
IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2775 | P a g e

Software Requirements Optimization using Fuzzy Logic
Anika Bisht1, Madan Kushwaha2,

1M.Tech Scholar, 2Assistant Professor,
12Dept of CSE Bansal Institute of Engineering and Technology.

Abstract- In this paper, we have presented a novel multi-level

value based intelligent requirement prioritization technique

using fuzzy logic and as a facilitating process, we have

redefined the “value” of software to better meet its objectives.
We have introduced and implemented the concept of

requirement value to prioritize requirements. We have

performed extensive experimentation using our proposed

technique along with existing techniques. The experiments

have also shown that proposed technique is capable of

delivering impressive prioritization under varying and often

conflicting circumstances.

Keywords- Fuzzy Logic, Requirement Prioritization,

Requirements engineering, rRCF

I. INTRODUCTION

Requirements engineering is a critical stage in the

development of software because at this stage the purpose,

functionality, and boundaries of the software are supposed to

be fully identified, analyzed and defined. It has also been

identified that most of the software projects fails to meet the

real need are related to requirements engineering areas like

capturing, analyzing, specifying, and managing requirements.

In some life cycle models [11], feasibility study is the initial

activity in the requirement engineering process that results in

a feasibility report. If the development of the product is

recommended by feasibility report, then requirement analysis
can begin. In case of requirement analysis preceding

feasibility studies we can expect an outside the box thinking.

However, in such a scenario, feasibility should be determined

before requirements are finalized.

Requirement engineering can be viewed as process of

effectively finding and specifying objectives and purposed of

the proposed solution. Zave [4] has defined RE in the

following words:

“Requirements engineering is the branch of software

engineering concerned with the real-world goals for, functions

of, and constraints on software systems. It is also concerned
with the relationship of these factors to precise specifications

of software behavior, and to their evolution over time and

across software families.”

Software Test & Evaluation Panel (STEP) defines

requirement engineering [9] as:

“The disciplined application of scientific principles and

techniques for developing, communicating, and managing

requirements”

Requirement engineering according to Loucopoulos and

Champion [13]:

“The systematic process of developing requirements through

an iterative process of analyzing a problem, documenting the
resulting observations, and checking the accuracy of the

understanding gained”

Laplante [14] defines requirement engineering as

"A subdiscipline of systems engineering and software

engineering that is concerned with determining the goals,

functions, and constraints of hardware and software systems”

In their work, Elizabeth Hull et al [10] define requirement

engineering as

“A subset of system engineering concerned with discovering,

development, tracing, analyzing, qualifying, communicating

and managing requirements that define the system at
successive levels of abstraction”

All these definitions mentioned above state the position of RE

as a solid element in the software engineering elements that

has a major contribution in achieving the real-world goals.

Moreover, these refer RE a precise specification that

establishes proper framework for requirement analysis,

definition, validation and verification. The definitions,

particularly one, given by Elizabeth Hull [10] also ensures that

certain real life facts such as the always evolving nature of

requirements and the need to reuse partial specification, as

engineers often do in other branches of engineering. It is

actually the same unique characteristic of requirements
mentioned by Somerville in his work [9] where he states that

“The RE process varies immensely depending on the type of

application being developed, the size and culture of the

companies involved, and the software acquisition processes

used”

II. RELATED WORK

AHP is a relative evaluation based measurable system to

organize prerequisites for programming items. In the event

that we have n number of necessities, AHP makes n x (n-1)/2

correlations at every pecking order level. All things
considered, we are normally working with prerequisites which

have numerous goals. AHP fills in as an effectual method in

these sorts of circumstances by creating pair savvy correlation

to determine relative esteem and cost of every necessity

against the other one. This altogether expansive number of

examinations makes the strategy less compelling as increment

in number of correlations dependably happens at the rate of

O(n2). AHP is viewed as a five stage strategy.

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2776 | P a g e

1. Establish completeness of requirements.

2. Apply the pair-wise comparison method to assess the

relative value.

3. Apply the pair-wise comparison method to assess the

relative cost

4. Calculate each candidate requirement's relative value and
implementations cost, and plot each on a cost-value diagram.

5. Use the cost-value diagram as a map for analyzing the

candidate requirement

Countless have been made in later past to decide the adequacy

of AHP for prerequisites prioritization.

Karlsson [1] has made various studies which have

demonstrated the viability of this method in modern settings.

In the meantime, some different studies [3] have discussed

AHP as being troublesome, less effective and tedious. AHP

can be considered as a profoundly refined and complex

procedure which can build up prioritization at the level of

individual necessities. Endeavors have been made to diminish
the quantity of examinations. In any case, this has constantly

improved the room for give and take. As we would like to

think, this tradeoff is essential since a few correlations might

very be required.

This method is more suitable in nature where a solitary partner

is included. On the off chance that there are n number of

prerequisites, these necessities are positioned from 1(most

huge) to n (slightest noteworthy). This positioning is select in

its temperament on the grounds that prerequisites are not

positioned with respect to different necessities similar to the

instance of AHP or total voting. Different methods like air
pocket sort, brisk sort or twofold inquiry procedures can be

utilized to accomplish this positioning. There are two

noteworthy downsides connected with this procedure. To start

with significant issue is that it can bring about a greater

number of contentions than assentions when connected in a

domain of numerous partners. The second downside is that

necessities are seen and positioned in segregation. The effect

of one necessity over the other doesn't assume any part in

general prioritization. Since necessities can have different

measurements to them so scientists have conceived an

instrument of joining these measurements and ascertaining a

mean need for every prerequisite [2]. This adjustment has its
own particular confinements and additionally has been

appeared in [5].

III. METHODOLOGY

Programming Engineering (SE) goes for making

programming items or their relics in a manner that these meet

the prerequisites postured by partners while satisfying quality

requirements forced on them. Keeping in mind the end goal to

meet both these destinations, any product advancement infers

its motivation and significance from the necessities postured

by different partners. Prerequisite Engineering is a set up area
of information inside of programming designing which sets up

practices and standards for powerful necessity elicitation,

displaying, detail, documentation and so forth. One imperative

however regularly ignored routine of programming necessity

building is prerequisite prioritization. A few necessity

prioritization procedures have been introduced by creators.

These systems are both quantitative and subjective in their
tendency. Some understood prerequisite prioritization

procedures incorporate Analytical Hierarchy Process (AHP),

Cumulative Voting, Numerical Assignment, Ranking, Theory

W, Requirement Triage, Wieger's Method and so forth. What's

more, there are a few different methods which we should

examine in this paper. Necessity prioritization empowers us to

comprehend the importance of prerequisites opposite the

framework to be created and among prerequisites also. With

necessity prioritization, we can distinguish the center zones

which require the vast majority of our consideration so as to

build up an item which ideally meets the prerequisites of the

partners. In the vast majority of the circumstances, because of
spending plan and time limitations, it gets to be difficult to

actualize every one of the prerequisites postured by partners.

Likewise the way of numerous undertakings is such that

necessities are actualized in an organized situation. In both of

these situations, we require prerequisite prioritization [1]. We

can organize prerequisite to acknowledge which necessities

can be deferred or changed so that other earnest necessities

can be actualized and to what degree. We can likewise utilize

necessity prioritization to figure out which prerequisites to be

actualized in before stages or later stages. We have been

working with a few supported undertakings amid our
examination. These ventures are confronted with both of the

aforementioned circumstances. We have discovered it critical

to organize necessities in their actual sense keeping in mind

the end goal to build up a significant and fruitful item.

Requirement prioritization was another practice in our

particular advancement environment. In this way, the nature

of our work obliged us to concentrate further into different

prerequisites prioritization strategies with the goal that we can

choose one which can best suit our unconventional

improvement environment. Our finding was that there is

serious lack of any trial results to figure out which strategy to

lean toward. Hence, amid this time of innovative work, we
concentrated on different prerequisite prioritization strategies

and attempted to execute them on test level at different

ventures. We soon understood that these procedures

functioned admirably inside of specific circumstances

however had some inalienable issues joined with them which

made it difficult to actualize any of these over the association

for every single diverse sort of tasks. The fundamental

deterrents confronted by us while executing these methods

were identified with expense, time and treatment of

developing and inching prerequisites. Keeping in mind the

end goal to beat these issues, one arrangement before us was
to add to a falsely wise master driven necessity prioritization

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2777 | P a g e

procedure. In one of our past works, we had exhibited the

introductory portrayal of a "quality based prerequisites

prioritization" system [23]. This procedure was all that much

like Theory W. In this method the end clients and specialists

were requested that organize their necessities based upon the

worth that achievement of this prerequisite may have for the
framework. The notable component of this procedure was an

amalgamation of end clients and specialists during the time

spent necessity prioritization. In any case, while actualizing

this strategy, we experienced two noteworthy issues.

 The procedure created a considerable measure of

contentions toward the end of prerequisite

prioritization process. Struggle determination was a

long and tedious procedure which should have been

be taken after toward the end of each prioritization

session.

 The strategy was totally manual. The prioritization

was done through human try and component of
human inclination was discernible.

While applying the strategy proposed in [23], we understood

the requirement for a mechanized prerequisite prioritization

method so as to overcome both the aforementioned

constraints. In the ensuing productions, we chipped away at

refining and upgrading this wise necessity prioritization

approach [26].

a. Fuzzy Logic based Requirement Prioritization:

Following steps are executed in this third and final level of

prioritization:
In the first and second level of prioritization, we achieve

prioritization from the perspective of stakeholders and experts.

However, both these steps involve extensive human input

which can make the results more error prone. In order to

further strengthen our prioritization results and reduce the

manual nature of results, we make use of fuzzy logic for third

level prioritization. In this technique requirement

prioritization is modeled in the form of fuzzy rules. Based

upon Mamdani method, the technique is described using the

following algorithm:

Start

Define Fuzzy Variables
Determine fuzzy variables, Requirement value, Stakeholder

Priority and Requirement

Priority

Establish fuzzy sets for these variables

Fuzzify each value in fuzzy sets by using membership function

Generate knowledge Base using fuzzy rules

Build the system

Execute the system

Give input variable values

Get rule strength

Combine rule strength with output membership function
Find consequence of rules

Generate output

Combine consequences of variant rules

Generate output distribution by conflict resolution process

Defuzzify

Finish

In the first step, different variables (both input and

consequent) for the system are defined. For our problem we

have two input variables namely, requirement value and

stakeholder priority and one consequent namely requirement

priority. Variable sets for all of these inputs and consequents

are defined. . The values in these sets are fuzzified using

appropriate membership function [16].

There are several fuzzy membership functions which are used

in various problem environments. These include fuzzy

centroid function, trapezoidal function, triangular function,

bell shaped function etc. We have selected trapezoidal fuzzy

membership function for our technique. Major reason to use
this particular function is that in our particular problem

situation, our maximum or minimum point is not just one

value. Instead, several values can be at maximum position.

Such a problem is best handled by trapezoidal function. Other

functions such as bell shaped functions have very little

accommodation for maximum value or centroid has only one

maximum value.

For example:

Rule1: if Requirement Value is very low and Stakeholder

Priority is medium then Requirement Priority is low

Rule2: if Requirement Value is medium and Stakeholder

Priority is low then Requirement Priority is medium

Rule3: if Requirement Value is high and Stakeholder Priority

is medium then Requirement Priority is high

Fig.1: Fuzzy function distribution for VIRP

A complete set of such rules is generated which works as
knowledge base for our system. To generate a prioritized list

of requirements, each requirement is presented to the system

which takes its requirement value and stakeholder priority as

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2778 | P a g e

input and determines which rules to be fired. For each rule [5],

the fuzzified inputs are combined to get the rule strength.

These rule strengths are merged with the output membership

function to identify consequent fuzzified value for that rule

applying Max-Min method.

Once all fuzzified values for all fired rules have been
determined, we get the defuzzified value of the consequent

using the following equation:

1

1

(y)

(y)

p

j A j

j

i p

A j

j

y

y

 (1)

The purpose of defuzzification is to achieve a single crisp

value from the fuzzified operations which involve several
equations.

IV. RESULT AND DISCUSSION

We have given a brief overview of existing requirement

prioritization techniques. We have described in detail the

implementation of intelligent requirements prioritization

technique. Several of these techniques are being applied in

software industry for a while now. Some research studies and

surveys to determine the usability of some of these techniques

have also been conducted (as mentioned in previous section).

So a significant mass of literature on these requirement
prioritization techniques exists.

Table 1: Project Specific Requirement Specification

Factors (pRCF)

Name Description

Feasibility The requirement is capable of being

implemented within the constraints and

resources

Modifiability Requirement can undergo change to

optimize the system without affecting

the system adversely

Urgency Degree of necessity of the requirement

for system to be considered successful

Traceability Requirement is such that subsequent

function of the system can be traced to
it. Requirements are less compound

Testability Requirement can be tested and

validated during testing phase.

Independent test cases for the

requirement can be generated.

However, no significant comparative study has so far

appeared where all or most of the above mentioned techniques

might have been applied to the same set of projects. This can

be a very valuable study as it can determine that in what kind

of development environment which specific requirement

prioritization technique can yield best results. As we have

already mentioned in the introduction section, we faced a

severe problem of selecting suitable requirement prioritization

technique for our projects. This search ultimately culminated

in proposing and implementing our own intelligent

requirement prioritization technique. We feel that it is need of
the hour to catalogue the pros and cons of all existing as well

as proposed technique at one place so that it becomes easier

for software engineering community to evaluate and select

one technique which better meets its needs.

Table 2: Requirement Specific Requirement Specification

Factors (rRCF)

Name Description

Completeness The requirement statement has

enough information to proceed to

the nest development phase

Consistency Requirement specifications use

standard terminology and there are

minimum conflicts due to
statement and specifications

Understandability Requirements are easy to describe

and review. Requirements are

grammatically correct with single

and clear meaning

Within Scope Requirement does not envisage

something which is not described

in original statement of scope

Non-Redundant Requirement is not duplicated in

complete or partially.

This section is dedicated to theoretical evaluation of

requirement prioritization techniques. It is further subdivided

into three subsections. In the first section, we have presented a

theoretical evaluation of existing requirement prioritization

techniques. In the second part, we have given a brief
introduction of our intelligent requirement prioritization

technique. In the last subsection, we have presented

experimental results for our analysis of this technique with all

existing ones.

V. CONCLUSION

Requirement prioritization is one important activity of

requirement engineering phase in software development.

There are various requirement prioritization techniques in

literature and practice. However, no significant comparative

evaluation of these techniques has been made so far. In this
work a new intelligent requirement prioritization technique

has been proposed and described. This new technique for

requirement prioritization is based on fuzzy logic and

Bayesian network is a multilevel approach. In this technique,

stakeholders, experts and fuzzy logic based system perform

separate prioritizations. A comparative analysis based on

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2779 | P a g e

experimental results conducted on several projects has also

been presented. This analysis shows that in almost all different

environments, intelligent requirement prioritization is able to

exhibit better and impressive results. To extend this work

towards classification of the prioritized requirements so that it

can automatically classify requirements as critical, essential,
peripheral etc. Work can also be done in such a way that

prioritized requirements can be classified as non-negotiable

and negotiable requirements. We are also developing

Bayesian networks to perform classification. Using Bayesian

networks can make this system highly evolvable and self-

optimizing. In this work we propose a hybrid approach to

optimize the requirement elicitation process. Work can also be

done in such a way that prioritized requirements can be

classified as non-negotiable and negotiable requirements. This

new approach for requirement prioritization and classification

is based upon fuzzy logic. By this approach prioritized

requirements can be classified as non-negotiable and
negotiable requirements.

VI. REFERENCES
[1]. F. Brooks, No silver bullet: Essence and accidents of software

engineering, IEEE Computer, vol.20, no.4, pp.10-19, 1987.
[2]. J. Karlsson and K. Ryan, Supporting the selection of software

requirements, Proc. of the 8th International Workshop on
Software Speci_cation and Design, 1996.

[3]. J. Karlsson and K. Ryan, A cost-value approach for prioritizing
requirements, IEEE Software, vol.14, no.5, pp.67-75, 1997.

[4]. X. Liu, C. C. Veera, Y. Sun, K. Noguchi and Y. Kyoya, Priority
assessment of software requirements from multiple perspectives,
Computer Software and Applications Conference, vol.1, pp.410-
415, 2004.

[5]. L. Fellows and I. Hooks, A case for priority classifying

requirements, The 3rd International Conference on
Requirements Engineering, pp.62-65, 1998

[6]. E. Yourdon, Death March Projects, Prentice Hall, 1997.
[7]. M. Lubars, C. Potts and C. Richter, A review of the state of the

practice in requirements modeling, Proc. of the IEEE
Intemational Symposium of Requirements Engineering, pp.2-
14, 1993.

[8]. V. Ahl, An Experimental Comparison of Five Prioritization

Methods, Master Thesis, School of Engineering, Blekinge
Institute of Technology, Ronneby, Sweden, 2005.

[9]. T. Saaty, The Analytic Hierarchy Process: Planning, Priority
Setting, Resource, Allocation McGraw-Hill, New York, 1980.

[10]. T. L. Saaty and G. Hu, Ranking by eigenvector versus other
methods in the analytic hierarchy process, Applied
Mathematical Letter, vol.11, no.4, pp.121-125, 1998.

[11]. F. Hartwich, Weighting of agricultural research results: Strength
and limitations of the analytic hierarchy process, Research in
Development Economic and Policy, Discussion Paper, Grauer
Verlag, Stuttgart, no.9, 1999.

[12]. F. Hivert, J. Novelli and J. Thibon, The algebra of binary search
tree, Theoretical Computer Science, vol.339, no.1, pp.3-10,
2005.

[13]. L. Xiang, K. Ushijiam, T. Zhao, T. Zhang and C. Tang, O(1)

time algorithm on BSR for constructing a random binary search
tree, Proc. of the 4th International Conference on Parallel and
Distributed Computing, Applications and Technologies, pp.599-
602, 2003.

[14]. I. Al-furaih, S. Aluru, S. Goil and S. Ranka, Parallel
construction of multidimension binary search tree, IEEE Trans.
on Parallel and Distributed Systems, vol.11, no.2, pp.136-148,
2000.

[15]. C. Lee, L. Hung, M. Chang, C. Shen and C. Tang, An improved
algorithm for the maximum agreement subtree problem,
Information Processing Letters, vol.94, no.5, pp.211-216, 2005.

Anika Bisht,

M.Tech Scholar, Dept of CSE,

Bansal Institute of Engineering and Technology.

