
IJRECE VOL. 7 ISSUE 2 APR.-JUNE 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 3329 | P a g e

Software Defect Forecasting Based on Classification
Rule Mining: A Survey

Nafeesa Hamid1, Jyoti Arora2,
1M.Tech Student, Desh Bhagat University,Mandi Gobindgarh

2 Assistant Professor, Desh Bhagat University,Mandi Gobindgarh

(E-mail: nafisa_hamid@yahoo.com)

Abstract—There has been rapid growth of software

development. Due to various causes, the software comes with

many defects. In Software development process, testing of

software is the main phase which reduces the defects of the

software. If a developer or a tester can predict the software

defects properly then, it reduces the cost, time and effort. In

this paper, we show a comparative analysis of software defect

prediction based on classification rule mining.

Keywords—Software defect prediction; classification

Algorithm; Rule-based Prediction, Software system;

I. INTRODUCTION

There has been a huge growth in the demand for software
quality during recent ages. As a consequence, issues are related
to testing, becoming increasingly critical. The ability to
measure software defect can be extremely important for
minimizing cost and improving the overall effectiveness of the
testing process. The major amount of faults in a software
system is found in a few of its components. Although there is
variety in the definition of software quality, it is truly accepted
that a project with many defects lacks the quality of the
software. Knowing the causes of possible defects as well as
identifying general software process areas that may need
attention from the initialization of a project could save money,
time and working effort. The possibility of early estimating the
probable faultiness of software could help on planning,
controlling and executing software development activities. A
low cost method for defect analysis is learning from past
mistakes to prevent future ones. Today, there exist several data
sets that could be mined in order to discover useful knowledge
regarding defects. Using this knowledge one should ideally be
able to: a. Identify potential fault-prone software. b. Estimate
the distinct number of faults, c. Discover the possible causes of
faults.

Defects are basic properties of a system. They come from
design or manufacture, or external environment. The systems
which run well at the moment may also have defects not
trigged now or not so important at the moment. Software
defects are programming errors which cause the different
behavior compared with expectation. Most of the defects are
from source code or deign, some of them are from the wrong
code generating from compilers. For software developers and
users, software defects are a headache problem. Software
defects not only reduce software quality, increase costing but
also suspend the development schedule. No matter in software

engineering or in research area, to control the number of
defects is an important aspect. Finding and fixing the bugs cost
lots of money. The data of US department of defense shows
that in 2006, American spent around 780 billion dollars for
software bugs related problem. And it also shows that there is
around 42% money spend on software bugs in IT products [1].
Until now there is no similar report in China, but there is an
estimation that the cost for software bugs account for 30% of
the whole cost. So it is very worktable to research the software
defects.

The defect prevention method does not always prevent
defects in the application below test because the application is
so complex and impracticable to identify all the errors or faults.
The defect detection technology complements the defect
prevention effort and uses both methods together to enhance
the likelihood that the test team will achieve the identified test
objectives and goals. The presence of "defect prevention
strategies" not simply reflects anelevated level of test field
maturity, but also represents the most cost-effective
expenditure associated with overall testing efforts. A variety of
methods, tools, techniques and methods to prevent defects are
proposed, but they all seem to be insufficient n accurate
prediction. More work is still to be adopted to prevent defects
in terms of technology and the schemes that are used. In the
case of errors detected in the development lifecycle,
requirements specifications it can be prevented errors from
migrating from design and design to code. Defect prevention is
critical to the quality of the organization. The main purpose of
quality costs is not to decrease costs but to provide costs in
appropriate investments. It should not be delighted as a waste
of time while stipulating deep participation. Instead, it should
consider saving time, money, and resources it needs. It can
save as many reworks as it needs when defects appear in the
final or post-delivery period. At every stage of the software
lifecycle, defect prevention should be introduced to prevent
failures early, take corrective action to eliminate them and
avoid their recurrence. A software defect prediction framework
is a system that can predict whether a given software module is
defective. Typically, software failure prediction models are
trained utilizing software measures and fault data composed
from earlier developed software releases or related projects.
Models can be applied to program modules with unknown
defect data.

Usually during the development process, software
development team can only know about the software defects by
software testing results. But it is expensive to testing the whole
process completely, at the same time most of software testing

IJRECE VOL. 7 ISSUE 2 APR.-JUNE 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 3330 | P a g e

happens at the later stage of software development. If during
testing process we find the number Software defects predicting
is proposed to solve this kind of problem. The assumption is
that the quantity of software is related with the complexity of
software modules. More complex modules normally contain
more bugs. We can use the historical data, the already
discovered software defects and other metric data which can
represent software product, software development process to
predict the software defects quantity and decide whether the
module is defects-prone. In this case, software development
team can allocate resources to high risk software module to
improve the reliability and quality. By adopting software
defects prediction, software development team can forecast the
costing in early stage of software development at a relatively
lower cost. This will help software development team to
optimize allocation of project resources, also help to improve
the quality of software. Most of software development teams
have these four kind of data, including source code,
requirements documentations, testing documentations, defects
tracking system. All of the data can be called software
development repository. As data mining technique becomes
mature and important, also the significant influence it has to the
information discovery. Researchers adopt data mining
techniques into software development repository to gain the
better understanding of software development process, the
evolution of software development, to analyze software defects
and reuse software modules.

When there repeatedly exists a software failure in system
through time it automatically leads to software defect. Software
defect are an error that are introduced by software developer
and stakeholders. The main objective of software defect
prediction is to improve the quality, minimized cost and time
of software products. Software defect is also referred to as bug
can be defined as shortage in the software product that causes
the software not to perform its task as the programmer and
customer needed.

II. RELATED WORK

In 2006, Bibi, Tsoumakas, Stamelos, Vlahavas, apply a
machine learning approach to the problem of estimating the
number of defects called Regression via Classification (RvC)
[1].The whole process of Regression via Classification (RvC)
comprises two important stages: a) The discretization of the
numeric target variable in order to learn a classification model,
b) the reverse process of transforming the class output of the
model into a numeric prediction.

Menzies, Greenwald, and Frank (MGF) [2] published a
study in this journal in 2007 in which they compared the
performance of two machine learning techniques (Rule
Induction and Naive Bayes) to predict software components
containing defects. To do this, they used the NASA MDP
repository, which, at the time of their research, contained 10
separate data sets.

In 2007, Iker Gondra [3]used a machine learning methods
for defect prediction. He used Artificial neural network as a
machine learner. Embedded software defect prediction In 2007,
Oral and Bener [4] used Multilayer Perception (MLP), NB,

VFI(Voting Feature Intervals) for Embedded software defect
prediction. There they used only 7 data sets for evaluation.

In 2011 Baojun, Karel [3] used classification based
association rule named CBA2 for software defect prediction. In
these research they used association rule for classification. and
they compare with other classification rules such as C4.5 and
Ripper.

In 2011, Song, Jia, Ying, and Liu propased a general
framework for software defect-pronness prediction. in this
research they use M*N cross validation with the
dataset(NASA, Softlab Dataset) for learining process. and they
used 3 classification algorithms(Naive baysed, OneR, J48). and
they copared with MGF [2] framework.

Software defect prevention proposals are mainly based on
tools, techniques, methods and standards [12], [18]. This is one
of the most active areas of research in software engineering,
[10], [20], [11], [18], [19], [16]. Because the defect prediction
model provides a list of buggy software artifacts, QA teams
can efficiently assign limited resources to test and investigate
software products [11], [20], [16].

Defect analysis at the early stage reduces time [7], cost,
cost, and resources essential. Knowledge of entering faults and
process can prevent defects. The study of this knowledge will
improve quality and analyze the root cause of defects can
prevent the occurrence of defects. Analysis of the main reasons
may take two types: "logical analysis" and "statistical
analysis". Logical analysis is a humanorientedinvestigation that
needs specialized knowledge in products, processes,
improvement and the environment. Checks logical connection
among errors (effects) and error (reason), and statistical
analysis based on empirical learning of similar projects or
projects generally written . There are many ways to detect
defects such as "inspection", "prototype", "testing" and
"accuracy calibration" [8]. Formal testing is the most effective
and expensive method of quality control to detect defects at an
early stage of development [9], [10]. Prototyping understands
the specific requirements to help eliminate some of the
shortcomings in defect elimination. Testing is one of the most
effectual techniques. It can escape through the early detection
of defects [11] which can be detected during the test. Improve
accuracy, especially in the coding phase, to determine the best
way to go. Precision tuning is the most effective and
economical way to create software. Defect prevention can be
accomplished by automating the development process. Several
tools are offered to analyze the necessity of the stage. The tools
available are the requirements for being too costly. It can
automate the compliance checks, but this cannot be an
automatic integrity check. The tools used in this step include
requirements management tools, recorder requirements tools,
requirements and validation tools. Design tools include
"database design tools", "application design tools", and "visual
modelling tools" such as "Rational Rose". Even tools such as
"code generation tools", "code testing tools", and "code
coverage analysis tools" can be used to automate testing steps.
Several tools such as "defect tracking tools", "configuration
management tools", and "test procedure generation tools" are
available at every stage of development.

IJRECE VOL. 7 ISSUE 2 APR.-JUNE 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 3331 | P a g e

Many defect prediction models are based on "machine
learning". Depending on what to predict the machine learning
models fall into two forms: "classification" and "regression".
As the innovative machine learning techniques are being
developed, "active or semi-supervised learning methods" that
were used to build a good defect prediction models [15], [16].
In addition to machine learning models or statistical models,
such as "BugCache" [19] have been projected. The Figure.1
illustrates the frequency of use of the "defect prediction model"
in representative defect prediction in the literature [5]. Because
"statistical models" based on machine learning have been
considered for anextensive time, "classification and regression
models" dominate. In the proposed BugCache , there have been
several studies examining the BugCache model as well as case
studies in [13],[14],[17].

Kim et al. [23] suggested a new "defect prediction model"
termed as "change classification". Change classification can be
directly beneficial to developers, as opposed to the common
failure prediction model because the change classification
model can provide immediate predictions every time a
developer changes to source code files and commits to the
"version control system" [20]. Though, the modified
classification model is besideintense for actual use because the
model consists of more than 10,000 features [17]. Turhan et al.
[22] implemented a nearest neighbour filter applied (NN filter)
is used to improve intercompany fault prediction performance.
The basic idea behind NN filters is to accumulate related
source instances in the objective instance to learn the prediction
model. In other terms, if it can build a prediction model utilize
a selected source instance with data characteristics similar to
the target instance, the model can be better performed when
predicting the target instance over the model learned to utilize
all source instances. The NN filter selects 10 source
illustrations for each target instance as the nearest neighbours.
To evaluate the performance of inter-company fault prediction
utilizing NN filters were conducted utilizing 10 proprietary
data sets from NASA and SOFTLAB [22].

Most existing work on troubleshooting depends on
declarative specification rules [6] [7] [8] [5]. These conditions
usually determined manually identify the main features that
characterize a defect, especially utilizing a combination of
quantitative (metric), structural and/or lexical information.
However, in a deep scenario, the number of possible defects
that can be described manually with the rules can be very large.
Dimensions software typically utilized to analyze method
efficiency and product software quality for the projects. Failure
assessment is carried metrics software and effectively used to
predict faults. For each fault, the rule represented by the metric
combination requires significant remediation to find the
threshold appropriate for each metric. The software is a
complex object that consists of different modules with varying
degrees of defect frequency. Therefore, it is significant to
predict a defective software module before it deploys a
software project to plan anim proved up holding schemes.
Premature knowledge of faulty software modules can facilitate
it plan efficient process improvement at a reasonable time and
cost. This can direct to enhanced software releases as well as
higher customer fulfillment. Software modules are categorized
into two categories, either defective or non-defective, and are

mostly predicted utilizing a binary classification model. We
take advantage of these two classes for suggestions on how to
classify and evaluate data sets.

Cagatay Catal [22] studied various papers in year 1990 to
2009 those are as following: they used classification trees with
method level metrics on two software systems of NASA and
Hughes Aircraft and also applied logistic regression,
classification trees. Evett et al. predicted quality based on
genetic programming system. They applied fuzzy subtractive
clustering method to predict the number of faults and then, they
used different module order modeling to classify the modules
into faulty or non-faulty classes. They stated that process
metrics is not improving the classification accuracy and such a
model does not provide acceptable results. They used principal
component analysis for first step that is feature selection and
then applied fuzzy nonlinear regression to predict defects on a
large telecommunications system developed with Protel
language. They reported that fuzzy nonlinear regression
method is an encouraging technology for early defect
prediction. They observed that support vector machine
performed better than quadratic discriminate analysis and
classification tree. They focused on the high-performance
defect predictors based on machine learning such as Random
Forests algorithms.

Ezgi Erturk et al. [27] proposed a new method Adaptive
Neuron Fuzzy Inference System (ANFIS) for the software fault
prediction. Then for performing experiment they used
PROMISE Software Engineering Repository dataset, and
McCabe metrics are selected because they comprehensively
address the programming effort. The results achieved were
0.7795, 0.8685, and 0.8573 for the SVM, ANN and ANFIS
methods, respectively. Mie Thet Thwin [26] have used two
kinds of neural network techniques. The first one focuses on
predicting the number of defects in a class and the second on
predicting the number of lines changed per class. Two neural
network models are used which are: Ward neural network and
General Regression neural network (GRNN). They have
performed the analysis result on the NASA dataset. David Gray
et al. have focused on classification analysis rather than
classification performance, it was decided to classify the
training data rather than having some form of tester set. It
involves a manual analysis of the predictions made by Support
vector machine classifiers using data from the NASA Metrics
Data Program repository. Ensemble classifier also gives better
result for classifying software defects [24]. The purpose was to
gain insight into how the classifiers were separating the
training data. Ruchika Malhotra [25] have analyzed and
compared the statistical and six machine learning methods for
software fault prediction. These methods (Decision Tree,
Artificial Neural Network, Cascade Correlation Network,
Support Vector Machine, Group Method of Data Handling, and
Gene Expression Programming) are empirically validated to
find the relationship between the static code metrics and the
defects occurs in a module. They compared the models
predicted using the regression and the machine learning
methods. They have used two publicly available data sets AR1
and AR6 and among them decision tree gives best prediction
result. Ahmet Okutan [29] have used Bayesian networks to
determine the probabilistic influential relationships among

IJRECE VOL. 7 ISSUE 2 APR.-JUNE 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 3332 | P a g e

software metrics and defect proneness. The software metrics
used in Promise data repository, define two more metrics, i.e.
number of developers for the number of developers and lack of
coding quality for the source code quality.

Alina Campan et al.[28] they proposed a novel algorithm
for the discovery of interesting any length of ordinal
association rules in defect data sets. Datasets that contain
several software metrics with similar or comparable domains of
values are frequent in data mining. Gabriela Czibula et al. they
proposed a supervised method for detecting software entities
with architectural defects, based on relational association rule
mining. They performed eexperiments on open source software
are cconducted in order to detect defective classes in object
oriented software systems for example the WinRun4J is a
windows native launcher for Java implementation. Qinbao
Song et al. [31] they calculate defect association, defect
isolation effort, defect correction effort on SEL defect data
consisting of more than 200 projects over more than 15 years.
They compared the defect correction effort prediction method
with other types of methods like PART, C4.5, and Naive Bayes
and show that accuracy has been improved by at least 23
percent. They have explored the impact of support and
confidence levels on prediction accuracy, false negative rate,
false positive rate, and the number of rules as well. They found
that higher support and confidence levels may not result in
higher prediction accuracy, and a sufficient number of rules is a
precondition for high prediction accuracy.

Kamei et al.[23] proposed a defect prone module prediction
method that combines association rule mining with logistic
regression. They have predicted performance of their algorithm
method with different thresholds of each rule interestingness
measure support, confidence and lift using a module set in the
Eclipse project. Yuan Jiang, Ming Li et al.[9] have addressed
two practical issues first, it is rather difficult to collect a large
amount of labeled training data for learning a well-performing
model and second, in a software system there are usually much
less defective modules than defect free modules, therefore
learning techniques would have to be conducted over an
imbalanced data set therefore they proposing a novel semi-
supervised learning approach named Random Committee with
Under Sampling (Rocus). This method incorporates recent
advances in disagreement-based semi-supervised learning with
under-sampling strategy for imbalanced data. Above
approaches have not used hybrid approach that is k-means
clustering with Apriori algorithm for generating accurate rules
regarding, they just focused on the relation association rule.
This work focuses on improving performance of rule
generation for software defect prediction. As in original work
Apriori algorithm is used, it returns a large amount of results.
Applying K-means algorithm in preprocessing step on results
of defect prediction improve accuracy.

Above approaches have not used hybrid approach that is k-
means clustering with Apriori algorithm for generating
accurate rules regarding, they just focused on the relation
association rule. This work focuses on improving performance
of rule generation for software defect prediction. As in original
work Apriori algorithm is used, it returns a large amount of
results. Applying K-means algorithm in preprocessing step on
results of defect prediction improve accuracy.

III. CONCLUSION

Software defect prediction work focuses on the number of
defects remaining in a software system. The software defect
prediction model helps in early detection of defects and
contributes to their efficient removal and producing a quality
software system based on several metrics. A prediction of the
number of remaining defects in an inspected are fact can be
used for decision making. An accurate prediction of the
number of defects in a software product during system testing
contributes not only to the management of the system testing
process but also to the estimation of the product’s required
maintenance. Defective software modules cause software
failures, increase development and maintenance costs, and
decrease customer satisfaction. It strives to improve software
quality and testing efficiency by constructing predictive models
from code attributes to enable a timely identification of fault-
prone modules. The main objective of this study was to assess
the previous research works with respect to software defect
which applies machine learning method, data set used, tools
they used, methodologies, their contribution to science and we
classified it in to three such as based on classification,
Clustering and ensemble methods. Finally, it is possible to
extend this study by systematic literature review which
includes books, dissertation, tutorial, Thesis.

REFERENCES

[1] S Bibi, G Tsoumakas, I Stamelos, and I Vlahavas. Software

defect prediction using regression via classi_cation. In IEEE
International Conference on, pages 330{336, 2006.

[2] Tim Menzies, Jeremy Greenwald, and Art Frank. Data mining
static code attributes to learn defect predictors. Software
Engineering, IEEE Transactions on, 33(1):2{13, 2007.

[3] Iker Gondra. Applying machine learning to software fault-
proneness prediction. Journal of Systems and Software,
81(2):186{195, 2008.

[4] Atac Deniz Oral and Ay_se Ba_sar Bener. Defect prediction for
embedded software. In Computer and information sciences,
2007. iscis 2007. 22nd international symposium on, pages 1{6.

[5] R. Moser, W. Pedrycz, and G. Succi, "A comparative analysis of the
efficiency of change metrics and static code attributes for defect

prediction",ACM/IEEE 30th International Conference on Software
Engineering,ICSE'08, pages 181-190, 2008.

[6] H. Zhang, X. Zhang, and Ming Gu, "Predicting defective software

components from code complexity measures", IEEE In Dependable
Computing Pacific Rim International Symposium on, pages 93-96,

2007. J. Clerk Maxwell, A Treatise on Electricity and
Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68-73.

[7] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, "Benchmarking

classification models for software defect prediction: A proposed
framework and novel findings",IEEE Transactions on Software

Engineering, 34(4):485-496, 2008.

[8] R Geoff Dromey, "Software Control Quality - Prevention Verses
Cure?", ACM Journal of Software Quality Journal archive, Volume-11

Issue 3, Pages 197-210, July 2003.

[9] Kaur S, Kumar D, "Software fault prediction in object-oriented software
systems using density based clustering approach", International Journal

of Research in Engineering and Technology (IJRET), 1(2):111-7, Mar-
2012.

[10] Q. Song, Z. Jia, M. Shepperd, Shi Ying, and Jin Liu, "A general

software defect-proneness prediction framework", Software
Engineering, IEEE Transactions on, 37(3):356-370, 2011.

[11] Haghighi, A. A. S., Dezfuli, M. A., and Fakhrahmad, S. M., "Applying
mining schemes to software fault prediction: A proposed approach

IJRECE VOL. 7 ISSUE 2 APR.-JUNE 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 3333 | P a g e

aimed at test cost reduction", In Proceedings of the World Congress on

Engineering, pp.415-419, 2012.

[12] Software Defect Dataset, PROMISE REPOSITORY,

http://promise.site.uottawa.ca/ SERepository/ datasetspage.html,
December 4, 2013.

[13] H. Najadat and I. Alsmadi,"Enhance RuleBased Detection for Software

Fault-Prone Modules", International Journal of Software Engineering
and Its Applications,Vol. 6, No. 1, January 2012

[14] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, "A systematic

literature review on fault prediction performance in software
engineering", IEEE Trans. Softw. Eng., 38(6):1276– 1304, Nov. 2012.

[15] Shepperd, M., Song, Q., Sun, Z., and Mair, C., "Data Quality: Some

Comments on the NASA Software Defect Data Sets", IEEE
Transactions on Software Engineering, pp.1208-1215, 2013.

[16] Okutan O. T. Yildiz, "Software defect prediction using Bayesian

networks",Inproceeding to Empirical Software Engineering, pp. 1-28,
2012.

[17] H. Can, X. Jianchun, Z. R. L. Juelong, Y. Quiliang and X. Liqiang, "A

new model for software defect prediction using particle swarm
optimization and support vector machine", IEEE 25th Chinese Control

and Decision Conference (CCDC), 2013.

[18] J. Wang, B. Shen and Y. Chen, "Compressed C4.5 Models for Software

Defect Prediction",IEEE 12th International Conference on Quality
Software (QSIC), pp. 13-16, August2012.

[19] E. Arisholm, L. C. Briand, and E. B. Johannessen. A systematic and

comprehensive investigation of methods to build and evaluate fault
prediction models. J. Syst. Softw., 83(1):2–17, Jan. 2010.

[20] T. GalinacGrbac, P. Runeson, and D. Huljenic, "A second replicated

quantitative analysis of fault distributions in complex software systems",
IEEE Trans. Softw. Eng., 39(4):462– 476, Apr. 2013.

[21] D. Rodriguez, I. Herraiz, and R. Harrison, "On software engineering

repositories and their open problems", In Proceedings of RAISE ’12,
pages 52–56, 2012.

[22] C. Catal, Software fault prediction: “A literature review and current

trends, Expert systems with applications”, vol. 38, no. 4, pp. 4626-4636,
2011.

[23] Y. Kamei, A. Monden, S. Morisaki, and K.-i. Matsumoto, “A hybrid

faulty module prediction using association rule mining and logistic
regression analysis”, in Proceedings of the Second ACM-IEE

international symposium on Empirical software engineering and
measurement, pp. 279-281, ACM, 2008..

[24] Tao WANG, Weihua LI, Haobin SHI, Zun LIU, “Software Defect
Prediction on Classifier Ensemble”, Journal of Information &

Computational Sciences, 8:16(2011) 4241-4254.

[25] R. Malhotra, “Comparative analysis of statistical and machine learning
methods for predicting faulty modules,”Applied Soft Computing, vol.

21pp. 286-297 2014.

[26] M. M. T. Thwin and T.-S. Quah, “Application of neural networks for
software quality prediction using objectoriented metrics,”Journal of

systems and software, vol. 76, no. 2, pp. 147-156, 2005

[27] E. Erturk and E. A. Sezer, “A comparison of some soft computing
methods for software fault prediction,” Expert Systems with

Applications, 2014.

[28] Campan, G. Serban, T. M. Truta, and A. Marcus, “An algorithm for the
discovery of arbitrary length ordinal association rules.,” DMIN, vol. 6,

pp. 107-113, 2006.

[29] Okutan, Ahmet, and Olcay Taner Yıldız. "Software defect prediction
using Bayesian networks." Empirical Software Engineering 19.1 (2014)

154-181

[30] .J. Nam, Survey on software defect prediction," 2010.

[31] Qinbao Song, Martin Shepperd, Michelle Cartwright, Carolyn Mair,

“Software Defect Association Mining and Defect Correction Effort
Prediction” , IEEE transaction on software engineering VOL. 32, NO. 2,

Feb 2006

