a route reconstruction method to partition 

routes into segments by considering spatial and temporal 

features. 

Representative Skyline query for travel route search is 

adopted to combine the multi-dimensional measurements of 

routes, which increases the diversity of the recommended 
results. Moreover, a greedy method is designed for the 

efficiency of the online application. 

To evaluate our proposed framework, we conducted 

experiments on real LBSN and photo datasets. The 

experiments show that KRTR is able to retrieve travel 

routes that are of interest to users. 

The rest of the paper is organized as follows. Section 2 

presents the overview of the KRTR framework. Section 3 

describes the feature scoring algorithms and how to extend 

KSTR to mine from both active and passive check-ins. In 

Section 4, we provide a travel routes exploration module of 

KRTR. The experiment results of the proposed methods are 
presented in Section 5. Section 6 summaries the related 

work. Finally, Section 7 concludes this paper. 

 

II. FRAMEWORK OVERVIEW 

In this section, the proposed framework KSTR is presented. 

KSTR is comprised of two modules: the offline pattern 

discovery and scoring module and the online travel routes 

exploration module. The notations used throughout the 

paper are summarized below in Table 2. 

 

Table 2 Symbols and notations 

 
 

Offline pattern discovery and scoring module: Given an 
LBSN dataset, we first analyze the tags of each POI to 

determine the semantic meaning of the keywords, which are 

classified into (i) Geo-specific keywords, (ii) Temporal 

keywords, and (iii) Attribute keywords according to their 

characteristics. Furthermore, we derive the feature scores of 

the POIs and generate proper candidate travel routes. 

Online travel routes exploration module: In this module, 

we aim to provide an interface for users to specify query 

ranges and preference-related keywords. Once the system 

receives a specified range and time, the online module will 

retrieve those travel routes that overlap the query range and 
the stay time period. Then, it will compute a matched score 

of how well the travel route is connected to the keywords. 

Consequently, the online module returns the k most 

representative routes considering the aforementioned feature 

scores to the users. 

 

III. PATTERN DISCOVERY 

This section describes an offline process of pattern 

discovery from trajectory histories, which includes (1) the 
scoring mechanism for keywords and POIs; (2) a review of 

feature scoring methods that quantify the goodness of the 

routes; and (3) the candidate route generation algorithm. 

 

3.1 Keyword Extraction 

In this subsection, we present how we extract the semantic 

meaning of the keywords and propose a matched score to 

describe the degree of connection between keywords and 

trajectories. The keyword extraction module first computes 

the spatial, temporal and attribute scores for every keyword 

w in the corpus. At query time, each query keyword will be 

matched to the pre-computed score of matching w. 
3.1.1 Geo-specific keywords - Some tags are specific to a 

location, which represents its spatial nature. To quantify the 

geo-specificity of a tag, an external database identifies geo-

terms in the overall tag set and then the tag distribution on 

the map rates the identified geo-terms. Specifically, to 

identify name tags, we leverage an external geo-database. In 

Microsoft Bing services, 

Geocode Dataflow API (GDA) 1 can query large numbers 

of geo-terms to get their representative locations and 

addresses. For a tag w, using GDA, we set GDA(w) as 1 if 

its location (latitude; longitude) is returned, and 0 otherwise. 
Then, using the geographic distribution of the tags, we can 

find place-level geo-terms like ‘Taipei101’ in noisy geo-

terms. Country-level geo-terms like ‘USA’ and city-level 

geo-terms like ‘Seattle’ are far more widely distributed on 

the globe than place-level geo-terms. Thus, we compute the 

variance GeoV ar(w) of the (latitude; longitude) set 

including a tag w. With these features, we define a geo-

specificity (GS) score of a tag w as: 

GS(w) / GDA(w) exp( GeoV ar(w)) (1) 

We consider a tag w as a geo-specific keyword if GS(w) is 

greater than a pre-defined threshold. 

3.1.2 Temporal keywords - Some tags are specific to a 

time interval, which represents its temporal nature. To 
quantify the temporal-specificity of a tag, time distribution 

on a tag rates the identified temporal-terms. Using the time 

distribution of tags, we can find tags associated with a 

specific time interval like ‘sunset’. Tags independent of 

time like ‘Taipei’ are far more widely distributed in time 

than time-specific tags. Thus, to identify temporal-tags, we 

compute the variance TimeV ar(w) of the creation time of 

check-ins including a tag w. With these features, we define 

a temporal-specificity (TS) score of a tag w as: 

T S(w) / exp( T imeV ar(w))        (2) 

We consider a tag w as a temporal keyword if T S(w) is 

greater than a pre-defined threshold. Then, given a tempo-

ral keyword w, we generate a one-dimensional Gaussian  

Nt( ; 2) that models the distribution of the occurring time of 
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w and define the associated time of w as a time interval with 

up to two standard deviations from. 

3.1.3 Attribute keywords - To find attribute keywords, we 

consider tags frequently associated with a POI (TF), while 

not with so many other POIs (IDF). To quantify the 

relevance between a tag and a POI, we define a “document” 
as an estimated check-in set Ip of p. Using this POI-driven 

knowledge, our scoring conveys the POI semantic 

information in both TF and IDF.  

Specifically, we use three types of frequencies: check-in 

frequency (pf), user frequency (uf), and POI frequency (rf).   

Given a tag w and a POI p, pf(Ip; w) is the number of 

check-ins that have w in Ip. It is reasonable that a tag is 

likely to be one of the attribute tags as more check-ins of the 

POI have the tag. However, some users have the same tags 

in different check-ins causing overestimation of pf. 

Similarly, uf(Ip; w) is the number of users that assign w in 

Ip. uf can control overestimated pf. However, we need to 
filter common tags like ‘Travel’, which also have high pf 

and uf. Given a tag w and a set L of all POIs, rf(L; w) is the 

number of POIs p 2 L having w in Ip. Consider the rf 

distribution of the overall tag set. The head may contain tags 

that would be too generic attributes for all POIs, while tags 

in the tail (i.e., rf = 1) are likely not to be attribute terms. 

With these three types of frequencies, we define an attribute 

(AT) score of a tag w as: 

AT (w) max pf(Ip; w) uf(Ip; t)       (3) 

/ p 2L rf(L; w) 

We consider a tag w as an attribute keyword if AT (w) is 

greater than a pre-defined threshold and rf(L; w) > 1. 

 

3.2 Passive check-ins 

In previous sections, we worked with check-ins generated 

by users manually recording their whereabouts, such as 

foursquare check-ins of visiting Taipei 101. However, some 

such whereabouts are only passively recorded, such as 

photos of Taipei 101. Considering that six billion public 

photos have been uploaded in Facebook and more than 3% 

of photos have geo data 2 3, the volume of geo-tagged 

photos is 2.5 times larger than that of active check-ins. In 

addition, they capture locations that cannot be covered by 

active check-ins, such as new restaurants yet to be registered 
at Foursquare DB. We study how such passive check-ins 

can be leveraged, by extending our framework KSTR [28]. 

Our goal is to extract a check-in triple, hwho, where, wheni 

from a Flickr photo. As who and when are often clear from 

the user ID and the timestamp, we focus on extracting 

where based on the location and tags of the photo. However, 

this task is non-trivial, as users describe the same POI, such 

as Taipei 101, using many different names. For example, 

photo uploaders prefer to use various synonymous tags to 

refer to the same POI, which do not necessarily match with 

the official POI name. Besides, not all people assign tags 

referring to POIs taken in photos. To overcome the informal 
nature of photo tagging, we present a two-phase method for 

extracting check-ins from Flickr photos. The first phase 

identifies synonymous tags of an official POI name by 

exploiting characteristics of POIs. Considering the 

synonyms found, the second phase harvests virtual check-

ins by propagat-ing POI-relevance scores through 

duplicate/near-duplicate photos. 

3.2.1 Phase I: Synonym-based Check-in Extraction - The 

first phase is extracting a set Np of semantically equivalent 
terms (i.e., synonyms) of an official name np of a POI p. To 

be specific regarding POIs, considering photo tags as 

synonym candidates, we leverage rich signals associated 

between POIs and photos. Specifically, to extract tags 

synonymous with np, we quantify the location signals of a 

candidate tag t and image signals between np and t obtained 

from an estimated photo set Ip. Toward this goal of mining 

many synonyms, we have devised a scoring function which 

gives a high score for a and keyword that is likely to be the 

name. To devise such a scoring function, we adopt KSTR 

metrics. 

Geo-specificity GS (Eq. 1): Some name tags are specific to 
the given location, which represents its spatial nature 

leading to a higher likelihood that it refers to a POI. 

POI-specificity AT (Eq. 3): Among geo-specific keywords, 

we consider names frequently associated with the given POI 

(TF), which are not so much associated with other POIs 

(IDF). 

Considering both scores in Eq. 1 and 3, we compute a 

synonym score of a tag w of a POI p as: 

Synonym(p; w) = GS(w) + (1) AT (w); w 2 Wp 

where 0 1. is a weight parameter between GS(w) and AT 

(w) and Wp is a set of tags co-occurring with a tag np. 

Finally, if Synonym(p; w) is greater than a synonym 

threshold , we add w to Np. 
3.2.2 Phase II: Collective Check-in Extraction - Once the 

synonym set Np is found, we can find a set of matching 

clusters among duplicate/near-duplicate [41] photo clusters 

Cp. We find c 2 Cp such that 9h 2 c \ Hp. Given c 2 Cp, we 

compute P (Npjc), which represents how relevant a cluster c 

is to a POI characterized by Np. The photo set Ip is then 

approximated as an aggregation of the clusters, i.e., [ c, such 

that P (Npjc) is greater than a linking threshold. However, 

poor clusters in emerging nature cannot have sufficient tags 

and so this linking rule is still too strict to achieve high 

recall in finding photos. 
To loosen it, a cluster cu can be matched with a POI p if a 

cluster cj is annotated with N p and we can answer the 

question “Do two clusters cu and cj refer to the same POI?”. 

For that, we adopt a Bayesian approach to derive such a 

relationship by POI-semantic similarity between the 

clusters. Specifically, P (Npjc) is obtained from a pseudo-

generative model using Bayes’ Rule. Given two clusters cj 

and cu, we combine the two clusters. P (cj; c u) representing 

the tag similarity of two clusters and P (Nejc j) representing 

the reliability of cj for representing a POI e as follows:                

     X 

P (pjcu) P (Npjcu) = P (cjjcu)P (Npjcj) 

       cj 2Cp 

Strictly speaking, neither the generative process from cu to 
cj nor the generative model from cj to Np are known or 
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defined precisely; hence the above conditional probabilities 

cannot be known exactly. However, we are not interested in 

probabilities per-se, but rather in probability values as 

indicators used eventually for linking the decision with. 

For this reason, we can use proxy quantities – respectively a 

cluster-to-cluster similarity and a POI-to-cluster relevance 
which are presented as below. 

The term P (cjjcu) represents the probability of generating 

the contents of a cluster cj from the contents of another 

cluster cu. As the contents, we consider textual knowledge, 

i.e., tags semantically-enriched by duplicate/near-duplicate 

photo clustering. We thus identify the tag frequency vector 

of each cluster and check whether two clusters share many 

co-occurring tags. Specifically, to estimate P (cjjcu), the 

cosine similarity of the cluster pair is calculated based on 

the Bag-of-Words model: 

 
where Tc is a frequency vector of tags annotated in a photo 

cluster c. All tags are weighted using term frequency 

inverted document frequency (TFIDF) intuition, abstracting 

a photo cluster cu as a document. The detailed formula will 

be discussed later. Now a proxy of the probability P (cjjcu) 

can be obtained by normalizing the content similarity 
between cu and cj according to the total similarity between 

cu and Cp:  

 
The term P (Npjcj) can be interpreted as an indicator of how 

reliably a photo cluster represents a POI. We directly derive 

the proxy value for this term using a simple frequency-

based approach as follows: 

 
T annotated in a photo cluster c. where cj is a set of tags Pj

    

3.3 Feature Scoring Methods 
With a set of travel route records, feature scoring should be 

considered to find proper recommendations. In this paper, 

we also explore three travel factors: “Where: people tend to 

visit popular POIs”, “When: each POI has its proper visiting 

time”, and “Who: people might follow social-connected 

friends’ footsteps”. To achieve the “Where, When, Who” 

consideration issue of user demands, the pattern discovery 

and scoring module defines the ranking mechanism for each 

POI with global attractiveness, proper visiting time and geo-

social influence [28]. From the viewpoint of the POI, we 

store the attractiveness score and the visiting time 
information in the POI score vector. On the other hand, 

from the viewpoint of the user, we also consider a score to 

quantify an individual’s influence in recommendation. 

  

3.4 Candidate Route Generation 

In the previous sections, we have proposed the methods for 

matching raw texts to POI features and mining preference 

patterns in existing travel routes. However, the route dataset 

sometimes may not include all the query criteria, and may 

have bad connections to the query keywords. Thus, we 
propose the Candidate Route Generation algorithm to 

combine different routes to increase the amount and 

diversity. The new candidate routes are constructed by 

combining the subsequences of trajectories. Here we 

introduce the pre-processing method first. We then utilize 

the pre-processing results to accelerate the proposed route 

reconstruction algorithm. Last, we design a Depth-first 

search-based procedure to generate possible routes. 

Pre-processing - With the information that a trajectory Ti 

consists of sequence of POIs, f p1 ; p2; :::pn g , we use the 

data structure (head, tail) to reinterpret the trajectory for 

one-step transition, i.e., fp1 ! p2; p2 ! p3; :::; pn 1 ! png. 
Two dictionaried lists headSet and tailSet are used to record 

the head and tail records respectively. 

Combined points should be ordered by time - Obviously, 

it is intuitive to combine (pi; pj) and (pk; pl) if pj and pk are 

the same location. Besides considering spatial distance, we 

also need to consider the visiting time order among 

combined points. Since tail.time must be larger than 

head.time, pk.time should be larger than pi.time in order to 

replace pj with pk. 

DFS-based route enumeration - In order to generate all 

possible routes from their original trajectories, we 
reconstruct new trajectories by linking the (head,tail) 

subsequences using combined points. This would be a depth 

first search-based procedure. We consider all the POIs in the 

headSet as the source, and explore as far as possible along 

each link before backtracking. 

Algorithm 1: Candidate Route Generation 

 
For example, the three existing travel routes T1, T2 and T3 

from Figure 1 can be reinterpreted as (head, tail) pairs, as 

shown in Table 3. Then we have the headset fp1, 

p2,p3,p4,p5,p7,p8g.  Starting from p1, fp1 (10:00) ! p3 
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(12:00)g is found first. p3 is the combined point to fp3 

(12:30) !  p4 (17:00)g since the visiting time order is correct. 

Finally, a candidate route T40 is generated as fp1 (10:00) ! 

p3 (12:30) ! p4 (17:00) ! p5 (19:00) ! p6 (19:30)g. Table 4 

shows the result of the candidate routes: T1 - T3 are the 

original routes and T40 - T60 are three of the reconstructed 
routes. 

Table 3 Raw trajectory dataset. 

 
 

Table 4 Subset of Candidate Routes 

 
 

IV. TRAVEL ROUTES EXPLORATION 

With the featured trajectory dataset, our final goal is to 

recommend a set of travel routes that connect to all or 

partial user-specific keywords. We first explain the 

matching function to process the user query. Next, we 

introduce the background of why we apply a skyline query, 

which is suitable for the travel route recommendation 

applications, and present the algorithm of the distance-based 
representative skyline search for the online recommendation 

system. Furthermore, an approximate algorithm is required 

to speed up the real-time skyline query. The Travel Route 

Exploration procedure is presented as Algorithm 2. 

Algorithm 2: Travel routes exploration 

 
 

4.1 Query Keyword Matching 

To process the user queries, we first describe how to match 

query keywords with the characteristic scores assigned to 

tags. The user-specific keywords in the query reflect the 

individual’s preferences regarding the trip, i.e., the user 

tends to choose a travel route that contains POIs closely 
related to the semantic meanings. In the offline model, we 

have built a tag corpus for POIs with characteristic scores 

and metadata. Also, relevant tags for each POI are weighted 

in the TFIDF manner. Given a keyword set K and arbitrary 

POI p at query time, we define a keyword matching 

measure KM with the pre-computed information: 
                                 X 

KM(p; K) =        tf idf(w; p) (GS(w) + T S(w) + AT (w))       (5) 

                                  w2K 

where tf is the frequency of tag w in a POI and idf is the 

number of POIs with the tag w. tf idf(w; p) is the product of 

tf and idf. 

For example, consider that given the keyword set K = 

[“night” “ximending”], we then find the temporal score of 

“night”= 0.9 and the geo-specific score = 0.001; the 

temporal score of “ximending” = 0.5 and the geo-specific 

score = 0.95. On the other hand, in a POI “red house”, the 

TFIDF score of night = 0.3 and the TFIDF score of 
ximending = 0.8. These scores of keyword set K can be 

aggregated for POI “red house” as score (0.3 (0.9 + 0.001) ) 

+ (0.8 (0.5 + 0.95) ). For the route with multiple POIs, the 

score of each POI as computed above will be summed up. 

The higher the score, the more related the route is with the 

keyword. We filter out the routes under score, which means 

that those routes are not related to the user’s preference. 

 

4.2 Representative skyline Travel Routes Search - Given 

a specific query, we have already retrieved a set of travel 

routes with multidimensional scores, e.g., attractiveness, 

time, and geographical social influence scores to fulfill the 
requirements. To recommend a subset of diverse travel 

routes, [28] proposed a KST R algorithm applying the 

skyline search. A skyline search returns the subset of data in 

a data set which is not dominated by any others. Let a and b 

be data points, where a dominates b if a is as good as or 

better than b in all dimensions and better in at least one 

dimension. Instead of using a traditional top-k 

recommendation system considering a fixed weighting for a 

set of criteria, skyline query considers all possible weighting 

criteria that might offer an optimal result, which stands out 

among others and is of special interest to users. In other 
words, the results of the skyline travel route are not 

dominated by any other routes so the user need not specify 

the weight between every criteria first because travel route 

skyline returns all the possible optimal results w.r.t. 

arbitrary weight. 

In our system, the user can choose the travel route con-

sidering the different weights in three dimensions: (i) how 

attractive this trajectory is, (ii) the proper visiting time of 

each POI in the travel sequence, and (iii) the social 

influence of the users who have visited the POI. Each 

trajectory is regarded as a three-dimensional data point, and 
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each dimension corresponds to one score. However, 

considering the skyline search may return too many results 

that are not readable to users, a limitation of a maximum 

number (an optional k value) of the returned travel routes is 

required. In the following, we review the existing definition 

of the distance-based representative skyline in [21], and 
explain its application over the output of travel routes 

recommendation. 

Definition 2 (Representative skyline travel routes) - 

Consider the three dimensions that previously mentioned, 

i.e., attractiveness, time and geographical social influence; 

trajectory Ti dominates trajectory Tj if and only if the score 

of Ti in any dimension is not less than the corresponding 

score of Tj, where i is not equal to j. Given the full skyline 

S, the representative skyline routes R are the set of routes 

that has the smallest representation error Er(R; S) among all 

representative skylines R. 

 
 

4.3 Greedy scoring using multidimensional index 

Since computing the optimal representative skyline problem 

is NP-hard in high dimensional space4, a multidimensional 

index is helpful to efficiently return the results for real-time 

applications. Recall that in Section 3.4, the DFS-based 

approach to generate the candidate routes is to enumerate all 

subsequences. In the procedure of generation, we can 

simultaneously build an R-tree index while adding each 

entry into the dataset Tc (at Line 15 of Algorithm 1). I-

greedy [21] is a progressive algorithm that continuously 

returns 2-approximate guaranteed representative solutions. 
Instead of retrieving the entire skyline until it is fully 

computed, I-greedy ables to access only a fraction the sky-

line, which saves a considerable cost. The fundamental of I-

greedy is the best-first farthest neighbor search. 

Specifically, given an MBR M in the R-tree, its max 

representative distance, max-rep-dist(M; R), is a value 

which upper bounds the representative distance of any 

potential skyline point p in the subtree of M. Furthermore, 

to eliminate redundant computations, the greedy algorithm 

first maintains a conservative skyline based on the 

intermediate and leaf entries already encountered. Second, it 

adopts an different access order with fewer empty tests 
which checks if an arbitrary point is a skyline point. 

Conservative skyline - Let O as a mixed set of points and 

MBRs. A set O 0 is generated with all the points and the 

side-max corners of the MBRs. The conservative skyline is 

the skyline of O0. It is proved that any point dominated by 

the conservative skyline set cannot appear in the real 

skyline. 

Access order - Let L be the set of intermediate and leaf 

entries that waiting to be processed and E be the entry in L 

with the largest max-rep-dist. I-greedy checks whether there 

is any other intermediate of leaf entry in L whose min-
corner dominates the min-corner of E, which may result in a 

tighter conservative skyline. 

Algorithm 3 presents the procedure of I-greedy to find out 

representative skyline results from the candidate routes. The 

input is the candidate route set containing a skyline route as 

a point. This point is used as the first representative. Recall 

that I-greedy does not require a given number of 

representatives to be returned. Instead, until stopped, it 
continuously outputs representatives ensuring that their 

representation error is at most twice larger than the optimal 

representative skyline of the same size.  

Algorithm 3: I-greedy (O) 

 
In summary, I-greedy maintains three structures in memory 

at any mo-ment: (1) the set R of representatives found so 

far; (2) an access list L that contains all the intermediate and 

leaf entries that have been encountered but not processed or 

for the dimensional space that is more than two pruned yet; 

and (3) a conservative skyline Scon of the set L [ R. 

Given the set O as the input, I-greedy progressively 

produces the representatives. At the beginning, L starts with 

the root entries of the R-tree. Next, I-greedy executes in 
iterations that identifies the entry E of L with the largest 

max-rep-dist. Then it checks whether the min-corner of E is 

dominated by any point in the conservative skyline Scon. If 

yes, E is pruned, and the current iteration finishes. On the 

other hand, if E is not pruned, the iteration continues. 

Following the idea on access order, the entry E0 with the 

smallest L1-distance to the origin among all entries in L 

whose min-corners dominate E needs to be extracted. If E0 

exists, it must be an intermediate entry; otherwise, E would 

be in the conservative skyline Scon, and would have pruned 

E already. In this case, the child node of E0 is processed and 
its entries are inserted into the L that are not dominated by 

any point in Scon. If E0 does not exist, I-greedy processes E. 
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If E is a point, it becomes the next representative skyline 

point. Otherwise if the points in E are dominated by any 

point in Scon, we access its child node, and insert its entries 

in L. 

4.3.1 Complexity - Assume that the number of routes in the 

dataset is N, and the average length of the routes is l. The 
time complexity of our Travel Route Exploration algorithm 

depends on three parts: (i) scan the whole database to find 

the candidate routes in the query range, (ii) calculate feature 

scores and extract an arbitrary skyline search on all 

candidate routes, and (iii) derive the representative skyline 

travel routes. First, the search for (i) takes O(N) and gets 

even faster since the R-tree based GIS index filters out non-

candidate routes efficiently. 

Then for each candidate route, step (ii) computes the scores 

and compares the domination of other routes. The 

complexity is O(N2 l). In the case of extensive routes 

returned from a large-scale query region, it leads to 
excessive computational time and is not applicable for an 

inter-active online system. The process to find out any 

skyline route with the largest value of an arbitrary 

dimension takes O(logB N) I/Os where B is the page size. 

We optimize the implementation by parallelizing the score 

comparison in step (ii), which involves independent 

computations of each route. See Section 5.3 for the 

optimized run time results. 

For step (iii), when allowed to run continuously, I-greedy 

eventually retrieves the whole skyline S with the optimal 

I/O cost as naive -greedy. Any R-tree-based skyline 
algorithm must access all nodes whose min -corners are not 

dominated by any skyline point. Assume that I-greedy is not 

I/O optimal, and accesses a node M dominated by a skyline 

point p. This access must happen at either Line 8 or 16 in 

Algorithm 3. In either case, when M is accessed, p or one of 

its ancestors must be in L. Otherwise, p already appears in 

the representative set R, and hence, would have pruned M. 

As the min-corner of any ancestor of p dominates M, we can 

eliminate the possibility that M is visited at Line 16, 

because for this to happen E0 at Line 5 must not exist, i.e., 

the min-corner of no entry in L can dominate M. On the 

other hand, if M is visited at Line 8, M must have the lowest 
L1-distance to the origin, among all entries in L whose min-

corners dominate E at Line 3. This is impossible because 

any E dominated by the min-corner of M is also dominated 

by p or the min-corner of any of its ancestors, and p or any 

of its ancestors has a smaller L1-distance to the origin than 

M. 

 

V. EXPERIMENTS 

In this section, we empirically evaluate the effectiveness 

and efficiency of the proposed algorithms. First, we describe 

the baseline approaches and evaluation methodology of the 
experiments. We use two real-world LBSN datasets shown 

in Table 4. The FB dataset is collected by Facebook API5. 

We have taken 96 volunteers’ Facebook accounts as user 

seeds (most of the users live in Taiwan) and crawled all 

their and their friends’ location records (i.e., check -ins and 

geo-tagged photos) over the period of Jan. 2012 - Dec. 

2014. CA is another Foursquare dataset with an undirected 

friendship network from [8]. 

We implemented the system on an x86 64 Linux server with 

16 cores and 8 GB memory. All the scores mentioned in 

Section 3 are computed offline and stored in a PostgreSQL 
9.3 database with GIS extension. 

 

Table 5 Details of the LBSNs 

 

 
Figure 3. The number of check-ins and the number of routes 

for all users in the CA and the FB dataset, respectively. The 

distribution shows a long tail extending in the negative 

direction. 

 

To gain insights into the datasets, we plotted both the 

number of check-ins and routes of each user of our datasets. 

As shown in Figure 3, the number of check-ins and routes 
for each user is highly skewed in both datasets. Moreover, 

all distributions have long tails. In particular, the top 10% 

ranked users in all datasets have nearly 60% of total check-

ins and routes. This indicates that most of the users are quite 

inactive. The data sparsity issue may cause considerable 

bias in the results of inactive users. We therefore chose the 

top 10% of users, who were ranked by the travel route 

histories they have, as active users for testing. 

 

5.1 Keyword matching accuracy 

In this subsection, we evaluate the quality of the extracted 

keywords. Since our check-in datasets do not have sufficient 
text descriptions, i.e., tags, we collected an additional photo 

dataset consisting of 165; 057 photos with 958; 441 tags. 

For that, the tags are regarded as input keywords. We used 

Flickr API to collect photos with photo ID, image, location 

(lat and lon), user ID, photographed time, and textual tags 
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(only if they existed) as attributes. We collected GPS-tagged 

photos in the same local area, i.e., the Taipei area6, amount-

ing to 165,057 photos. 

We ranked the tags by using the scores in Section 3.1 and 

measured precision@K. Table 6 shows the precision of de- 

ciding the Geo-specific, Temporal, and Attribute 
keywords.7 We can see that the precision is reasonably high 

and does not decrease much as K increases. Table 7 shows 

the results for keyword extraction. Note that the keywords 

in italics are the Chinese keywords returned, which we 

translate for presen-tation. In the geo-specific dimension, 10 

keywords referring 

We set the Taipei area as a rectangle on the globe with left 

bottom h24:973; 121:423i and right top h25:118; 121:603i. 

For attribute extraction, we adopt [15] extracting probable 

at-tributes of all possible concepts. We can adopt 10 

concepts aligned with POI categories, and Table 6 illustrates 

attributes of the ‘Food’ concept for restaurant POIs to 
certain places are highly ranked. For example, a keyword 

‘Longshan’ represents ‘Longshan Temple’. In the temporal 

dimension, there is no doubt that keywords such as ‘Sunset’, 

‘Sunrise’, ‘Lunch’ and ‘Night’ are specific to a certain time 

interval. ‘Dadaocheng’ is ranked high as it is a place famous 

for its sunset. Also, ‘Butterfly’ and ‘Fireworks’ are strongly 

associated with day time and night time respectively. In the 

attribute dimension, keywords relevant to restaurant POIs 

are highly ranked. 

 

Table 6 Precision of keyword extraction 

 
 

Table 7 Top-10 results of keyword extraction 

 
 

In this section, we present the photo and POI datasets, the 

evaluation measure, and the baselines for evaluation. We 

used the Flickr dataset amounting to 165,057 photos. We 

manually matched the photo data with 502 attractions in 

Taipei obtained from TripAdvisor and, as a result, found 

12,463 POI-labeled photos with 64 POIs. 

To evaluate the performance of the check-in extraction, we 

consider a labeled photo as a ground truth check-in hwho: 

user ID; where: labeled POI; when : photographed timei. 

Based on the ground truth, we used the evaluation measures, 

precision, recall, and F1 score as: 

 

 
 

where IpGT is a set of manually labeled photos on POI p, 

and Ipm is a set of photos labeled with p by a check-in 

extraction method m. We perform a 2-fold validation: Each 

half of the ground truth is used as training data and test data, 

respectively. 
As candidates for the check-in extraction method m, we 

present the following two baseline extraction methods, and 

our three proposed extraction methods. 

Base[25]: A baseline method that only considers 

duplicate/near-duplicate photo clusters with an official POI 

name. 

Base+[25][6]: A baseline method that considers 

duplicate/near-duplicate photo clusters with multiple POI 

names extracted by a state-of-the-art name expan-sion 

method. 

SCE: A component, Synonym-based Check-in Extraction, 

of our proposed method in Section 3.2.1. 
CCE: A component, Collective Check-in Extraction, of our 

proposed method in Section 3.2.2. Note that, to evaluate 

independently with SCE, CCE uses ne instead of Ne. 

SCE + CCE: Our proposed method combining the two 

components in Section 3.2. 

 

Table 8 Performance of check-in extraction 

 
 

Table 8 shows the performance of check-in extraction from 

Flickr photos. Beyond simple matching with an official POI 

name, harvesting more check-ins requires a trade-off 

between precision and recall. The performance of check-in 

extraction depends on whether this trade-off is well con-

trolled. We can see that our proposed method, SCE+CCE, 

has the best F1 score and a significant recall gain with some 

loss of precision. The improvement of SCE+CCE is 

achieved by combining SCE and CCE, which shows the 

complementary nature of the two components. Base+ (using 
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synonyms) improves the F1 score and recall compared to 

Base but not its comparable methods, SCE and SCE+CCE. 

This fact shows that our scoring for synonym extraction is 

more effective for POIs. 

Because not all web-photos can be used as check-ins, it is an 

important question how many photos we can use as check-
ins. Based on the statistics of datasets and recall 

performance, we found that our proposed method can use 

12;463 69:6% = 5:3% photos as attraction check-ins. 

165;057 

Considering that five hundred thousand GPS-tagged photos 

are be-ing uploaded per day by Facebook alone (while geo-

tagged photos can be collected from arbitrary sources 

including Instagram, Twitter, Flickr, and many more), 

passive check-ins have the potential to complement both the 

quantity and quality of active check-ins. 

As a sensitivity test, Figure 4 shows the performance of 

check-in extraction (F1 score) when varying threshold and 
weight parameters and in the two different randomly 

distributed and same-sized datasets. From the results in 

Figure 4, we can make the following observations: First, the 

optimal threshold values are focused on a narrow range, i.e., 

around 0.8, because the number of POI synonyms is 

extremely small, e.g., around three in our datasets. Second, 

around 0.4 to 0.5 is optimal for (linear combination weight 

for GS or AT). This explains the complementary nature 

such that our combined approach outperforms using either 

GS and AT (= 1 or 0). Third, despite the different data 

distributions, the influence of the parameters used in our 
approach is very similar in the two heat-maps. This suggests 

that the supervised learning of and is reliable. 

 
Figure 4 Influence of threshold and weight parameters and 

The two heat-maps represent F1 scores in different data 

distributions. 

 

5.2 Evaluation of route prediction accuracy 

In this experiment, we compared the following three base-

line recommendation models and the original KSTR model 

with our keyword-aware representative travel route (KRTR) 

model. 
Pattern aware trajectory search (PATS) - Only consider 

the sum of the POI attractiveness score. Different to the 

Multinomial model, [26] considers the mobility transition 

among POI pairs. 

Time-sensitive routes (TSR) - Only consider the visiting 

time score of routes. The arrival time of the POIs in the 

recommendation best fits the extracted proper visiting time. 

Geo-social influenced routes (GSI): Only consider the geo-

social influence score of [29]. The route consists of POIs 

visited by geo-social influential users in the social network. 

Keyword -aware skyline travel route (KSTR): KSTR [28] 

outputs full Skyline routes based on both POI and user 

factors. 

Keyword-aware representative travel route (KRTR) - 
Our KRTR outputs optimal representative Skyline routes. 

Unfortunately, raw LBSN data provide no ground truth to 

verify the acceptance of the recommended travel route 

suggestions. Therefore, we studied the “appropriateness” of 

the recommended travel routes as a route prediction 

progress under different spare time conditions. We used the 

data shown in Table 5 for training and testing the model. 

For each dataset, the test data were created by collecting the 

last travel sequence of the top-10% of users (ranked by 

route count) in the most recent 30% time periods. The 

training dataset consisted of the set of travel sequences 

excluding the testing data part. To be exact, the number of 
training data (the number of test data) used in this 

experiment is slightly larger than the number of testing data 

since users with multiple travel sequences only keep the last 

sequence. 

5.2.1 Comparison of route prediction accuracy - We 

measured the difference between the generated routes and 

each test sequence. Three goodness functions are ap-plied as 

the evaluation metrics. 

Edit distance - The edit distance measures the distance 

between two sequences in terms of the minimum number of 

edit operations required to transform one sequence into the 
other [14]. The allowable edit operations are: insert into a 

sequence,  delete  from  a  sequence,  and  replace  one 

landmark with another. 

Geographical region cover ratio - The test route and 

recommended route can both be bounded by a geographical 

box. The ratio of the overlapped region to the testing route 

region. 

Category similarity - To consider the closeness of user 

interest, we compute the cosine similarity of the categories 

between two routes, which is # of overlapped category /# of 

category1 # of category2. 

We compared our KRTR model with the other models: 
KSTR model, pattern aware trajectory search (PATS), time-

sensitive (TSR) and geo-social influenced (GSI) routes. Fig-

ure 5 shows the performance of each model among the three 

measures. Overall, we observe that the CA dataset shows 

better performance than the F B dataset. This might be 

caused from the fact that the unitary seed users lead to much 

biased preferences. We can also find that the proposed 

KRTR model shows near identical results to the KSTR 

model. Since the output of KRTR is the k-itemset subset of 

KSTR, we can claim that KRTR is as effective as KSTR 

without losing the generality, which is the same conclusion 
as the previous section. 

Moreover, it is easy to see that KRTR and KSTR offer the 

lowest edit distance in both datasets, which represents the 

highest prediction accuracy. For example, Figure 5(a) 

depicts that even the worst edit distance results of KRTR is 
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still better than the 90% of the results of the three baseline 

methods. On the other hand, considering the measure of 

region cover ratio and category similarity, PATS has better 

performance in region cover ratio and GSI has better 

category similarity than ours. The results show that the 

proposed KRTR is effective and beats other baselines and 
state-of-the-art methods in terms of route prediction 

accuracy. 

 

5.3 Efficiency 

Table 9 shows the online response time of KRTR in the 

three main sub-procedures: (i) scan the dataset to find the 

overlap routes and compute the score of candidate routes (O 

scoring+R scoring), (ii) Initial skyline point search (I 

skyline), and (iii) Representative skyline search (R skyline). 

We synthesize 34,928 queries from testing users of the FB 

dataset and 39,729 queries from the CA dataset. The 

average response is 1.561708549 seconds. We can find that 
skyline query (I skyline & R skyline) is the most time-

consuming step. In Subsection 5.3.1, we observe the optimal 

Nfrac for approximate candidate route generation. The total 

running time under different scales is shown in Subsection 

5.3.2. 

Table 9 Running time ratio (sub-procedure time cost / total 

time cost) of each step. 

  

 
(a) Average edit distance versus to the recommended 

travel routes of the FB dataset 

 
(b) Average region cover ratio versus to the recommended 

travel routes of the FB dataset 

 

 
(c) Average category similarity versus to the recommended 

travel routes of the FB dataset 

 

 
(d) Average edit distance versus to the recommended travel 

routes of the CA dataset 

 
(e) Average region cover ratio versus to the recommended 

travel routes of the CA dataset 

 
(f) Average category similarity versus to the recommended 

travel routes of the CA dataset 

 

Figure5. Average goodness accuracy of recommended travel route at different query region sizes. The yellow line

represents our method and shows that KRTR has good results over the three measurements. 
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(a) The relative ratio of reconstructed routes in the CA 

dataset 

 
(b) The relative ratio of reconstructed routes in the FB 

dataset 

 
(b) The running time of the reconstruction of the the 

CA dataset 

 
(c) The running time of the reconstruction of the the 

FB dataset 

 

Figure 6. The effectiveness of the candidate route 

generation of the CA and FB datasets, respectively under 

different top-Nf rac% of POI elements. The results converge 

as R increases. 
  

5.3.1 Tuning Approximation Parameters - First, we study 

the accuracy of the approximate routes reconstruction 

algorithm. We define the term “relative ratio” as the ratio of 

reconstructed routes to the skyline searched results. By 

randomly choosing 1,000 routes in the testing set, we 

observe the optimal parameter Nfrac for selecting the top-
Nfrac% ranked POIs to generate routes that control the best 

trade-off between effectiveness and running time. Figure 6 

shows the average relative ratio of the 1,000 testing routes 

compared to the value of Nfrac. Note that the brute-force 

method is N = 100. 

As shown in Figures 6(a) and 6(b), we can find that the 

relative ratio of both datasets converges rapidly as Nfrac 

increases. Moreover, although the running time of 

reconstruction is only slightly longer when Nfrac = 100, the 

running time of the whole procedure is obviously affected 

because the number of generated routes increases 

exponentially w.r.t. the size of the POI elements. Moreover, 
the growth trend of the route number levels off when Nfrac 

> 50. The reason is that the reconstructed routes start to 

duplicate when Nfrac is large enough, since the procedure 

of Candidate Route Generation choose POIs with a high 

score as elements. Therefore, we choose N frac = 10 in both 

datasets, which maintains the accuracy and speed. 

5.3.2 Scalability - The objective of this set of experiments 

is to study the scalability of the proposed algorithms with 

variation of the number of computations. We have made use 

of several methods to optimize the implementation of the 

online system. Figure 7 shows the total running time and the 
comparison of the sequential scoring and the multiprocess8 

scoring. In general cases, the number of route computations 

of a user query seldom exceeds 5,000, and the response time 

of the query takes no more than one second. Since Eight-

cores multi-processing the result is sufficiently fast, the 

multiprocess mechanism does not lead to evident 

improvement. On the other hand, in extreme cases with 

26,000 route computations, using a multiprocessor reduces 

25% of time cost. 

 
 

Figure 7 Runtime versus route number (computation size). 

 

Also, the selection of Nfrac is fixed to 10 within a larger 

route processing number. As shown in Figure 8, the average 

results of 100 queries within 10k to 30k candidate routes. 

The curves present similar trends to Figures 6(c) and 6(d). 
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(a) The process time under different query numbers of 

the CA dataset 

 
(b) The process time under different query numbers of the 

FB dataset 

 

Figure 8 The total process time of the candidate route 

generation under different top-Nf rac% of POI elements. 

 

Trip Planning - Trip planning has been intensively studied 

recently. The problem is to develop a collaborative 

recommendation model to recommend routes for a given 

user at a query region. Some studies have modeled the 
goodness of existing trip routes by self-defined traveling 

factors [26] [35][40]. On the other hand, [17] [13] [12] [11] 

constructed personalized routes according to user queries. 

The traveling factors can be summarized into “Where, 

When, Who” issues. For example, [12] and [11] developed a 

system to construct time-sensitive routes, which considered 

location popularity, visiting order, proper visiting time, and 

proper transit time to model the goodness of a route. [17] 

developed the Photo2Trip system, which integrates a series 

of traveling factors including time duration, season, user 

preference, destination type, and popularity to recommend 
trip itineraries. [13] ranked the constructed routes by the 

location attractiveness, proper visiting time and the distance 

to query locations. 

Location Recommendation and Prediction- In addition, a 

number of research projects focused on recommendation 

and prediction of single location. The task of location 

recommendation is to recommend new locations that the 

user has never visited before. 

VI. CONCLUSION 

In this paper, we study the travel route recommendation 

problem. We have developed a KRTR framework to suggest 

travel routes with a specific range and a set of user 

preference keywords. These travel routes are related to all or 

partial user preference keywords, and are recommended 
based on (i) the attractiveness of the POIs it passes, (ii) 

visiting the POIs at their corresponding proper arrival times, 

and (iii) the routes generated by influential users. We pro-

pose a novel keyword extraction module to identify the se-

mantic meaning and match the measurement of routes, and 

have designed a route reconstruction algorithm to aggregate 

route segments into travel routes in accordance with query 

range and time period. We leverage score functions for the 

three aforementioned features and adapt the representative 

Skyline search instead of the traditional top-k 

recommendation system. The experiment results 

demonstrate that KRTR is able to retrieve travel routes that 
are interesting for users, and outperforms the baseline 

algorithms in terms of effectiveness and efficiency. Due to 

the real-time requirements for online systems, we aim to 

reduce the computation cost by recording repeated queries 

and to learn the approximate parameters automatically in the 

future. 
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