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Abstract

The graph distinguishability problem investigates whether

a graph can be uniquely identified by the spectrum of its

adjacency matrix, specifically determining if two graphs with

the same spectrum are isomorphic. This issue is central

to spectral graph theory and has significant implications

for graph machine learning. In this paper, we explore the

intricate connections between graph distinguishability and

graph controllability–an essential concept in the control of

networked systems. Focusing on oriented graphs and their

skew-adjacency matrices, we establish controllability-based

conditions that ensure their distinguishability. Notably, our

conditions are less restrictive than existing methods, enabling

a broader class of graphs to satisfy the distinguishability

criteria. We illustrate the effectiveness of our results with

several examples. Our findings highlight the applications of

network control methods in tackling this crucial problem in

algebraic graph theory, with implications for machine learning

and network design.

1 Introduction

Graphs are fundamental mathematical structures widely
used to model complex systems across science, engineer-
ing, and social sciences. One of the key challenges in
graph theory is graph distinguishability, which aims to
determine whether a graph can be uniquely identified
by its spectral properties, such as the adjacency spec-
trum [1]. This problem has significant implications for
graph isomorphism, graph classification, and represen-
tation learning. The distinguishability conjecture posits
that almost all graphs are determined (up to isomor-
phism) by their spectrum (DS). Though certain graph
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families, such as trees and strongly regular graphs, are
known to be indistinguishable from their adjacency spec-
tra, a comprehensive characterization of distinguishable
and non-distinguishable graphs remains an open problem
and an active area of research [2–4].

One approach to enhancing graph distinguishabil-
ity involves using the generalized spectrum, which con-
siders both the graph’s spectrum and that of its com-
plement, enabling improved criteria to distinguish non-
isomorphic cospectral graphs [5, 6]. Other works have
explored graph modifications that preserve spectral prop-
erties while altering structural properties, leading to non-
distinguishable graphs, i.e., non-isomorphic graphs with
identical spectra. A notable example is GM-switching,
a technique used to construct cospectral, non-isomorphic
graphs [7]. Another major direction, and arguably the
most challenging yet most practically relevant, is estab-
lishing criteria that guarantee distinguishability, effec-
tively identifying families of graphs uniquely determined
by their spectra. Our work in this paper falls into this cat-
egory as we develop new conditions under which graphs
can be distinguished based on their spectral properties.

We leverage the recent work of Wang [6, 8, 9], which
establishes intriguing connections between graph distin-
guishability and network controllability, a fundamental
concept in network control. Network or graph control-
lability refers to the ability to steer a network (or graph)
to desired states through external inputs applied to a
subset of its nodes [10–13]. A key object in determining
controllability is the controllability matrix (or walk ma-
trix ). Wang utilized the determinant of the walk matrix
to establish distinguishability conditions, integrating con-
trol theory with spectral graph theory. This perspective
refines spectral methods for graph distinction by incor-
porating control-theoretic insights.

In this paper, we extend this connection to oriented
(directed) graphs, deriving general conditions for their
distinguishability based on the spectrum of their skew-
adjacency matrices, which are commonly associated with
directed graphs and further detailed in Section 2.2. Our
approach addresses the limitations of existing methods,
which primarily focus on self-converse graphs [14], a re-
stricted class of oriented graphs that are isomorphic to
their converse, as further discussed in Section 2.2. Ad-
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ditionally, we broaden the applicability of controllability-
based techniques to a wider class of graphs by introducing
a flexible control input framework. The main contribu-
tions are summarized as:

• Expanding the class of distinguishable oriented
graphs by deriving general conditions based on skew-
adjacency spectra.

• Establishing new controllability-based criteria for
graph distinguishability by generalizing existing
methods and eliminating restrictive assumptions
such as self-converseness.

• Introducing a flexible control input framework to
enhance applicability.

The paper is organized as follows: Section 2 intro-
duces the notations, the graph distinguishability problem
and the relevant background. It also highlights the role
of Network Control Theory. Section 3 presents control-
based criteria (Theorem 3.2) for distinguishing oriented
graphs, with proofs. Section 4 provides illustrative ex-
amples. Finally, Section 5 concludes the paper.

2 Problem Description and Background

We first examine the problem of determining graphs by
their spectrum (DS) in the context of undirected graphs,
introducing key notations, definitions, and illustrative
examples. This choice is motivated by the fact that
most of the literature focuses on undirected graphs,
making them a natural starting point for understanding
the problem. However, our work extends to oriented
(directed) graphs, which we discuss in Section 3 after
establishing the necessary groundwork in Section 2.2.

2.1 Undirected Graphs A network of intercon-
nected entities is typically modeled as an undi-
rected graph, denoted by G = (V,E), where V =
{v1, v2, . . . , vn} represents the set of vertices (or nodes),
and E ⊆ V ×V represents the edges defining relationships
between them. The terms ‘vertex,’ ‘node,’ and ‘agent’ are
used interchangeably. The adjacency matrix A(G) is an
n × n matrix where Aij = Aji = 1 if an edge exists be-
tween vertices vi and vj , and 0 otherwise. The degree
matrix D(G) is diagonal, with entries Dii corresponding
to the degree of vi, and the Laplacian matrix is given by
L(G) = D(G)−A(G). Given a simple, undirected graph
G, its complement, denoted G, is a graph with the same
vertex set V , where two vertices are adjacent in G if and
only if they are not adjacent in G.

Definition (Graph Isomorphism) Two graphs G =
(VG, EG) and H = (VH , EH) are isomorphic if there ex-
ists a bijection f : VG → VH such that for all vi, vj ∈ VG,

(vi, vj) ∈ EG ⇐⇒ (f(vi), f(vj)) ∈ EH . The function f
is called an isomorphism between the graphs G and H,
and we write G ∼= H if such an isomorphism exists.

The spectrum of an undirected graph G, denoted
λ(G), is the multiset of eigenvalues of A(G). These
eigenvalues satisfy:

A(G)vi = λivi, i = 1, 2, . . . , n,

where vi is the corresponding eigenvector. The general-
ized spectrum of a graph G is the spectrum of G together
with the spectrum of its complement G. Two graphs
are cospectral if their adjacency matrices share the same
spectrum. More generally, for t ∈ R, two graphs G and H
are t-cospectral if the matrices tJ−A(G) and tJ−A(H),
where J is the all-ones matrix, have the same spectrum.
A graph pair is R-cospectral if they are t-cospectral for
all t ∈ R. Johnson and Newman [15] established that if
two graphs are t-cospectral for two distinct t-values, they
are also R-cospectral.

The walk matrix of a graph G, denoted W (G), is
given by:

W (G) = [e, Ae, A2e, . . . , An−1e],(2.1)

where e is the all-ones vector. The determinant det(W )
plays a crucial role in determining whether G is deter-
mined by its generalized spectrum (DGS), a concept dis-
cussed later.

For matrix operations, we use X⊤ to denote the
transpose of X, 0n for an n-dimensional zero vector,
and en for an all-ones vector. A matrix A is integral if
aij ∈ Z, rational if aij ∈ Q, and orthogonal if Q⊤Q = I.
A rational orthogonal matrix Q is regular if Qe = e,
meaning each row sums to one. The notation a | b denotes
that a divides b.

The graph distinguishability problem, also known as
the Determined by the Spectrum (DS) problem, seeks to
determine whether a graph can be uniquely identified by
its spectrum. A graphG is DS if no non-isomorphic graph
shares its spectrum:

λ(G) = λ(H) =⇒ G ∼= H.

However, cospectral graphs—distinct graphs with the
same spectrum—complicate this problem. A graph is
Determined by the Generalized Spectrum (DGS) if it
is uniquely identified by both its spectrum and the
spectrum of its complement.

Figure 1 illustrates two non-isomorphic cospectral
graphs G1 andH1 that also have cospectral complements.
Their spectra are:

λ(G1) = λ(H1) = {−2,−1.78,−1, 0, 0, 1.29, 3.49},
λ(G1) = λ(H1) = {−2.46,−1.38,−1, 0, 0.77, 1, 3.07}.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited



Figure 1: Two non-isomorphic cospectral graphs G1 and
H1 with cospectral complements G1 and H1.

Since these graphs remain indistinguishable even when
considering their generalized spectrum, the DS classifica-
tion problem remains unresolved. Haemers conjectured
that almost all graphs are DS [2]. While empirical ev-
idence supports this conjecture for small graphs (e.g.,
n ≤ 12 [16, 17]), the problem remains open for larger
graphs and for oriented graphs.

Recent work by Wang et al. [9, 14, 17] connects con-
trol theory with spectral graph theory, offering new tools
for DS and DGS classification. In the next subsection, we
explore this connection and introduce a broader control-
theoretic perspective on Wang’s approach to graph dis-
tinguishability.

2.1.1 Potential of Network Control Theory for
Graph DS Network control theory provides a pow-
erful framework for addressing the graph distinguisha-
bility (DS) and generalized spectrum (DGS) problems.
Building on the work of Wang et al. [9], control theory-
centric techniques have demonstrated significant poten-
tial in identifying controllable and DGS graphs. A central
tool in this analysis is the walk matrix, which is closely
tied to graph controllability.

In dynamical systems, the walk matrix, defined in
(2.1), corresponds to the controllability matrix of a
system evolving over a graph, governed by

ẋ(t) = Ax(t) +H(G)u(t),(2.2)

where x(t) is the state vector, u(t) is the control input,
and H(G) specifies the input configuration. More gener-
ally, the system dynamics can be described as:

ẋ(t) = M(G)x(t) +H(G)u(t),(2.3)

where M(G) encodes the network topology. Wang [8,17]
studied the specific case where M(G) = A(G) and
H(G) = e, meaning all nodes receive the same input.
Extending this framework—by incorporating the graph
Laplacian or signless Laplacian for M(G) and varying
H(G)—yields a more flexible controllability matrix:

C =
[
H(G) M(G)H(G) . . . (M(G))n−1H(G)

]
.(2.4)

This generalization provides deeper insights into the
graph distinguishability problem beyond the walk matrix
alone.

A fundamental result from O’Rourke and
Behrouz [18] states:

Theorem 2.1. ([18]) Almost all graphs are controllable.

Furthermore, numerical analysis by Wang et al. [17]
suggests that approximately 25% of controllable graphs
are DGS, leading to the following conclusion:

Remark 2.1. Approximately 25% of all graphs are de-
termined by their generalized spectra (DGS).

The relationship between the determinant of the walk
matrix det(W ) and a graph’s generalized spectrum is a
key insight from [6, 17]. Integrating control theory with
spectral graph theory provides a novel approach to dis-
tinguishing cospectral graphs by analyzing how external
control inputs propagate through the network. This fu-
sion of disciplines opens new avenues for addressing the
DS problem, particularly for large and complex graph
families.

In the next section, we introduce the necessary
notation and terminology for oriented graphs before
presenting our main results, which leverage control-
theoretic tools, in Section 3.

2.2 Oriented Graphs An oriented graph Gσ is de-
rived from a simple1 undirected graph G by assigning a
direction to each edge. The undirected graph G is called
the underlying graph of Gσ. For the remainder of this
paper, we focus exclusively on oriented graphs.

An oriented graph is self-converse if it is isomorphic
to its converse (Gσ)⊤, which is obtained by reversing all
directed edges. The skew-adjacency matrix, introduced
by Tutte [19], is an n× n matrix S(Gσ) = (sij), where:

sij =


1 if (vi, vj) is an arc,

−1 if (vj , vi) is an arc,

0 otherwise.

The generalized skew-adjacency spectrum of Gσ is
defined as the pair (λ(S(Gσ)), λ(tJ−S(Gσ))), where J is
the all-ones matrix and t ∈ R. Two oriented graphs, Hτ

and Gσ, are R-cospectral if, for every t ∈ R, the matrices
tJ − S(Gσ) and tJ − S(Hτ ) share the same spectrum.
The skew-walk matrix of an oriented graph Gσ is defined
as:

W (Gσ) = [e, S(Gσ)e, S(Gσ)2e, . . . , S(Gσ)n−1e],

where e is the all-ones vector.

1A graph without multiple edges or self-loops.
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(a) (b)

Figure 2: (a) A graph Gσ
2 and its isomorphic converse

(Gσ
2 )

⊤. (b) A graph Hτ
2 and its non-isomorphic converse

(Hτ
2 )

⊤. All four graphs are cospectral.

An oriented graph Gσ is Determined by the General-
ized Skew Spectrum (DGSS) if any graph Hτ sharing the
same generalized skew spectrum with Gσ is isomorphic to
Gσ and its converse (Gσ)⊤. For a graph to be DGSS, it
must be self-converse, meaning its converse is isomorphic
to itself. This strict condition limits its applicability [14].

In this work, we address the Weakly Determined
by the Generalized Skew Spectrum (WDGSS) problem,
which provides a more flexible alternative. A graph
Gσ is WDGSS if any oriented graph Hτ with the same
generalized skew spectrum as Gσ is either isomorphic to
Gσ or its converse (Gσ)⊤, since all oriented graphs are
cospectral with their converses, even if they are not self-
converse [14]. Unlike DGSS, WDGSS does not require
a graph to be self-converse. This distinction makes the
two conditions mutually exclusive: a DGSS graph has
an isomorphic converse, whereas a WDGSS graph is
distinguishable from all graphs except its converse.

Thus, WDGSS broadens the applicability of spectral
methods by enabling the classification of graphs whose
converses are not isomorphic to themselves. This ex-
tension refines spectral graph analysis, offering new in-
sights into the structure of oriented graphs. Below, we
present a few examples of graphs that are neither DGSS
nor WDGSS for illustration purposes.

Figure 2 shows non-DGSS oriented graphs. The skew
adjacency matrices of S(Gσ

2 ) and S(Hτ
2 ) are:

S(Gσ
2 ) =



0 1 1 1 0 0 0
−1 0 −1 −1 0 0 0
−1 1 0 −1 1 0 0
−1 1 1 0 0 0 −1
0 0 −1 0 0 1 0
0 0 0 0 −1 0 1
0 0 0 1 0 −1 0


, S(Hτ

2 ) =



0 1 1 −1 0 0 0
−1 0 1 −1 0 0 0
−1 −1 0 1 −1 0 0
1 1 −1 0 0 0 1
0 0 1 0 0 1 0
0 0 0 0 −1 0 −1
0 0 0 −1 0 1 0


.

The skew adjacency spectrum of all four graphs are
identical i.e., λ(S(Gσ

2 )) = λ(S((Gσ
2 )

⊤)) = λ(S(Hτ
2 )) =

λ(S((Hτ
2 )

⊤)):

{−2.68j, −1.34j, −1j, 0j, 1j, 1.34j, 2.68j}.

In this example, the graph Gσ
2 is self-converse, i.e., it

is isomorphic to its converse (Gσ
2 )

⊤, which is obtained
by reversing each directed edge in Gσ

2 . However, there
exists a graph Hτ

2 that is cospectral to Gσ
2 , but is neither

Figure 3: A graph Gσ
3 and its non-isomorphic converse

(Gσ
3 )

⊤ and a graph Hτ
3 and its non-isomorphic con-

verse (Hτ
3 )

⊤. All four graphs are cospectral but non-
isomorphic to each other.

isomorphic to Gσ
2 nor its converse (Gσ

2 )
⊤. Therefore,

the graphs in Figure 2 cannot be determined by their
generalized skew-spectrum (not DGSS).

Now, consider the graph S(Gσ
3 ) in Figure 3. The skew

adjacency spectrum of all four graphs are identical i.e.,
λ(S(Gσ

3 )) = λ(S((Gσ
3 )

⊤)) = λ(S(Hτ
3 )) = λ(S((Hτ

3 )
⊤)) :

{−2.82j, −1.54j, −0.83j, 0j, 0.83j, 1.54j, 2.82j}.

The graph Gσ
3 is not self-converse and has a non-

isomorphic cospectral mate, S(Hτ
3 ), which is also not

self-converse. This means that both Gσ
3 and Hτ

3 are
neither DGSS nor WDGSS. These graphs share the same
spectrum, and their generalized skew-spectrum does not
provide enough information to distinguish them.

In the next section, we introduce novel criteria to
identify a class of oriented graphs that can be weakly
distinguished by their generalized skew spectrum, i.e.,
WDGSS graphs. Recent works have leveraged the walk
matrix to address the DS problem in undirected graphs.
Extending this, the skew-walk matrix has been applied
to construct DGSS families for oriented graphs [14].
Building on these ideas, we introduce a new family of
oriented graphs that can be classified as WDGSS using
properties of the skew-walk matrix and network control-
based criteria.

3 A New Family of WDGSS Graphs

In this section, we introduce a new class of Weakly Deter-
mined by Generalized Skew Spectrum (WDGSS) graphs,
extending prior work on Determined by Generalized Skew
Spectrum (DGSS) graphs [14]. While previous studies
have established conditions for DGSS graphs, these re-
sults apply only to graphs whose converses are isomorphic
to themselves. We provide the first systematic criterion
for identifying WDGSS graphs, which allows us to dis-
tinguish graphs whose converses are not isomorphic to
themselves based on their spectral properties.

Our approach builds on the arithmetic properties of
the skew-walk matrix W (Gσ), which has been used in
prior work to characterize DGSS graphs. We now gen-
eralize this framework to include graphs whose converses
are not isomorphic to themselves. Qiu et al. [14] demon-
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strated that for any oriented graph Gσ,

λ(tJ − S(Gσ)) = λ(tJ − S((Gσ)⊤)) for every t ∈ R,

implying that an oriented graph and its converse always
share the same generalized skew spectrum. If the con-
verse of an oriented graph is isomorphic to itself, then it
belongs to the DGSS category. However, if its converse
is not isomorphic to itself, the graph instead falls into
the WDGSS category. The following theorem provides
an arithmetic criterion for determining whether a graph
belongs to the DGSS category.

Theorem 3.1. ([14]) Let Gσ be an oriented graph of
order n whose converse is isomorphic to itself. If
2−⌊n

2 ⌋ detW (Gσ) (which is always an integer) is odd and
square-free, then Gσ is DGSS.

Building on this result, we extend the applicability of
the skew-walk matrix to identify graphs whose converses
are not isomorphic to themselves using spectral proper-
ties. We now propose a more general criterion that allows
for the classification of WDGSS graphs, which are distin-
guishable from all other graphs except their converses.
Specifically, we show that certain graphs satisfy a weaker
but still robust distinguishability condition, leading to
the following theorem:

Theorem 3.2. Let Gσ be an oriented graph of or-
der n whose converse is not isomorphic to itself. If
2−⌊n

2 ⌋ detW (Gσ) = p, where p is an odd prime, then
Gσ is weakly determined by generalized skew spectrum
(WDGSS).

This result provides the first formal classification of
WDGSS graphs, addressing a gap in the literature where
only DGSS graphs have been systematically studied.
Unlike DGSS graphs, which belong to the category where
the graph and its converse are isomorphic, WDGSS
graphs belong to the category where the converse is
not isomorphic to the graph. This extension enhances
the utility of spectral graph methods and provides new
insights into how the skew-walk matrix encodes structural
information in oriented graphs.

3.1 Proof of Theorem 3.2 In this section, we present
the proof of Theorem 3.2. Before proceeding, we first
introduce several key lemmas and theorems, some of
which are adapted from the literature, alongside new
theorems that we establish in this paper.

We define the family of graphs that satisfy Theorem
3.2 as:

Fp
n = {n-vertex graphs G : 2−⌊n

2 ⌋ detW (Gσ) = p},
(3.5)

where p is an odd prime, and Gσ is not self-converse.
We exclude self-converse graphs since these are already
covered by Theorem 3.1 [14].

Since we work exclusively with oriented graphs, we
omit the explicit notation Gσ when clear from context,
and write S = S(Gσ) and W = W (Gσ). We use Fp for
the finite field of prime order p, and rankp(M) for the
rank of a matrix M over Fp, computed by reducing each
entry mij mod p. We write M ≡ 0 (mod p) if all entries
of M are divisible by p.

Theorem 3.3. ([20]) Let Gσ be an oriented graph with
det(W (Gσ)) ̸= 0. There exists an oriented graph Hτ such
that Gσ and Hτ share the same generalized skew spectrum
if and only if a unique regular rational orthogonal matrix
Q exists, satisfying:

Q⊤S(Gσ)Q = S(Hτ ), Qe = e.

Define the set Γ(Gσ) as:

Γ(Gσ) = {Q ∈ On(Q) | Q⊤S(Gσ)Q = S(Hτ ), Qe = e},

where On(Q) is the set of orthogonal matrices with
rational entries.

Definition (Level of a Matrix ) The level of an orthog-
onal matrix Q with rational entries, denoted by ℓ(Q), is
the smallest positive integer k such that kQ becomes an
integral matrix.

Note that a rational orthogonal matrix Q satisfying
Qe = e is a permutation matrix if and only if its level
ℓ(Q) equals 1. An integral matrix V of order n is said
to be unimodular if its determinant is ±1. The Smith
Normal Form (SNF) is a valuable tool for analyzing
integral matrices.

Theorem 3.4. For any full-rank integral matrix M ,
there exist unimodular matrices V1 and V2 such that
M = V1FV2, where F = diag(d1, d2, . . . , dn) is a diag-
onal matrix satisfying di | di+1 (i.e., di+1 divides di) for
i = 1, 2, . . . , n− 1.

The matrix F is referred to as the SNF of M , with
its diagonal entries di known as the elementary divisors
or invariant factors. Since the matrices V1 and V2 are
unimodular, it follows that rankp(F ) = rankp(M) for
any prime p. Moreover, the determinant of M can be
expressed as:

detM = ±
n∏

i=1

di(3.6)

The last divisor dn is crucial: dnQ is integral for every
matrix Q ∈ Γ(Gσ) [8], implying that ℓ(Q) must divide
dn. The following lemma characterizes the SNF of walk
matrices.
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Lemma 3.1. ([6]) If 2−⌊n
2 ⌋ detW = b, where b is an

odd, square-free integer, then the Smith Normal Form of
W (Gσ) is:

[1, 1, . . . , 1︸ ︷︷ ︸
⌈n

2 ⌉

, 2, 2, . . . , 2, 2b︸ ︷︷ ︸
⌊n

2 ⌋

].

Therefore, for graphs belonging to Fp
n, using the

Equation 3.6, the last invariant factor of W is given by
dn = 2p. Moreover, the authors of [8] proved that for
every matrix Q ∈ Γ(Gσ), the level ℓ(Q) | dn.

Lemma 3.2. [14] Let Gσ ∈ Fp
n be an oriented graph of

order n, and let Q ∈ Γ(Gσ). Then the ℓ(Q) is odd.

Although in [14], the authors proved Lemma 3.2
for self-converse graphs only, the same proof applies to
graphs that are not self-converse. Hence, for every matrix
Q ∈ Γ(Gσ), the level ℓ(Q) can either be 1 or p.

The following lemmas further explore the properties
of matrices in Γ(Gσ) with level p.

Lemma 3.3. Let Gσ ∈ Fp
n and Q ∈ Γ(Gσ). If ℓ(Q) = p,

then rankp(Q̂) = 1, where Q̂ = pQ.

Proof. Consider the oriented graph Hτ such that
Q⊤S(Gσ)Q = S(Hτ ). Using the facts that Q is orthogo-
nal and Qe = e, it is easy to see that:

(Q⊤S(Gσ)Q)ke = Q⊤S(Gσ)ke = S(Hτ )ke

It follows that Q⊤W (Gσ) = W (Hτ ), or equivalently,
W⊤(Gσ)Q = W⊤(Hτ ). Therefore, we have W⊤(Gσ)Q̂ =
pW⊤(Hτ ) ≡ 0 (mod p).

Since p | dn while p2 ∤ dn, using SNF, we have that
rankp(W (Gσ)) = n−1, and thus rankp(W

⊤(Gσ)) = n−1.
This means the solution space of W⊤(Gσ)v ≡ 0 (mod p)
is one-dimensional. Consequently, rankp(Q̂) ≤ 1.

Since ℓ(Q) = p, the minimality of ℓ(Q) ensures that
Q̂ has at least one nonzero entry over Fp implying that

rankp(Q̂) ≥ 1. Hence, we conclude that rankp(Q̂) = 1, as
required.

Remark 3.1. Let Q1, Q2 ∈ Γ(Gσ) such that ℓ(Q1) =
ℓ(Q2) = p, and let Q̂1 = pQ1 and Q̂2 = pQ2. Since
W⊤Q̂1 = W⊤Q̂2 = 0 (mod p), the columns of matrices
Q̂1 and Q̂2 span the same one-dimensional subspace over
Fp.

Lemma 3.4. Let Q ∈ Γ(Gσ) such that ℓ(Q) = p. If Q
contains at least one non-integral entry, then by perform-
ing appropriate row and column permutations, Q can be
transformed into a quasi-diagonal form diag[Q′, I], where
Q′ is a regular rational orthogonal matrix consisting of
non-integral entries with ℓ(Q′) = p and rankp(pQ

′) = 1,
and I is an identity matrix of suitable size.

Proof. It is clear that for any regular rational orthogonal
matrix Q, the integral entries can only be 0 or 1. We
claim that Q contains a 0 if and only if it contains a
1. The “if” part is straightforward: since each row (and
column) of Q has a norm of one in Rn, the presence
of a one implies the presence of a zero. Let qij be the
(i, j)-entry of Q, and suppose qij = 0. Now, consider

Q̂ = pQ. Either the i-th row or the j-th column of Q̂
must be the zero vector over Fp, because otherwise, there

would be a 2×2 invertible submatrix in Q̂, contradicting
rankp(Q̂) = 1. In either case, Q̂ contains p as an entry,
meaning that Q must also contain a 1.

Now, assume Q has exactly k entries equal to one.
These k entries must lie in distinct rows and columns,
with all other entries in those rows and columns being
zero. By applying row and column permutations, Q can
be transformed into a quasi-diagonal form diag[Q′, Ik],
where Q′ satisfies the aforementioned properties and Ik
is an identity matrix of size k. Since Q′ contains no 1’s,
it also contains no 0’s, meaning that Q′ consists of non-
integral entries.

The following lemma is a key component of our work.

Lemma 3.5. ([9]) Let u and v be two n-dimensional
integral column vectors, each with nonzero entries modulo
p. Suppose that: (i) u and v are linearly dependent over
Fp; (ii) u ̸= ±v; and (iii) u⊤u = v⊤v = p2. Then, it
follows that u⊤v = 0.

The following lemma explore the relationships be-
tween matrices in Γ(Gσ) having the same level.

Lemma 3.6. Let Q1, Q2 ∈ Γ(Gσ) such that ℓ(Q1) =
ℓ(Q2) = p. Then, Q2 can be obtained from Q1 through a
series of column permutations.

Proof. Let Q̂1 = pQ1 and Q̂2 = pQ2. Denote the i-th and
j-th columns of Q̂1 and Q̂2 as αi and βj , respectively, for

i, j = 1, 2, . . . , n. By Remark 3.1, every column in Q̂1

and Q̂2 is a multiple of a vector v over Fp. First, consider
the case where every entry of v is nonzero modulo p.

We claim that both Q1 and Q2 contain no integral
entries. Suppose, for contradiction, that Q1 contains an
integral entry, say qij = 1.

Now, let αk be a column of Q̂1 such that αk ̸≡ 0
(mod p). This implies αk ≡ cv (mod p) for some integer
c. Since αk has at least one nonzero entry modulo p,
it follows that c ̸≡ 0 (mod p). Consequently, as we are
assuming that every entry in v is nonzero modulo p, every
entry of αk must be nonzero modulo p, which means
each entry of αk/p is not an integer. However, since
qij = 1, the i-th row of Q1 is a standard unit vector,
so at least one entry of αk/p must indeed be an integer.
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This contradiction confirms our claim that neither Q1 nor
Q2 contains integral entries.

Next, we assert that for any pair of indices i and j,
either αi = βj or α⊤

i βj = 0.
We may assume that αi ̸= βj . As e⊤αi = e⊤βj = p,

it implies that αi ̸= −βj and hence αi ̸= ±βj . Since
both columns are nonzero multiples of v over Fp, they
must be linearly dependent with each entry not equal to
zero modulo p. Applying Lemma 3.5 (where u = αi and
v = βj), we conclude α⊤

i βj = 0.
If we fix βj and consider all αi’s, the set

{α1, α2, . . . , αn} forms a basis of Rn. Since βj is a nonzero
vector in Rn, α⊤

i βj = 0 cannot hold for all i. Therefore,
there must exist some i such that βj = αi. This implies

that the j-th column of Q̂2 matches a column of Q̂1. As
all columns of Q̂2 are distinct, we conclude that Q̂2 can
be obtained from Q̂1 by column permutations, and hence,
Q2 can be obtained from Q1 through column permuta-
tions.

Now, consider the case where v has at least one
zero entry modulo p. Assume, for simplicity, that the
first k entries of v are nonzero. Then we can express v

as: v =

(
v1
v2

)
, where v1 is a k-dimensional vector with

nonzero entries, and v2 is an (n − k)-dimensional zero
vector. This case corresponds to row permutations, as in
Lemma 3.4.

Instead of using row permutations, we can apply
column permutations only to transform Q1 and Q2 into
quasi-diagonal forms. Both Q1 and Q2 can be written as
diag[Q′

1, I] and diag[Q′
2, I], where Q′

1 and Q′
2 are k × k

matrices with each column being a multiple of v1 over Fp.
By our previous argument, Q′

2 can be obtained from
Q′

1 through column permutations. Applying the same
column permutations to diag[Q′

1, I] yields diag[Q′
2, I].

Therefore, Q2 can be obtained from Q1 through column
permutations, completing the proof.

With the groundwork laid by the preceding lemmas
and theorems, we now present a proof of Theorem 3.2.

Proof. (Proof of Theorem 3.2) Let Gσ ∈ Fp
n. Since

Gσ is assumed not to be self-converse, (Gσ)⊤ is not
isomorphic to Gσ, yet both share the same generalized
skew spectrum. Therefore, Gσ is not DGSS. Now, we
need to show that any two generalized cospectral mates
of Gσ, say Hτ and (Gσ)⊤, are isomorphic.

We denote the rational orthogonal matrices corre-
sponding to Hτ and (Gσ)⊤ as Q1 and Q2, respectively,
where Q1, Q2 ∈ Γ(Gσ). Without loss of generality, as-
sume thatHτ is not isomorphic to Gσ, which implies that
ℓ(Q1) ̸= 1. Since Gσ is not self-converse, we also have
that ℓ(Q2) ̸= 1. Hence, it follows that ℓ(Q1) = ℓ(Q2) = p.

Furthermore, these matrices satisfy the following

relationships:

Q⊤
1 S(G

σ)Q1 = S(Hτ ) and Q⊤
2 S(G

σ)Q2 = S((Gσ)⊤).

According to Lemma 3.6, we have that Q2 = Q1P for
some permutation matrix P .

We can now express the relationship between the
matrices S((Gσ)⊤) and S(Hτ ):

S((Gσ)⊤) = Q⊤
2 S(G

σ)Q2

= Q⊤
2 Q1S(H

τ )Q⊤
1 Q2

= P⊤S(Hτ )P.

This equation shows that Hτ and (Gσ)⊤ are isomorphic.
Therefore, the proof of Theorem 3.2 is complete.

In the next section, we provide two illustrative ex-
amples of oriented graphs that are DGSS and WDGSS
according to the Theorem 3.1 and 3.2 respectively.

4 Example Illustrations

In this section, we present examples to illustrate our theo-
retical results on DGSS and WDGSS graphs. Specifically,
we analyze two types of oriented graphs: a self-converse
graph satisfying the DGSS condition from Theorem 3.1,
and a non-self-converse graph satisfying the WDGSS con-
dition from Theorem 3.2. These graphs are selected from
a dataset containing all oriented graphs of size 7. We
present the eigenvalue spectrum for each graph and the
invariant factors di ∀i = 1, . . . , n of the skew-walk matrix.

DGSS Graphs Satisfying Theorem 3.1 We begin
with the self-converse graph Gσ

4 , which satisfies the DGSS
criterion. Figure 4(a) shows Gσ

4 and its isomorphic
converse (Gσ

4 )
⊤.

The eigenvalue spectrum of S(Gσ
4 ) is:

λ(S(Gσ
4 )) = λ(S((Gσ

4 )
⊤))

= {−2.20j, −1.62j, −1.21j, 0.j, 1.21j, 1.62j, 2.20j}.

The invariant factors of W (Gσ
4 ) are [1, 1, 1, 1, 2, 2, 14],

satisfying Qiu et al. [14]’s DGSS condition. Since
2−⌊n

2 ⌋ det(W (Gσ
4 )) is odd and square-free (i.e., dn

2 = 7),
Gσ

4 is DGSS.

WDGSS Graphs Satisfying Theorem 3.2 Next, we
consider the non-self-converse graph Gσ

5 , as shown in
Figure 4(b). The eigenvalue spectrum of S(Gσ

5 ) is:

λ(S(Gσ
5 )) = λ(S((Gσ

5 )
⊤))

= {−2.58j, −1.45j, −0.46j, 0.j, 0.46j, 1.45j, 2.58j}.

The invariant factors of W (Gσ
5 ) are

[1, 1, 1, 1, 2, 2, 1466]. Since b = dn

2 = 733 is an odd
prime, Gσ

5 is WDGSS.
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(a)

(b)

Figure 4: (a) A graph Gσ
4 with its isomorphic converse

(Gσ
4 )

⊤ and (b) a graph Gσ
5 with its non-isomorphic

converse (Gσ
5 )

⊤.

These examples illustrate how skew-adjacency ma-
trices and walk matrices are instrumental in determining
the spectral properties of DGSS and WDGSS graphs.

5 Conclusion

In this paper, we expanded the scope of network con-
trollability as a promising tool for graph distinguishabil-
ity, applying it to oriented graphs through their skew-
adjacency spectrum. We developed a controllability-
based criterion, leveraging the walk matrix, to deter-
mine the weak distinguishability of non-self-converse ori-
ented graphs by their generalized skew spectrum. This
result significantly broadens the class of distinguishable
oriented graphs compared to existing methods, which are
typically limited to self-converse graphs and rely on more
restrictive control setups. Our findings demonstrate that
network controllability-based criteria, rooted in the walk
matrix, offer a powerful approach to resolving the graph
distinguishability problem.
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