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ABSTRACT-The article investigates the applicability of 
inverse methods in estimating the best values to be assigned to 
certain parameters which appear in turbulent flow through 
DPHE. The normalized study domain has been derived from 
original DPHE.  Conjugate gradient method (CGM) technique 
is applied in the estimation of unknown heat transfer rate. No 
information is available for the unknown heat transfer rate and 
hence the procedure is classified as estimation of unknown 
quantity using simulated temperature measurement. The 
parameter optimization relies on the availability of data for the 
velocity profile, friction factor, viscosity and other turbulent 
parameters. It is shown that using these optimized parameters; 
it is possible to predict with more the parameter profile within 
the domain. The Prandtl mixing length theory model used to 
solve the turbulent energy equation for parameter estimation. 
Results shows that there is excellent estimation of heat transfer 
rate for the test case analyzed in this study domain of Double 
Pipe Heat Exchanger. 

Keywords - Inverse method, parameter estimation, 
turbulent flow, CGM 

 

1. INTRODUCTION 

Inverting the energy equation is a problem of great interest 
in the sciences and engineering, in particular for modeling and 
monitoring applications [2]. In this work, we look at the 
energy equation depends on some domain containing a point 
heat source at known location. The magnitude of the heat 
source is assumed to be unknown and vary with time. This is 
very important utility in applications because it useful for 
determining the temperature of a body at the points where 
direct measurement is infeasible or inaccurate or difficult to 
measure. For example, when a space vehicle reenters the 
atmosphere, the temperature experienced by the heat shield 
can be too large for traditional sensors, and thus we must take 
measurements from distance and infer the true temperature 
[6]. The energy equation we consider is the linear heat 
equation and thus, the resulting optimization is linear function. 
A more general model of heat transfer, however, involves the 
nonlinear energy equation, which results in a nonlinear 

optimization problem. We are interested in the solution of 
such nonlinear problems from an inverse theory point of view, 
but the numerical solution of nonlinear partial differential 
equations is a complicated topic, discussion of which is 
outside the scope of this work. Thus, we stick to the linear 
energy equation while exploring algorithms that will work in 
the general case.  

Unfortunately, the inverse problem is ill-posed which 
makes numerical solution difficult without the introduction of 
regularization or other analysis tools [4]. In particular, we will 
look at the effects of noise on our reconstruction both with and 
without a form of Tikhonov-type regularization parameter to 
promote smoothness of the solution in time.  

 

2. PHYSICAL SET UP 

2.1 GEOMETRY AND NORMALIZATION 

Considering two-dimensional cylindrical domain that 
covers the annular region between two concentric circles. We 
consider hydro-dynamically developed, thermally developing 
turbulent forced convection of a constant property fluid 
flowing inside an annulus of double pipe heat exchanger as 
shown in figure 1.   

r1= Inner Pipe Radius,  r2=Outer Pipe Radius 

The curvilinear coordinates (r,θ) vary on the intervals [r1, 
r2] and [0, 2π] respectively. These curvilinear coordinates are 
related to cartesian coordinates (x, y) by transformation 
equations 

𝑥(𝑟, 𝜃) = 𝑟𝑐𝑜𝑠𝜃,  𝑦(𝑟, 𝜃) = 𝑟𝑠𝑖𝑛𝜃 

The inverse transformation is given by 

𝑟(𝑥, 𝑦) = √𝑥2 + 𝑦2,  𝜃(𝑥, 𝑦) = tan−1 𝑦

𝑥
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Figure- 1 Velocity Profile, Cross-Section and 2-D 
Convective Heat Flow in DPHE  

We take, one of the curvilinear coordinates ‘r’ is constant 
on each of physical boundaries, while the other coordinates ‘θ’ 
varies monotonically over the same range around each of the 
boundaries. The system can be represented as a rectangle on 
which the two physical boundaries correspond to the top and 
bottom sides(figure-2): 

 

Figure- 2 Conversion of Cylindrical Coordinate System to 
Rectangular System 

Coding point of view the system transformed  in to 
rectangular coordunates where the curvilinear coordinates, r 
and θ are independent Variables.  

The curvilinear coordinates (r, θ) can be normalized to the 
interval [0, 1] by introducing the new curvilinear coordinates 
(ζ, η), where, 

ζ =  θ / 2π ,  η =
r−r1

r2−r1
 

𝜃(𝜁) = 2𝜋𝜁 , 𝑟(𝜂) = 𝑟1 + (𝑟2 − 𝑟1)𝜁 

The transformation then may be written as under 

𝑥(𝜁 , 𝜂) = [𝑟1 + (𝑟2 − 𝑟1)𝜂] cos(2𝜋𝜁)  and  𝑦(𝜁 , 𝜂) =
[𝑟1 + (𝑟2 − 𝑟1)𝜂] sin(2𝜋𝜁) 

Where, both ζ and η are varying on the interval [0, 1]. This 
is a mapping of annular region between the two circles in the 
physical space onto the unit square in the transformed space, 
i.e., each point (x, y) on the annulus corresponds to one, and 
only one point (ζ , η) on the unit square: 

 

 

 

 

Figure- 3 Normalized Form of Curvilinear Coordinate 
System 

The bottom (η = 0) and top (η = 1) of the square 
correspond respectively to the inner and outer circles, r = r1 

and r = r2. The sides of square, ζ = 0 and ζ = 1 correspond to θ 
= 0 and θ = 2π, respectively as shown in figure-4. 

The solution function T(x, y) of this differential equation 
describes the temperature, for example, a thin metal plate of 
unit area, at every position(x, y), 0 ≤ x,  y ≤ 1,  at any time t  ≥ 
0.  At the edge points of the plate, we have constant 
temperatures at x=0, x=1, y=0 and y=1. At time t = 0, the 
temperature of every point (x, y) is given by T(x, y). In the 
simplest case, we may assume that T(x, y) is a constant 
function with its value somehow in the range defined by the 
boundary conditions. For example, the temperature at position 
(x = 0.4, y =0.5) at time t = 5 is given by T(5, 0.4, 0.5). We try 
to approximate the values of the solution function T (t, x, y). 

2.2 THE INVERSE PROBLEM 

The theoretical model is presented which solves the 
inverse problem of heat transfer through convection to 
accurately estimate the heat transfer function varying at time 
of the thermal boundaries of the annulus. This approximate 
determination is based on measurement of transient 
temperature captured by a thermocouple on the heated surface. 
The conjugate gradient method with adjoint problem for 
function estimation is used to determine the heat transfer rate 
approximately.  

In contrast to the forward problem of Equation (1), we will 
not assume knowledge of heat sources inside the domain - at 
least, not total knowledge. Rather, we can initially assume the 
domain of interest that has a uniformly at heat profile without 
loss of generality to be u(x; 0) = 0. According to Neumann 
boundary conditions and in lieu of any sources or sinks the 
solution of Equation (1.1) is simply T(r; t) = 0 for all time.  

For our setup, following Ozisik and Orlande in [6], we are 
interested in the case of a single source qs at a known location 
in the domain, rs, which has some time-varying strength, i.e., 

𝑞𝑠(𝑟, 𝑡) = 𝑓(𝑡)𝛿(𝑟 − 𝑟𝑠) 

Where, 𝛿(𝑟) is the Direc delta function- 

𝜹(𝒓) = {
∞    𝒓 = 𝟎,
𝒓     𝒆𝒍𝒔𝒆.

 

Knowing the initial heat profile we could use Equation 
(1.1) to predict the effect of rs on the temperature distribution 
T - if we knew f (t). Instead, however, we will look at the 
inverse problem: given measurements of T at discrete points in 
space and time, recover f. 

Formally, we consider a number Nr of receivers located at 
points in the domain distinct from rs. Using rr,i  to denote the 
position of the i-th receiver, we assume we have accessed to 
measurements of the temperature T at each point rr,i for Nt 
different times between 0 and tf . The problem of interest is the 
function estimation problem on some domain with boundary: 

The mathematical formulation for this steady-state forced 
convection problem is given as follow for the domain shown 
in figure 4. 
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𝑘
𝜕2𝑇

𝜕𝑦2
= 𝑢(𝑦)𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
 𝑖𝑛 0 < 𝑦 < 𝐿, 0 < 𝑥 < 𝑏, 𝑡 > 0 (1.1) 

𝑘
𝜕𝑇

𝜕𝑦
= 𝑓(𝑡) =? 

𝑎𝑡 𝑦 = 0 𝑓𝑜𝑟 0 < 𝑥 < 𝑏, 0 ≤ 𝑡
≤ 𝑡𝑓 

(1.2) 

𝑘
𝜕𝑇

𝜕𝑦
= 𝑓(𝑡) =? 

𝑎𝑡 𝑥 = 0 𝑓𝑜𝑟 0 < 𝑦 < 𝐿, 0 ≤ 𝑡
≤ 𝑡𝑓 

(1.3) 

𝑘
𝜕𝑇

𝜕𝑦
= 0    𝑎𝑡 𝑦 = 𝐿 𝑓𝑜𝑟 0 < 𝑥 < 𝑏, t > 0 (1.4) 

𝑘
𝜕𝑇

𝜕𝑦
= 0    𝑎𝑡 𝑥 = 𝑏 𝑓𝑜𝑟 0 < 𝑦 < 𝐿, t > 0 (1.5) 

𝑇 = 𝑇𝐿 𝑎𝑡 𝑦 = 𝐿 𝑓𝑜𝑟 0 < 𝑥 < 𝑏, 𝑡 > 0 (1.6) 

𝑇 = 𝐹(𝑥) 𝑎𝑡 𝑦 = 0 𝑖𝑛 0 <  𝑥 < 𝑏, 𝑡 > 0 (1.7) 

 

The Conjugate Gradient Method (CGM) based on Adjoint 
Problem for Estimation of the Function (Technique –IV) is 
used to model the inverse problem. The function f(t) is 
regarded to be unknown. 

 

Figure- 4 Domain for Inverse Convective Heat Transfer 

In order to find f(t). We refer to the above as the inverse 
problem. However we note that the assumption which we can 
measure T(rr;i; tj) exactly is a stronger assumption than one 
should be willing to make, given that sensor noise / 
measurement error is always an issue in real-world problems. 
As such, we will consider the case where we are not given 
exactly T(rr;i; tj), but, rather, measurements subject to white 
noise with standard deviation σ. We will see that the impact of 
this noise on our solution can be quite dramatic and affects our 
solution algorithm. 

2.3 NON LINEAR CONJUGATE GRADIENT 

To solve the inverse problem of equation 1, we can use the 
non linear conjugate gradient method. In essence, given an 
initial guess, the conjugate gradient method minimizes a 
function J(x) by, at each iteration, choosing a new guess by 
taking the old guess and tacking on an additional term that 
pushes the solution closer to the optimal one [7]. In contrast to 
the method of gradient descent the new direction is not 
required to be strictly in the direction of the gradient, which 
means that subsequent directions are not constrained to be 
orthogonal. 

The basic idea behind the algorithm is [6], given initial 
guess fk = f0, 

• To solve  the temperatures, Tk(rr;i; tj) that result from fk at 
the measurement points using the forward problem. 

• To Calculate the residual error, i.e., the difference 
between the resultant temperatures, Tk(rr;i; tj); and the 
measured temperatures, Ti;j . 

• To find a search direction by inverting the heat equation 
to determine what heat source function would account for the 
residual error. Potentially modify this search direction by 
taking into account other known or assumed information about 
the heat source function. 

• Adjust your guess fk by adding on some component in 
the new search direction to form fk+1. 

• Set k = k + 1 and repeat. 

Mathematically, we define Tmeas = (Ti;j) to be the vector of 
all measured temperatures over all times, and Tf ≡  Hf = {(ri; tj 
; f )} to be the vector of calculated temperatures at all 
measurement locations and times using the source f , where H 
is the operator that corresponds to solving the forward 
problem and vectorizing appropriately. The difference is that 
the first is strictly physical and results from actual 
measurements and the second is functional and results from 
computation. We are looking at a concrete, least-squares 

minimization problem: we want the source 𝑓 that satisfies 

𝑓 =  
𝑎𝑟𝑔𝑚𝑖𝑛

𝑓
 𝐽[𝑓] (2) 

𝐽[𝑓] =  
1

2
‖𝑇𝑓 − 𝑇𝑚𝑒𝑎𝑠‖

2

2
  

 Above, we have adopted the convention of writing the 
source as a vector rather than a continuous function of time, as 
we note that any numerical computations will be limited to the 
discrete setting. We note that the resolution of f may be 
increased without difficulty (except perhaps computational 
cost) and thus this in no way limits the applicability of our 
theory. We are also highly interested in regularization of the 
inverse problem, where we can employ information known 
already about f in some meaningful way. The regularization in 
which we are interested is Tikhonov approach to promote 

smoothness of the solution  𝑓 . In particular, if we define D to 
be a finite difference matrix that calculates the discrete first 
derivative, we can modify the cost function in above Equation 
to a regularized cost function. 

𝐽𝑟[𝑓] =
‖𝑇𝑓 − 𝑇𝑚𝑒𝑎𝑠‖2

2
+ λ‖𝐷𝑓‖ 2

2

2
 (3) 

In the above λ is the regularization parameter that 
represents the trade-off between the data and the a priori 
information in general, choosing its value is a difficult task 
and it frequently must be hand-tuned. The nonlinear conjugate 
gradient method, in a more precise algorithmic form than the 
above, can be seen in Algorithm 1. The variable is known as 



IJRECE  VOL. 6 ISSUE 3 ( JULY - SEPTEMBER 2018)                 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 
 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR  425 | P a g e  

the conjugation coefficient and represents the fact that we 
want to move in the improved direction, but not so far that the 
algorithm becomes unstable or oscillates, and β represents the 
fact that we want to be a completely memory-less algorithm 
like gradient descent, but to keep the track of the past 
directions and continue to use that information. Beyond γ and 
λ, Algorithm 1 requires the computation of the gradient of J at 
each iteration. We below discuss the theory and method 
behind computing these values. 

2.4 THE GRADIENT 

To compute the gradient of the cost function,∇𝐽[𝑓], we 
will first look at the case without regularization, Equation (2).  

Algorithm 1 

𝑘 = 0 

𝑓(𝑘) = 𝑓0 

𝑑(𝑘) = −∇𝐽[𝑓(𝑘)] 

𝒓𝒆𝒑𝒆𝒂𝒕 

 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝛾(𝑘) 

             𝑓(𝑘+1) = 𝑑(𝑘) + 𝛾(𝑘)𝑓(𝑘) 

            𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝛽(𝑘) 

             𝑑(𝑘+1) = −∇𝐽[𝑓(𝑘+1)] + 𝛽(𝑘)𝑑(𝑘) 

            𝑘 = 𝑘 + 1 

𝒖𝒏𝒕𝒊𝒍 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 

𝑓 = 𝑓(𝑘) 

Cued by Jarny and Ozisik in [3], we note that the gradient 
is related to the directional derivative by the inner-product,  

∇∆𝑓𝐽[𝑓] =  〈∇𝐽[𝑓], ∆𝑓〉 (4) 

Where ∆𝑓 is some direction in which f is to be perturbed,  
An alternative expression which we  can use for the 
directional derivative is simply its definition, 

∇∆𝑓𝐽[𝑓] =  lim
𝑒→0

𝐽[𝑓 + ɛ∆𝑓] − 𝐽[𝑓]

ɛ
  

Simple algebra allows us to use the definition to calculate 
the directional derivative directly, 

∇∆𝑓𝐽[𝑓] = 
lim
𝑒→0

‖𝐻(𝑓 + ɛ∆𝑓) − 𝑇𝑚𝑒𝑎𝑠‖ 2
2

−‖𝐻𝑓 − 𝑇𝑚𝑒𝑎𝑠‖ 2
2

2ɛ
 

 

 = 〈𝐻𝑇(𝐻𝑓 − 𝑇𝑚𝑒𝑎𝑠), ∆𝑓〉 

 

By equating the above with Equation (4) and noting that 
the choice of direction was arbitrary, we can assert that 

∇𝐽[𝑓] =  𝐻𝑇(𝐻𝑓 − 𝑇𝑚𝑒𝑎𝑠) (5) 

for the case of no regularization. Because the gradient is 
additive, it is simple to see that adding regularization as in 
Equation (3) yields 

∇𝐽𝑟[𝑓] = 
∇𝐽[𝑓] +  𝜆∇ (

‖𝐷𝑓‖ 2

2

2
) 

 = 𝐻𝑇(𝐻𝑓 − 𝑇𝑚𝑒𝑎𝑠) + 𝜆𝐷𝑇𝐷𝑓 

The problem now becomes determining what is meant by 
the adjoint operators HT and DT. As D is the time-derivative 
operator, it is easy to show that the adjoint operator is the 
negative time-derivative, i.e., DT = - D. 

The application of the adjoint heat equation operator (with 
measurement), HT, is more complicated, and a derivation is 
outside the scope of this project. We below give the statement 
of the operator HT without proof. 

2.5 THE ADJOINT  

In [3], Jarny and Ozisik describe the adjoint problem stated 
here. As H is an operator that takes source-function space to 
measurement space, HT should, naturally, be a function that 
takes measurement space to source-function space. The final 
form of the adjoint operator involves the solution to the 
adjoint problem, 

−
𝜕𝜓(𝑟, 𝑡)

𝜕𝑡
 = 

∇2𝜓(𝑟, 𝑡) + ∑ 𝑇𝑖̅

𝑁𝑟

𝑖=1

(𝑡)𝛿(𝑟

− 𝑟𝑟,𝑖),   (𝑟, 𝑡)
∈ 𝛺 × (0, 𝑡𝑓) 

  
(6) 

𝜕𝜓(𝑟, 𝑡)

𝜕𝑡
 = 0, (𝑟, 𝑡) ∈ 𝛺 × (0, 𝑡𝑓) 

𝜓(𝑟, 𝑡𝑓) = 0, 

where 𝑇𝑖̅(𝑡) is the continuous function achieved by time-
interpolation of the measurements from sensor i. We note that 
Equation (12) is a final-value problem, but can be converted to 
an initial-value problem by making time go backwards [3]. 

The definition of HT is simply derived as, 

𝐻𝑇𝑇 = 𝜓, 

where ψ is given by solving the adjoint problem with the 
temperature information in T broken apart once again into 
separate sensors and then interpolated in time. 

2.6 THE CONJUGATION COEFFICIENT 

There are several heuristics for calculating the conjugation 
coefficient, γ, including, but not limited to, the Fletcher-
Reeves method, and the Polak-Ribiere method [4]. We use the 
latter the expression for which is 

𝛾(𝑘) =  
−〈∇𝐽[𝑓(𝑘+1)], ∇𝐽[𝑓(𝑘+1)] − ∇𝐽[𝑓(𝑘)]〉

‖∇𝐽[𝑓(𝑘)‖ 2
2

 (7) 
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2.7 THE STEP SIZE 

Combined γ and ∇𝐽 are all we need to determine the next 
search direction. The next variable to be determined is the 
optimal step size in that direction, β.  

To determine the optimal β for the step size, we need to 
calculate how the output is perturbed as a response to a 
perturbation in the input of the forward problem of Equation 
(1.1). Thus, we are interested in the following sensitivity 
problem [3], 

𝜕∆𝑇(𝑟, 𝑡)

𝜕𝑡
 = 

∇2∆𝑇(𝑟, 𝑡) + ∆𝑓(𝑡)𝛿(𝑟 − 𝑟𝑠),   (𝑟, 𝑡)
∈ 𝛺 × (0, 𝑡𝑓) 

(
8) 

𝜕∆𝑇(𝑟, 𝑡)

𝜕𝑡
 = 0, (𝑟, 𝑡) ∈ 𝛺 × (0, 𝑡𝑓) 

∆𝑇(𝑟, 𝑡𝑓) = 0, 

Using this to solve for ∆𝑇 given∆𝑓 , we can that compute 

𝛽(𝑘) by differentiating 𝐽[𝑓(𝑘+1)]with respect to β and equating 

that to zero. This yields [6] 

𝛽(𝑘) =  
〈𝑇𝑓

(𝑘)
− 𝑇𝑚𝑒𝑎𝑠,∆𝑇(𝑘)〉

‖∆𝑇(𝑘)‖ 2
2

 (9) 

where, once again, 𝑇𝑓
(𝑘)

 is the vectorized measurements 

from all sensors across time. 

 
3. TURBULENCE MODELLING IN INVERSE 

PROBLEM 
3.1 Eddy-Viscosity Models -Eddy- Viscosity Hypothesis 
The mean shear stress has both viscous and turbulent parts. 

In simple shear: 

𝜏 = µ
𝜕𝑈

𝜕𝑦
− 𝜌𝑢𝑣 ̅̅ ̅̅   (10) 

In above equation the first component is viscous and the 
second component is turbulent [8, 9, 10]. The most popular 
type of turbulence model is eddy viscosity model (EVM) 
which assumes that turbulent stress is proportional to mean 
velocity gradient in a manner similar to viscous stress. In 
simple shear: 

µ
𝑡

𝜕𝑈

𝜕𝑦
= −𝜌𝑢𝑣 ̅̅ ̅̅  (11) 

µt is called an eddy viscosity or turbulent viscosity. This 
mean shear stress is then, 

𝜏 = µ
𝑒𝑓𝑓

𝜕𝑈

𝜕𝑦
 (12) 

Where, the total effective viscosity is  

µeff  = µ + µt (13) 

with the eddy-viscosity hypothesis, closure of the mean-
flow equations now rests solely on the specification of µt, a 
property of the turbulent flow. 

3.2 Mixing Length Models (Prandtl,1925) 

Eddy viscosity: 

µ
𝑡

= 𝜌 𝜈𝑡                            𝑤ℎ𝑒𝑟𝑒 𝜈𝑡 = 𝑢0 𝑙𝑚  (14) 

The mixing length 𝑙𝑚 is specified algebraically and the 
velocity scale 𝑢0 is then determined from the mean-velocity 
gradient. In simple shear: 

𝑢0 = 𝑙𝑚 |
𝜕𝑈

𝜕𝑦
|  (15) 

The model is based on the premise that if a turbulent eddy 
displaces fluid particle by distance 𝑙𝑚 its velocity will differ 
from its surrounding by an amount 𝑙𝑚 |∂U/∂y|.  

µ
𝑡

= 𝜌 × 𝜈𝑡  = 𝜌𝑙𝑚
2 |

𝜕𝑈

𝜕𝑦
| 

 

(16) 

4. NUMERICAL RESULTS 

The flow considered in the annulus is hydrodynamically 
developed and the section of interest is adequately far from the 
inlet section, so that the velocity profile becomes unvarying 
with the axial direction. Due to the symmetry nature only one 
fourth cross section of the flow geometry is modeled. In the 
two dimensional environment the velocity is increasing in the 
positive vertical direction and constant velocity values in 
positive horizontal direction. In annulus radial cross-sectional 
form and in x-y directions have been considered and the 
temperature strength has been computed. The viscous 
dissipation is examined as per the geometry of annuli shown 
in figure 1. The function estimation with the customized 
boundaries considering the heat flux applied on the boundary 
of the domain which is the realistic case. This is the core work 
behind the development of this code which can resemble the 
actual heat transfer process in the double pipe heat exchanger. 
In the heat exchanging process the heat is applied to the one 
medium to the other medium at the contact surface between 
two medium. In order to incorporate the application of heat the 
boundary conditions are modified in the code.  

The MATLAB code is tested with the given true function. 
We use a simple finite-difference discretization to solve the 
forward problems. In particular, we use an implicit 
discretization in time and a simple central difference in space, 
enforcing Neumann conditions at the spatial boundaries by 
assuming ghost points outside the domain. The next task is to 
incorporate the boundary conditions. The code solves the heat 
convection problem with Neumann boundary condition. The 
requirement as per the real situation is that the heat flux is 
specified at the particular boundary where the heat transfer is 
taken place. These boundary conditions are modified in the 
code.  Maximum allowable iterations are 200 and Minimum 
required reduction in residual per iteration is 0.1%.  Tolerable 
residual size is 1E-12. 

The Function estimation of inverse heat convection 
problem is done and compared with the inverse heat 
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convection problem in turbulent flow. The force heat 
convection problem predicted without turbulence model is 
impossible. Prandtl mixing length theory model has been used 
and compared with smooth tube without turbulence model in 
IHTP MATLAB code. Looking to large domain and actual 
size of the annular duct heat exchanger a small section is 
considered for analysis within which the turbulent viscosity 
has been calculated. The turbulent viscosity has been 
considered constant for a whole domain which is not realistic. 
The error plot and temperature contour plot have been 
compared for two cases. The cases are as under: 

1. Inverse Laminar Heat Convection Problem 

2. Inverse Turbulent Heat Convection Problem with 
Prandtl mixing length theory model 

Figure-5 -6 shows the comparison of estimation of the 
function with the absolute error to that of actual function with 
modified boundaries for above cases. This shows that the 
result is in good agreement. The closer look at the result depict 
that each time the direct problem is solve and the same 
temperature is measure at the measurement location. The code 
estimates the function with regularization. 

 

Figure - 5 Two dimensional heat convection problem with 
noise, regularization with α = 1E-3 and specified boundary 

conditions for tube without adding turbulent viscosity 

 

Figure - 6 Two dimensional heat convection problem with 
noise, regularization with α = 1E-3 and specified boundary 

conditions for tube with turbulent viscosity and Prandtl 
Mixing Length Turbulence Model

 

Figure-7 Temperature Contours of 2D Problem with noise, 
regularization with α = 1E-3 and specified boundary 

conditions without Turbulent Viscosity 

 

Figure-8 Temperature Contours of 2D Problem with noise, 
regularization α = 1E-3 and specified boundary conditions 

with turbulent viscosity and Prandtl Mixing Length 
Turbulence Model 

Figure- 7 & 8 shows comparison of the temperature 
contours of the convection process which reflect the effect of 
boundary conditions for above cases. The heat is convected 
from the bottom and left side boundary in the rest of the 
computational domain.  

 

CONCLUSION 

 The concluded results for the present numerical 
investigation with insert for Double Pipe Heat Exchanger are 
as follows: 

1. Adjoint based conjugate gradient method is used to 
solve the Inverse Problem to overcome the difficulties with 
well-posed problem in measurement for DPHE. The numerical 
solution to the heat convection problem is obtained using the 
concept of inverse heat transfer. No prior information of the 
function of the quantities is required in the inverse analysis in 
the conjugate gradient technique. The “boundary conditions” 
are customized to bear a resemblance to the real life problem 
of interest. 

2. The results attained finally exhibit little noise and the 
algorithm proven to be robust in several trials. The unsteady 
function dependent on time is estimated satisfactory. The 
contours of temperature confirm the turbulent convection 
process consistently in the focused study domain. The Prandtl 
Mixing Length turbulence Model is used to capture the 
turbulence in fluid flow.  

3. In real life there are number of parameters that affect 
the heat transfer process. The actual heat transfer coefficient 
always varies due to the ongoing unavoidable physical 
phenomenon like corrosion, erosion, cavitations, flow 
patterns, variation in temperature of fluid, environmental 
changes etc. And it is not possible to measure the exact heat 
transfer coefficient directly without measuring the temperature 
of the complex configuration of heat exchanger equipments. 
This method is capable of estimating the time varying strength 
of the unknown function.  

4. Using this proposed theoretical model accurate 
estimation of heat transfer rate becomes possible and the 
temperature distribution in the convective system can be 
calculated. Based on the other selection criteria such as 
temperature difference, heat transfer surface and with the 
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estimated amount of heat transfer, the heat transfer coefficient 
can be calculated. Thus estimation of the time varying heat 
transfer rate by inverse method is a rational alternative 
towards the performance assessment of DPHE. 

5.  
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