
IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1598 | P a g e

UCaseNar: A Versatile tool for Specifying Narrative

Use Cases

Tejas R. Shah1

1Department of ICT, Veer Narmad South Gujarat University, Surat, India

 (E-mail: proftejas@gmail.com)

Abstract—Requirement Engineering involves the different

phases of eliciting, elaborating, modelling, prioritizing,

negotiating, specifying the functional and non functional

requirements of a system. The software industry has moved

from structured system development to object oriented system
development approach. Capturing software requirements from

clients often leads to error prone and vague requirements

documents. To conquer this issue, requirements engineers

often choose to use UML models to capture their

requirements. The diagrammatic use case not includes the

narrative text and the textual document requires complex

natural language processing. In this paper, a novel and

versatile tool UCaseNar is presented which implements

narrative use case modelling and specification through web

and form based interface.

Keywords—Requirement Engineering; UML (Unified

Modelling Language; Use case; Use case tool

I. INTRODUCTION

The crucial phase of software engineering is requirement
engineering and all the sub sequent phases are dependent and
worked parallel with the context of system requirements only.
The requirement analysis and modelling phase models the
requirements through various methodologies. There are various
methodologies like OMT [1] and Yourdon [2] based on
extensions and implementation of data modelling.

UML is considered as de facto standard in software
development and used in many different domains. UML is a
standard language for writing and software blueprints. UML is
used to visualize, document, construct the artefacts of software.
UML is appropriate for modelling systems which can be
enterprise based or web based distributed systems.

The use case concept was introduced by Ivar Jacobson et al.
[3] to begin the system development from what user wants. In
this way, the system is built from the users' point of view. A
use case specifies a set of associated usage scenarios where
actors and the system interactions take place. A use case
diagram shows a set of use cases, actors and their relationships
as shown in Figure 1.

An actor consists of a person, a company or organization, a
program, or a computer system. Actors of use cases are
always stakeholders of the system, but not all stakeholders tend
to be actors, because they never interact directly with the
system.

Figure 1 Primary Use Case Notation

Use cases can be written in simple text format, from use
case brief, casual, outline, to fully dressed etc., and with
miscellaneous templates. To get high quality requirements, the
use of templates in use case is a regular industry practice. The
template defined by Alistair Cockburn in [4] is one of the most
frequently used writing styles of use case. The different styles
may create the confusion to designers in understanding
diagrammatic representation.

This narrative textual form of use cases are (legible
requirement user stories), comprehensible by all stakeholders
and complemented by visual UML diagrams encourage better
and deeper communication of system. But, it is difficult to
process natural language representation. In addition, the visual
diagram is not including features like pre condition, post
condition and trigger like elements.

The advantages, limitations and potential pitfalls of Use
Cases are mentioned by many researchers [5][6][7].

A. The Benefits of Use Cases

 Elicitation and Specification of Complex
Requirements

As a user-centred technique powerful technique, use cases
helps to ensure that the correct system is build by eliciting the
requirements from the user's perspective. The complexity of
large projects can be reduced by use cases with decomposition
of the problem into major functions (i.e., use cases) and by
analysing applications from the users' perspective.

 User Focused

The use case tool is efficient and user-centric for the
software requirements modelling and specification process.
Use case modelling process starts from identifying key actors
who interacts with the system by their goals to be satisfied by
the system. These actor goals become the use cases which
represent the desired functional requirements of the system.

 Quality requirements by Narrative Use Cases

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1599 | P a g e

To specify the structured, clear and unambiguous
requirements, narrative use case facilitates step by step points
of preconditions, post conditions, triggering event and system
flow of the scenario. The elaborated, narrative and optimized
use cases transforms system to better system interaction
design and high end user experience.

 Covering other aspects of software development

The use case modelling can serve as a base for other aspect
of software development as well, e.g. project planning, test
case generation and documentation. To design a test case, well
written and narrative use case serves as a basic development
principles and valuable guidelines for test cases. The process of
deriving functional test cases from a use case scenario is simple
and efficient.

B. The Limitations of Use Cases

The use case modelling offers many important advantages
and have become an essential component of object technology.
However the misuse of use cases and issues related to diagrams
leads to some limitations too.

 Capturing Non Functional Requirement

Use cases only represent the functional behaviour of system
and not including how efficiently other features of system can
be linked. The non-functional requirements such as security,
privacy, performance are not to be modelled efficiently with
use cases.

 Lack of formality in natural language narrative
use cases

For defining use cases, practitioners are advised to turn
to succinct and focused textual descriptions. There is no formal
language for specifying the descriptions of the use cases. The
changes of miscommunication and ambiguity can be increased
if use cases are specified in natural languages. There is no
formal definition of terms use case, actor, extends, and uses.

 Inconsistency and Interpretation

IT-oriented nature of use cases does not give any answers
to the questions about their completeness and consistency.
There may be conflicts among use cases and gaps that can be
left in system requirements. Each project must form its own
interpretation, as there is no standard definition of use case.
Some use case relationships, such as extends and uses are
ambiguous in interpretation.

 Limitation of Diagrammatic Representation

The concepts of preconditions, post conditions, triggers,
and business rules properties shall be added to use cases for
efficient analysis of system. The visual diagram notations do
not easily handle the branches and loops in the narrative form.
The relationship of use cases (uses, extends, includes) may
create ambiguity in a diagram with different of level of
abstraction. Without a clear purpose for a diagram, it is likely
to end up a confused and aimless demonstration of notation.

Important requirements may be missed or taken incomplete
because of simplified assumptions about the problem domain.
But there are also inherent problems with use cases; in

particular they are not equally suited for all kinds of
requirements. Various studies have determined that eliciting
system requirements and extracting their use cases can be
gruelling and can lead to rather imprecise analysis [4] [5]. To
overcome some of the issues like diagrammatic limitations,
missing requirement repository and natural language
complexity for processing narrative use cases, the UCaseNar
tool is proposed.

II. RELATED WORK

 There have been several areas like UML tool development,

Use case mapping from requirements, extracting use cases

from natural language documents.

 In [8] authors have discussed the motivation for using

essential use cases (EUC) to help model and structure textual
natural language requirements. The work has also identified

some of the problems faced by requirements engineers and

end users while using the EUC approach and developed a

prototype tool for automated tracing of abstract interactions.

Requirements Use Case Tool (RUT) specified in [9] is a web-

based tool that assists project team members to create, view,

and modify use cases and requirement database repository for

a particular project. To achieve the consistency, this valuable

tool facilitates a standard use case template for all the use case

entry into the repository.

 In [10], a domain independent tool called UML Model

Generator from Analysis of Requirements (UMGAR) is

described. This tool generates UML models like the Use-case

Diagram, class model from natural language text requirements

using Natural Language Processing (NLP) techniques.

UMGAR implements a set of syntactic re-enactment rules to

process complex and large requirements into simple

requirements.

 The tool mentioned in [11] aims to develop a tool to assist

novice system analyst in classifying UML diagrams. This

RMTool tool is web based objected oriented modelling tool
and it is tested with students based on questionnaire for

effectiveness and usefulness.

 The following table 1 compares the tool with other tools

available in literature. The features which are considered for

comparison includes web based support, narrative inclusion of

use cases, requirement repositories, System and sub system

linking, robustness of tool, diagrammatic features NLP

support, ease of use, non functional requirement and many

more.

 It can be seen from above tools that very few tools are

supporting narrative use case modelling in web based

environment. Some of the tools are very efficient in NLP of

requirements. However the NLP requires the complex

processing of natural language statements to be converted into

use cases and classes of the system. In addition to that some

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1600 | P a g e

of the tools do not support use case repositories. The other

tools are partially supporting some features and some are

technically inclusive in the tool. So compared to existing use

case tool, UCaseNar form based elicitation tool is

distinguished by several features to model the narrative use

case.

TABLE 1 COMPARISON OF UCASENAR TOOL WITH OTHER

TOOLS

Features RUT EUC

tool

UMGAR

tool

RMTool UCaseNar

tool

Web based √ ≠ ≠ √ √

Diagrammatic

Features

≈ √ √ √ ≠

GUI Interface

Support

√ √ √ √ √

Database of

Use case

√ ≠ ≠ √ √

Narrative

Properties of

use case

≠ ≠ ≠ ≠ √

Report

Generation

≠ ≠ ≠ ≠ √

System and

Sub System

Linking

≠ ≠ ≠ ≠ √

Non

Functional

Requirement

≠ ≠ ≠ ≠ ≈

Robustness √ √ √ √ √

NLP Support ≠ √ √ ≠ ≠

Ease of use √ √ √ ≈ √

√ Full Support ≈ Partial Support ≠ No Support

 ≠ No Support

III. ARCHITECTURE AND IMPLEMENTATION OF TOOL

A. Components of tool

 UCaseNar is narrative GUI based use case modeling tool

which supports state of the art functional requirements

analysis and modeling. UCaseNar is implemented in Java and

uses web based architecture to model use cases. The forms are

created with the help of JSP technology. This tool is not
providing graphical drawing feature to draw the Use case

diagrams, but provides powerful form based editor to manage

the requirements, use cases, actors and various artifacts of use

cases.

Figure 2 UCaseNar tool System

 There are main 3 components of UCaseNar tool as show in

figure 2. First component mentions the functional, non

functional requirements by taking input from the system

analyst and requirement engineer. The web based GUI

modeling interface contains different modules like, system,

sub system detail, functional and non functional requirement,

actor and narrative use case properties. Second component is

the interaction with Use Case database which interacts with all

the modules and facilitates the CRUD (Creation, Read, Update

and Delete) operations on use cases.

 The report generation facility searches the requirement

based on non functional features and provides detail regarding

all use cases specific to a system. The editor is implemented

using JSP in net beans IDE. The database of use case

properties are created in MySQL.

B. Database design of tool

 The database repository of tool as shown in figure 3 is

created in MySQL. The 7 tables describe the schema of

system, requirement and different properties of the use cases.

The database schema provides the interaction between use

case scenarios, connection with the system, requirement

metadata and non functional attributes selection and narrative

properties of the use cases. Very few tools support database

oriented form based management of use case artifacts of

requirements.

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1601 | P a g e

Figure 3 Database of UCaseNar tool

C. Interface of tool

 The different forms are shown in Figure 4, 5 for

requirements, NFR and narrative properties of use cases. It

supports elaborative properties of use cases including pre

condition, post condition, trigger as narrative part. In addition,

this tool is not for high level graphical diagrammatic

representation of use cases and other diagrams. The NFR

properties like security, privacy, validation are provided in

objective manner to be incorporated with functional
requirements. It supports more fine-grained actor to use case

relationship with types of actors and their roles.

Figure 4 System and NFR of tool

Figure 5 Narrative Use Case Module

 The journal information system is considered as

demonstration for narrative use case modeling. The report

shows the project information, sub system detail, requirement

and actor details. The use case tab shows the sample use cases:

review paper and submit paper with all the narrative properties

like priority, pre condition, post condition, trigger, business

rules etc. The case study output is given figure 6 to include the

overall image from system to minute properties of use cases.

The validation and testing is completed to verify the linking of

use cases with requirements.

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1602 | P a g e

Figure 6 Report-UCaseNar tool

IV. CONCLUSION

 Requirement modeling and specification is one of the vital

tasks to specify, manage and document the clear, complete and

unambiguous requirement. The requirement repository is an

efficient way to preserve and maintain functional, non

functional requirements and narrative use case properties. The

diagrammatic representation and textual based use case

modelling results into complex and rigorous processing of

requirements. This paper presented a web based tool
UCaseNar to perform various operations on use cases through

efficient form based interface. The tool is tested and validated

for different fields pertaining to requirements and use cases. In

future, other modeling diagrams can be added to support

activities, classes and object interaction.

REFERENCES

[1] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and B.
Lorensen, Object-oriented modeling and design. Prentice Hall,
1991.

[2] P. Coad and E. Yourdon, Object-Oriented Analysis, 2nd ed.
Prentice Hall, 1991.

[3] I. Jacobson, Object-oriented software engineering : a use case
driven approach. ACM Press, 1992.

[4] A. Cockburn, “Structuring Use cases with goals,” Journal of
Object Oriented Programming, vol. 10, no. 7, 1997.

[5] S. Lilly, “Use Case Pitfalls: Top 10 Problems from Real Projects
Using Use Cases.”

[6] D. G. Firesmith, “Use Cases: the Pros and Cons,” no. August
1995, 2004.

[7] “Use Case.” [Online]. Available:
https://en.wikipedia.org/wiki/Use_case. [Accessed: 21-Aug-
2018].

[8] M. Kamalrudin, J. Grundy, J. G. Hosking, and J. Hosking, “Tool
support for essential use cases to better capture software
requirements SEE PROFILE Tool Support for Essential Use
Cases to Better Capture Software Requirements,” in IEEE/ACM
international conference on Automated software engineering,
2010, pp. 255–264.

[9] J. R. Mccoy, “Requirements Use case Tool (RUT).”

[10] D. K. Deeptimahanti and M. A. Babar, “An Automated Tool for
Generating UML Models from Natural Language
Requirements,” in IEEE/ACM International Conference on
Automated Software Engineering, 2009.

[11] E. Rosi Subhiyakto, S. aplikasi pemodelan, D. Wahyu Utomo,
K. Kunci-RMTool, R. Persyaratan, and P. Lunak, “RMTool;
Sebuah Aplikasi Pemodelan Persyaratan Perangkat Lunak
menggunakan UML,” J NTETI, vol. 6, no. 3, 2017.

