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Abstract—Anomaly detection in complex domains poses sig-
nificant challenges due to the need for extensive labeled data
and the inherently imbalanced nature of anomalous versus
benign samples. Graph-based machine learning models have
emerged as a promising solution that combines attribute and
relational data to uncover intricate patterns. However, the
scarcity of anomalous data exacerbates the challenge, which
requires innovative strategies to enhance model learning with
limited information. In this paper, we hypothesize that the
incorporation of the influence of the nodes, quantified through
average controllability, can significantly improve the performance
of anomaly detection. We propose two novel approaches to
integrate average controllability into graph-based frameworks:
(1) using average controllability as an edge weight and (2)
encoding it as a one-hot edge attribute vector. Through rigorous
evaluation on real-world and synthetic networks with six state-of-
the-art baselines, our proposed methods demonstrate improved
performance in identifying anomalies, highlighting the critical
role of controllability measures in enhancing the performance
of graph machine learning models. This work underscores the
potential of integrating average controllability as additional
metrics to address the challenges of anomaly detection in sparse
and imbalanced datasets.

Index Terms—Average Controllability, Graph Neural Net-
works, Graph Anomaly Detection, Weighted and Attributed
Networks

I. INTRODUCTION

Network Control Theory (NCT) offers a mathematical
framework for analyzing and influencing the behavior of
dynamic systems [1]. Within this framework, average control-
lability serves as a pivotal measure, evaluating how effectively
a network’s state can be transitioned from an initial to a
desired final state through targeted control of specific nodes
[2]. This measure extends its utility by quantifying the capacity
of individual nodes to influence the network’s overall dynam-
ics, providing a distinctive perspective on their importance
and role. Nodes with a higher average controllability exhibit
greater influence on the behavior of the network, making them
central to the structure and function of the network [3]. Using
average controllability, one can identify nodes that are critical

for guiding network behavior and gain deeper insights into
the graph topology. These insights are particularly valuable
in applications such as graph anomaly detection, where the
influence of key nodes can help uncover irregular patterns and
anomalies that conventional methods might overlook [24].

Graph Anomaly Detection (GAD) is a vital area of study,
focusing on identifying unusual patterns or outliers in graph-
structured data. These anomalies can manifest as irregularities
in the structure or attributes of nodes and edges, which may
indicate significant, often hidden, events such as fraud [23],
and network intrusions [22]. Traditional Machine Learning
(ML) methods for anomaly detection struggle to capture the
complex nature of anomalies due to the limited availability
of labeled data and many other known issues, making it
challenging to accurately model the behavior of anomalous
samples [25].

Graph Neural Networks (GNNs) have emerged as powerful
tools in this context, using graph structure to enhance detection
capabilities by learning both local and global patterns inherent
in the data [4]. GNNs utilize both node attributes and relational
information between nodes, allowing them to capture complex
dependencies that go beyond individual features. By integrat-
ing node features with their neighbors’ information, GNNs
can iteratively aggregate and update node representations
through message passing layers. This aggregation scheme,
often involving functions like mean, sum, or max pooling,
ensures that each node’s final representation reflects not only
its own characteristics but also the structure of its surrounding
neighborhood [5].

Despite the strengths of GNNs, they also face notable
limitations. The message passing mechanisms, whether using
attention-based models or standard aggregation techniques,
often fail to capture the unique behaviors of anomalous nodes.
Anomalous nodes may exhibit patterns that deviate signif-
icantly from their neighbors, and conventional aggregation
schemes tend to smooth out these distinct features by focusing
on the average characteristics of the neighborhood [26]. As



a result, these models may overlook or misrepresent critical
anomalies.

To address these limitations, leveraging concepts from con-
trol theory—particularly average controllability—provides a
more robust framework. Average controllability quantifies the
importance of each node based on its capacity to control or
influence the system’s behavior [1], [2]. By incorporating this
measure, we can identify nodes with disproportionate control
or influence and integrate this information into the message
passing process. This approach enhances the detection of
key indicators of anomalous behavior in complex networks.
Mainly, our contributions are as follows.

• Unique Representation of Average Controllability: We
introduce a novel method to encode average controllabil-
ity into GNNs through two distinct strategies. First, we
represent it as an edge weight, directly assigning weights
to reflect the control influence of each connection. Sec-
ond, we encode it as an edge attribute using rank-based
encoding [3], capturing the relative importance of edges
in terms of their control capacity in an attributed form.

• Evaluation and Comparison: Extensive experiments
were conducted using six benchmark GNNs across five
anomaly detection datasets. The results demonstrate that
our proposed approach effectively enhances anomaly
detection performance.

By integrating these innovative metrics and exploring novel
graph representations, this work aims to advance the capability
of GNNs in detecting anomalies within graphs.

II. RELATED WORK

Recent advances in graph anomaly detection have intro-
duced several innovative methods. Class Label-aware Graph
Anomaly Detection (CLAD) [28] leverages limited labeled
nodes to enhance detection by incorporating class label in-
formation, improving structural anomaly identification. Graph
Anomaly Detection via Neighborhood Reconstruction (GAD-
NR) [29] is a recent variation of Graph Auto-Encoders (GAEs)
that leverages the local structure, self-attributes, neighbor at-
tributes and node representation reconstructs the neighborhood
of nodes to distinguish between normal and anomalous nodes
using reconstruction loss. Anomaly-Denoised Autoencoders
(ADA-GAD) [30] employ anomaly-denoised augmentation to
pretrain graph autoencoders at multiple levels, and introduce
anomaly distribution regularization to mitigate overfitting is-
sues. Hierarchical Memory Networks (HimNet) [31] learn
hierarchical memory modules at node and graph levels via
a GAE architecture and utilize node-level memory mod-
ule for local anomaly detection and graph-level for holistic
anomaly detection. Multi-representation Space Separation [32]
for Graph-level Anomaly Detection designs an anomaly-aware
module to separate normal and abnormal representations at
node and graph levels. PREM [33] focuses on node-level
anomaly detection using GNNs to capture complex patterns
and improve detection accuracy in intricate graph structures.

Controllability, a fundamental concept in control theory,
has also gained significant attention in graph representation

learning and graph anomaly detection lately. Recent works
leverage the controllability properties of dynamical networks
to develop more expressive and computationally efficient
graph representations for downstream anomaly detection tasks.
One notable approach employs control properties to create
augmented graph structures for contrastive learning. By per-
turbing the graph while preserving its controllability, this
method generates augmented graphs that retain key structural
characteristics, leading to superior performance in downstream
classification tasks. Another line of research treats graphs as
networked dynamical systems, where controllability is used to
analyze the relationship between the graph’s topology and its
control behavior [21]. By utilizing metrics such as the con-
trollability Gramian, new graph representations are designed
to capture both local and global structural information. These
representations exhibit desirable properties like permutation
and scale invariance, enabling more robust and interpretable
embeddings for graph classification.

III. METHODOLOGY

Our proposed approach for GAD consists of three key
steps: leveraging the NCT metric, average controllability, to
quantify the influence of each node; constructing a network
using derived parameters based on these metrics; and training
a GNN model on the constructed graph for anomaly detection.
In this section, we begin by introducing the necessary notations
and providing a detailed overview of NCT and average con-
trollability. Subsequently, we describe the process of network
construction, followed by the methodology for training GNNs
to effectively detect anomalies in the graph. We illustrate our
proposed approach in Figure 1.

A. Network Control Theory

Network Control Theory is a mathematical framework
designed to analyze and influence the behavior of complex
dynamic systems [2]. By identifying key control nodes within
a graph—akin to influential nodes in a network—NCT enables
the refinement of graph representations to capture not only the
structural characteristics of these nodes but also their capacity
to influence overall graph behavior. This includes their ability
to propagate information efficiently and reconfigure relation-
ships within the graph to achieve specific objectives [21].

The structural foundation of NCT is defined by a network
represented by the adjacency matrix A ∈ RN×N , where
N = |V | denotes the number of nodes, and a control set
matrix B ∈ RN×m. In this context, the temporal dynamics
of each node, represented as xi(t), are driven by a composite
function that reflects the combined influence of all other nodes,
xj(t), along with external inputs u(t), modulated by weights
in the network’s topology. The evolution of node states can
be described in terms of rates of change, where prior node
activities impact the rate at which subsequent nodes’ states
evolve. This interaction is modeled by a differential equation:

d

dt
x(t) = Ax+Bu(t) (1)
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Fig. 1: Illustration of the proposed methodology: The process begins with the computation of average controllability from
the input network, which is subsequently integrated into the network topology. Following this, GNNs are trained to carry out
anomaly detection.

where x(t) = [x1(t), x2(t), . . . , xn(t)]
⊤ is the vector

of node states, A is the adjacency matrix, and u(t) =
[u1(t), u2(t), . . . , un(t)]

⊤ is the vector of control signals. The
matrix B ∈ RN×m quantifies the influence of the inputs on
each node. In our experiments, B ∈ RN×N is set as the
identity matrix, indicating a fully controllable system.

A key mathematical tool in network control is the con-
trollability Gramian, which measures the ease with which the
system can be driven from one state to another using control
inputs [3]. In the system defined by the equation above, the
infinite horizon controllability Gramian is given by:

W =

∫ ∞

0

e−Aτ (−B)(−B)⊤e−A⊤τdτ ∈ RNf×Nf . (2)

For stable systems—where all eigenvalues of −A have
negative real parts—the Gramian W converges and can be
derived from the Lyapunov equation [3]:

(−A)W +W(−A)⊤ + (−B)(−B)⊤ = 0, (3)

The system described by (1) allows us to compute several
NCT metrics, with the average controllability metric being a
primary focus of this study.

B. Average controllability
Average controllability measures the ability of an individual

node to influence the overall dynamics of a network [2]. Nodes
with varying degrees of average controllability exhibit differ-
ent levels of impact on the network’s behavior, highlighting
their unique roles within the graph structure. Building on this
insight, our study focuses on transforming average controlla-
bility values into graph-related features such as edge attributes
and edge weights. By embedding these features into the graph,
we enrich the original graph data with additional topological
information, aiming to improve the accuracy of GAD. The
process begins with calculating the average controllability for
each node, a step detailed in Algorithm 1, which serves as
the foundation for constructing enhanced graph representations
tailored for GNN-based anomaly detection.

The algorithm 1 starts by taking the input graph G and
extracting its dense adjacency matrix A. In step 6-7, it com-
putes the largest absolute eigenvalue l of A. In step 8, the

Algorithm 1 Compute Average Controllability Score

1: Input: G = (V,E)
2: Output: Average Controllability (AC) score for individual

nodes
3: A← Dense adjacency matrix from G
4: B ← I|V | (Identity matrix of size |V |)
5: Compute Eigenvalues:

Solve the characteristic equation:

det(A− λI) = 0

6: {λ1, λ2, . . . , λ|V |} ← Eigenvalues of A
7: l← max

(
|λ1|, |λ2|, . . . , |λ|V ||

)
8: Anorm ← A

l+1 − I|V | (Normalize A)
9: t = [t0, t1, t2, . . . , tn] (Time steps for integration)

10: dE ← eAnorm·∆t (State transition matrix for time step ∆t)
11: dEa← I|V | (Initialize state transition matrices)
12: dG← 0 (Initialize Gramian matrix)
13: for each i in t do
14: dEati ← dEati−1 ·dE (Update state transition matrix)
15: dEab← dEati ·B (Control matrix contribution at ti)
16: dG ← dG + (dEab · dEab⊤) · ∆t (Update Gramian

matrix)
17: end for
18: W ← dG (Final controllability Gramian)
19: AC ← diag(W) (Extract diagonal entries as node scores)
20: return AC

matrix A is normalized by dividing it by l+1 and subtracting
the identity matrix. Step 9 defines a series of time steps,
and in step 10, the matrix exponential eAnorm·∆t is computed
to model how the system evolves over time. Steps 11 and
12 initialize the state transition and controllability Gramian
matrices. In steps 13-17, the algorithm iterates through each
time step, updating the state transition matrix and computing
the controllability Gramian by multiplying the state transition
matrix with the control matrix and its transpose. Finally, the
Gramian is integrated over time, and the diagonal entries of
the resulting matrix give the average controllability score for
each node, which is returned as the output.



C. Network construction with derived parameters

We utilize average controllability to inform the construction
of two critical parameters for the GNN: the edge weight and
edge attributes. The edge weight parameter typically defines
the strength or importance of the connections between nodes,
while edge attributes provide additional information to the
message passing mechanism about these connections. Average
controllability influences both of these parameters, therefore
our study embedded the information contained in average
controllability into these two parameters.

1) Edge Weights: Traditional GNNs typically operate on
undirected graphs, where connections between nodes are in-
herently bidirectional. To maintain compatibility with this
structure, we preprocess the graph by adding reciprocal edges,
ensuring every connection is bidirectional. Additionally, we
observed that the average controllability scores are constrained
between 0 and 1, making it challenging to distinguish differ-
ences across nodes. To address this limitation, we enhance
differentiation by adding 1 to each average controllability
score. The edges are then assigned weights proportional to
the average controllability of their source nodes, ensuring
that edges originating from highly controllable nodes receive
greater weight. This weighting scheme enables GNNs to
focus on connections that are critical to the network’s overall
controllability, thereby enhancing the model’s ability to detect
anomalies that disrupt these pivotal connections.

2) Edge Attributes: As a second contribution, we propose
encoding average controllability into a vector representation
in the form of edge attributes, providing additional context to
the message passing process. The procedure is as follows:

Given the average controllability vector for all nodes in
the graph, computed as described in Algorithm 1, where
each entry corresponds to a node, we follow the approach
presented in [3] and construct a histogram H with k bins to
capture the distribution of controllability values. The range
of H spans from the minimum to the maximum average
controllability value, with equal-width bins covering the entire
range. Each bin represents a specific range of controllability
values, and the height of each bin indicates the frequency
of nodes whose controllability falls within that range. This
histogram summarizes the distribution of controllability across
nodes, highlighting the prevalence of specific controllability
levels.

To generate a feature vector for each edge e = (vs, vt)
using H, we employ a one-hot encoding strategy based on
the average controllability of the source node vs. The one-
hot encoded feature vector for edge e, at index i, is denoted
as h0

e(i), where the index corresponds to the bin in H that
contains the average controllability value of vs.

h0
e(i) =

{
1 if Ca(vs) ∈ H(i)
0 otherwise

(4)

We present the algorithm for constructing edge attribute in
Algorithm 2.

Algorithm 2 Average Controllability Encoding

1: Input: Graph G = (V,E), number of bins k
2: Output: Edge Encoding matrix Ex

3: AC ← Average Controllability(G)
4: H ← Construct histogram H with k number of bins
5: Ex ← initialize edge feature matrix
6: for each edge e in E do
7: vs ← get the source node
8: ac ← AC[vs]:
9: index ← retrieve the corresponding bin index of ac

from H using equation 4
10: ex ←: initialize zero vector of size k
11: ex[index− 1]← 1
12: Ex[vs]← ex
13: end for
14: Return Ex

D. Graph Neural Networks

Graph Neural Networks (GNNs) are a class of neural
networks designed to operate on graph-structured data [4].
Unlike traditional neural networks that process feature vectors,
GNNs process node, edge, and graph-level information to
extract patterns and perform predictions. The fundamental
mechanism that drives GNNs is message passing, where nodes
iteratively exchange information with their neighbors and
aggregate that information to update their own representations
[27]. By passing messages through the graph, GNNs can better
capture both the structural information of the graph and the
features associated with each node.

The message passing process at each layer l consists of two
main steps: message aggregation and node update [27].

1) Message Passing: The general form of message aggre-
gation is defined as:

m
(l)
i =

∑
j∈N (i)

M(h
(l)
i , h

(l)
j , eij) (5)

Where m
(l)
i is the message for node i at layer l, N (i) denotes

the set of neighboring nodes of node i, h(l)
i and h

(l)
j are the

hidden states of the node i and its neighbor j at layer l, eij
represents edge features between nodes i and j, and M(·) is
the message function.

2) Node Update: After aggregating messages from its
neighbors, the node’s hidden state is updated using the fol-
lowing equation:

h
(l+1)
i = U(h

(l)
i ,m

(l)
i ) (6)

Where h
(l+1)
i is the updated hidden state of node i at layer

l+ 1, h(l)
i is the current state of node i at layer l, m(l)

i is the
aggregated message from neighboring nodes at layer l, and
U(·) is the update function.

We propose incorporating edge weight and edge attributes
as eij to enhance the message passing process in GNNs.

Edge weight wij modulate the influence of neighbor nodes
on the central node. By incorporating edge weights, the



message passing process becomes more fine-grained, allowing
the model to prioritize information from more influential
neighbors. The modified message aggregation step becomes:

m
(l)
i =

∑
j∈N (i)

wij ·M(h
(l)
i , h

(l)
j ) (7)

where edge weights wij scale the contribution of each neigh-
bor j to node i’s update, which helps the neural network to
aggregate edge information with importance.

Edge attribute eij provide an additional measure to aid
the neural network in understanding the discrete relationship
between nodes. Instead of treating all edges as homogeneous,
edge attributes, like one-hot encoded vectors, allow the GNNs
to incorporate relationship-specific details, leading to more
informative message passing.

Once the average controllability information is injected to
the network structure, we use state-of-the-art GNN approaches
to evaluate the proposed approach. We discuss those details in
the next section.

IV. NUMERICAL EVALUATION

A. Experimental Setup

1) Baselines: To evaluate the effectiveness of the proposed
approaches, we chose a diverse set of graph convolutional
models based on their compatibility with the introduced fea-
tures. Six models including k−GNN [4], BGNN [6], SGC
[7], GIN [8], GraphSAGE [5], and TAG [9]—utilize edge
weights during their forward pass, leveraging the weighted
connections to enhance their performance. Additionally, four
models—GEN [10], ResGatedGraph [11], GAT2 [12], and
UniMP [13]—incorporate edge attributes, allowing them to
benefit from the added contextual information provided by
these features. A brief overview of each model is provided
below.

Baseline GNN Convolutions with Edge Weight
k−GNN: It leverages a localized, first-order approximation
of spectral graph convolutions to efficiently aggregate features
from neighboring nodes. This approach enables GCNs to
encode both local graph structure and node features into low-
dimensional embeddings, which can be used for tasks such as
node classification and link prediction [4]. BGNN: Combines
GNNs with gradient boosting decision trees (GBDT), prepro-
cessing node features for both models to iteratively enhance
predictions [6]. SGC: A simplified GCN that reduces the
complexity of graph convolution by removing non-linearities
and collapsing weight matrices across layers [7]. GIN: A mes-
sage passing framework model designed to capture graph iso-
morphism, enhancing feature aggregation through GINConv
[8]. GraphSAGE: Uses inductive learning by sampling and
aggregating node features from local neighborhoods [5]. TAG:
Employs fixed-size learnable filters to perform convolution,
enhancing efficiency with a localized approach [9].

Baseline Models Supporting Edge Attributes

GEN: Introduces energy dynamics into graph convolution,
emphasizing influential nodes and edges to highlight structural

patterns important for tasks like anomaly detection [10].
ResGatedGraph, uses residual connections to enable deeper
networks by retaining original node information, helping to
mitigate the vanishing gradient problem [11]. GATv2d, en-
hances attention mechanisms from the original GAT, improv-
ing the precision of neighbor selection and feature aggregation
with multiple attention heads [12]. UniMP, adapts the self-
attention mechanism from sequence models to graph data,
allowing nodes to attend to all others in the graph, enabling
the capture of long-range dependencies and global interactions
[13].

2) Datasets: We utilize three real-world anomaly detection
datasets including Reddit [14], Amazon [14] and FraudAma-
zon [7]. The reddit dataset was obtained from the GAD
Benchmark consisting of 10, 984 nodes, of which 3.3% are
labeled as anomalies, and 168, 016 edges. Each node is
represented by 64 features, derived from text embeddings.
Relationships are defined based on nodes appearing in the
same post. The Amazon dataset was also obtained from the
GAD Benchmark [14], and the FraudAmazon dataset from
DGL [7]. The FraudAmazon dataset includes product reviews
in the Musical Instruments category. Users with more than
80% helpful votes are labeled as benign entities, while those
with fewer than 20% helpful votes are labeled as fraudulent
entities. Each node is described by 25 handcrafted features.
This dataset consists of 11, 944 nodes and three types of
edge allocations: U -P -U , U -S-U , and U -V -U . For the syn-
thetic setting, due to the lack of publicly available datasets
that explicitly define structural and contextual anomalies, we
modify well-known node classification dataset, Cora [15] by
injecting anomalies. Specifically, we introduce both structural
and contextual anomalies to evaluate the proposed methods.

For structural anomalies, we first select m × n nodes to
form structural anomaly clusters. These nodes are divided into
n groups, each containing m nodes. Within each group, all
possible pairs of nodes are considered for potential new edges.
A new edge is added between a pair of nodes with a probability
of 1−p, provided the edge does not already exist in the graph.
This process modifies the local connectivity, rendering these
groups structurally anomalous. The selected nodes are labeled
as anomalies with a value of 1 in the label tensor.

For contextual anomalies, we randomly select m×n nodes,
denoted as Vc, to serve as contextual anomalies. The remaining
nodes are stored in Vr. For each node in Vc, we randomly
select q nodes from Vr. Among these q nodes, the one with
the most dissimilar feature vector (measured by Euclidean
distance) is identified. The feature vector of this dissimilar
node is then copied to the corresponding node in Vc, making
its features significantly different from those of its neighboring
nodes. The nodes in Vc are labeled with a value of 1 in the
label tensor, indicating contextual anomalies. All other nodes
in the dataset are considered normal.

3) Evaluation Metrics: We use Area Under the Receiver
Operating Characteristic Curve (AUROC), the Area Under
the Precision-Recall Curve (AUPRC) calculated using average
precision, and the Recall score within the top-K predictions



TABLE I: Reddit dataset: Performance comparison of the proposed approach with GCN, BGNN, SGC, GIN, GraphSAGE, and
TAG as graph convolution methods.

Metrics GCN BGNN SGC GIN GraphSAGE TAG
Ours Baseline Ours Baseline Ours Baseline Ours Baseline Ours Baseline Ours Baseline

AUROC 0.615 0.613 0.687 0.682 0.553 0.553 0.596 0.649 0.646 0.649 0.646 0.615
AUPRC 0.050 0.046 0.067 0.066 0.047 0.047 0.060 0.061 0.059 0.057 0.059 0.047
RecK 0.068 0.061 0.068 0.054 0.082 0.082 0.109 0.075 0.088 0.061 0.088 0.054

Fig. 2: Comparative analysis of performance metrics AUPRC (left) and RecK (right) via edge weight a achieved by different
models on the Reddit Dataset.

(Rec@K) as performance metrics for the GAD task [14]. The
parameter K is set to the number of anomalies within the test
set. For all metrics, anomalies are treated as the positive class,
with higher scores indicating better model performance.

Each metric serves a specific purpose: AUROC evaluates
overall performance but is not sensitive to top-K predic-
tions, Rec@K focuses exclusively on top-K performance, and
AUPRC strikes a balance between the two. For example,
suppose the test set contains 10 anomalies within 1000 data
points, and a model ranks the anomalies in positions 11 to 20.
In this case, the model would achieve an AUROC of 0.99, an
AUPRC of 0.33, and a Rec@10 of 0.

We chose Rec@K over traditional recall because the order
of predictions is critical in GAD. In practical applications,
the top-ranked results are often prioritized for further analysis
as potential anomalies. By assessing the proportion of true
anomalies within the top-K predictions, Rec@K provides
a more accurate measure of the model’s ability to identify
significant anomalies. This metric effectively evaluates how
well the model prioritizes the most relevant anomalous nodes,
which is crucial in scenarios where only the most suspicious
cases merit further investigation.

4) Parameters Setup: In this study, we utilize a step size
of 0.2 and treat the system as continuous to calculate the
average controllability. Each GNN is constructed with two
layers of convolutions and a multilayer perceptron (MLP) for
classification. Specifically, the first GCN layer transforms the
original node features into a 32-dimensional space, while the
second GCN layer maintains the feature dimensions at 32. The
MLP layer performs the final binary classification. We apply
the ReLU activation function throughout the network and set
the dropout rate to 0.

For models that incorporate edge attributes, we encode these
attributes using a fully connected linear layer within the GNN
context. The number of epochs for each trial is set to 200,

and the learning rate is fixed at 0.01. To address the issue of
class imbalance, we use a weighted cross-entropy loss function,
where the weight is defined as the ratio of benign nodes to
anomalous nodes. The Adam optimizer is employed for model
optimization. In the experiments involving edge attributes, bin
sizes are introduced as a hyperparameter, and we evaluate each
dataset with different bin sizes of 5, 20, 30, and 50. We ran
each experiment 10 times with 10 different seeds and report
the average scores.

B. Results with Edge Weights

We evaluate the aforementioned baseline for GAD by
comparing their performance with and without the use of
the proposed approach, using AUROC, AUPRC, and RecK
metrics on Reddit Dataset [14]. For a baseline, we train each
models with the same hyper-parameters and architecture and
then use the proposed approach to integrate the metrics and
train the same model on the augmented data. We present
the evaluation results in Table I. We observe that there is
a consistent boost to each model’s performance using the
proposed approach.

Specifically, the proposed approach achieves identical or
improved performance across all models on the AUPRC
metric, which balances precision and recall, and thereby, a
better measure of the performance in this imbalanced Reddit
dataset [14]. BGNN’s AUPRC score increases from 0.065
to 0.067, indicating a balanced recognition of positive cases.
GraphSAGE maintains a similar AUPRC score, highlighting
the consistent predictive capability of the model in balancing
precision and recall, even with different configurations. SGC
and GIN models exhibit similar trends, reflecting the overall
stability of the models’ performance. The proposed approach
als achieves a consistent increase across all models on the
RecK metric, which evaluates how well models prioritize true
anomalies in the top-K predictions. Notable improvements



TABLE II: Performance comparison of using average controllability as an edge attribute with GEN, RES, GAT2, and UNiMP

Metrics GEN RES GAT2 UniMP
Ours Baseline Ours Baseline Ours Baseline Ours Baseline

Reddit dataset
AUPRC 0.085 0.070 0.061 0.046 0.056 0.056 0.071 0.062
RecK 0.127 0.099 0.097 0.043 0.063 0.063 0.095 0.064
Injected Cora dataset
AUPRC 0.280 0.223 0.500 0.387 0.248 0.248 0.350 0.198
RecK 0.310 0.303 0.483 0.386 0.441 0.441 0.455 0.324
FraudAmazon dataset
AUPRC 0.873 0.876 0.278 0.235 0.384 0.384 0.846 0.844
RecK 0.834 0.839 0.345 0.281 0.411 0.411 0.803 0.803

Fig. 3: Comparison of performance metrics (AUPRC and RecK) for models on the Reddit Dataset with edge attribute approach.

include a 10.5% increase for GCN. TAG’s RecK shows a
substantial increase of 62.4%, underscoring its enhanced abil-
ity to prioritize true anomalies. Additionally, GraphSAGE’s
RecK increases by 44.4%, and GIN’s RecK shows a 45.5%
increase. The result reflects its capacity to better rank positive
cases. This consistent improvement underscores the essential
role of the proposed approach in enhancing top-K ranking
performance. For a clearer visualization of the results, we have
illustrated the performance comparison in Figure 2.

C. Results with Edge Attributes

For this task, we considered four models, both with and
without the proposed approach and three datasets: Reddit,
Fraud Amazon and Injected Cora dataset. For constructing
the edge attributes, the optimal overall performance from
configurations based on bin sizes of 10, 20, 30, and 50
is chosen. Our primary focus is on the AUPRC and RecK
metrics. This focus is justified by two main factors: firstly, the
significant imbalance present in each dataset, and secondly,
the importance of an anomaly detection algorithm having a
high probability of correctly identifying true anomalies. The
numerical results are detailed in Table II and also illustrated
in Figure 3 for Reddit dataset.

The Reddit and Injected Cora datasets show a significant
increase in AUPRC scores for the GEN, RES, and UniMP
models with the proposed approach, while the GAT2 model’s
performance remains unchanged. The baseline for the AUPRC
score is determined by the fraction of positives, which cor-
responds to the percentage of anomalies in the dataset. For
example, the Reddit dataset contains 3.3% anomalies, setting
the baseline at 0.033. Although all models exceed this base-
line in the baseline setting, the inclusion of edge attribute

with the proposed approach still boosts their performance.
Specifically, it improves the AUPRC for GEN by 20.7%,
RES by 32.9%, and UniMP by 14.6%. In the Injected Cora
dataset, where 50 contextual and 50 structural anomalies
are introduced, the baseline is set at 3.7% (0.037). Here,
each model significantly exceeds the baseline, indicating that
artificially injected anomalies may be easier to detect. The
addition of edge attributes further enhances performance, with
improvements of 25.2% for GEN, 29.3% for RES, and 76.6%
for UniMP. Conversely, no such improvement is observed for
the FraudAmazon dataset, which suggests that graph topology
information may not be as crucial for anomaly detection in this
dataset—a hypothesis that is supported by later experiments
discussed in V.

Regarding metric RecK, which measures the algorithm’s
ability to recommend true anomalies effectively, the proposed
approach also achieve progress. The Reddit and Injected Cora
datasets exhibit a notable increase in successful anomaly
recommendations across all models, except for GAT2. For the
Reddit dataset, the percentage of successful recommendations
increases from 9.9% to 12.6% for GEN, 4% to 10% for RES,
and 6.4% to 9.5% for UniMP. Similarly, for the Injected Cora
dataset, successful recommendations rise from 30% to 31%
for GEN, 38% to 48% for RES, and 32% to 46% for UniMP.
As with the AUPRC metric, no significant improvement is
observed for the FraudAmazon dataset, except for a modest
increase from 28% to 34% in the RES model.

V. CONCLUSION AND FUTURE WORKS

In this paper, we introduce two novel approaches to in-
corporate average controllability into the network topology.
The first approach utilizes edge weights to account for node



influence within the message passing mechanism. The second
approach employs an encoding scheme to transform average
controllability into edge attributes. We evaluate these pro-
posed methods against several baseline models and bench-
mark datasets. Our results indicate that incorporating edge
attributes with average controllability significantly enhances
model performance on datasets such as Reddit and Injected
Cora, leading to substantial improvements in both AUPRC
and RecK scores. Moreover, across all models and metrics,
the inclusion of edge weights improves the models’ ability
to balance precision and recall, as evidenced by the gains
in AUPRC, and to effectively recommend true anomalies, as
reflected by RecK improvements.

Future work will focus on investigating why the inclusion of
edge attributes improved the predictive capabilities of GNNs
on certain datasets, but had no noticeable impact on others.
Our current hypothesis posits that edge attributes serve as
an additional tool to enhance the structural information of
the graph, making them beneficial only when this structural
information is vital for distinguishing between anomalies and
normal nodes. Overall, we believe this research will pave the
way for future studies integrating network control theory and
graph machine learning to develop more effective approaches
for robust anomaly detection.
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