
Masses and Mixings of Quarks 
and Leptons 



I. Generalities 
• We assume that gravity is characterized by two fundamental 

scales: ,, h,n . H~-:= A ,(1 l z~ 
n~. - 3 M ~ 0 ~-
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• Other scales (even in "pure gravity") emerge: 

Dark-energy scale: 

H~ ~ ~ ~ = 
3~lt l>t -

Zeldovich scale: 
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• The Hierarchy of Scales 
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• Definition of a "theory of everything": 

Effective field theory is valid over the entire range. 
The theory encompasses all known interactions. 
The theory is concise. 

A really good theory of everything will have 

very few input parameters. 
a minimum of fundamental scales . 



• The most important non-gravitational "new scale 
is QCD: 

• Dimensional transmutation 
1... 
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• The value of f\rxCD is controlled by CX.c;v-r 

• Why is OCtittr ,.,; y30 (ot- Yw (Jr whifever)? 
• Can Q(GVT be influenced by the presence of the 

Zeldovich gravitational scale 1\-=z:? 



• The "QCD vacuum" couples to the "Zeldovich 
vacuum": 

It has the same energy. 
It is in the same place. 
The two vacuua are coupled dynamically. 

• A hypothesis: 

Stability criteria drives 1\..~cD toward 1\-:r-. 
• II • II 

1\-:c IS Input. 
~en is 'but put·: 

Now look at other scales the same way. 
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Masses of Quarks and Leptons 
The masses center about the Zeldovich (and/or QCD) scale. 

Since leptons are involved, this suggests that it is the Zeldovic 
scale that controls the origin of quark as well as lepton 
masses. 

This seems to imply that the "flavor problem" (origin of 
masses and mixings) largely is resolved at the (remarkably 
low!) Zeldovich scale. 

I try to implement this idea with a "dark sector" of SU(S) 
singlet scalar bosons with flavor structure. There will be 
more details regarding this in the next section. 



The Higgs Sector 
• The fundamental dimensional parameter of the standard-model 

electroweak sector is / 
~ cfo) ::_ v == 2-4-2 G.eV 

• There exists the curio us relation 

v ~ /YJ1_fv £ 
• If the origin of the top quark mass ~an be traced to the (outer 

limits of the) Zeldovich scale, perhaps the electrweak vev v has 
a common ong1n. 

• This idea is toxic. BUT 

• If so, the standard model phenomenology as we know it would 
require introduction of no scales other than what the gravity 
theory provides, namely the Hubble scale and the Planck scale. 



The Bottom Line: 

• Maybe a really good theory of everything is 
thinkable! 

• We should never give up. 



II. The Dark Sector 

• General properties of the dark sector: 

Low mass scalar fields (mass <<< m~ ). 
\ 

Nontrivial flavor indices. 

The fields are probably pseudo-Goldstone bosons 
(think pions). 

The fields probably interact strongly amongst 
themselves. 

I (' ,__. ' (_) --·. 



• The role of the dark sector: 

Implementing the masses and mixings of the 
quarks and leptons. 

Accounting for the existence of dark matter. 

• If the idea were to work, the main implication 
would be that the "flavor problem" largely 
resolves itself at the Zeldovich scale. 

, l I .. 



What is flavor? 
• Chiral quarks and leptons are flavor triplets: 

e J (;£ 

r s c 

-c L- b L t L 

( ~ )R ( ~ ) ~ ( ~ )~ 
• The photon, theW, the Z, and the gluons are flavor 

singlets. 
• The flavor group is maximally SU{3} X SU{3} 
• It is broken by nonvanishing masses and mixings. 
• The Higgs sector is flavor nontrivial. 
• We will assume that the vector subgroup controls the 

description at the low energies of interest: 

5U{3)t. " sU('3)p, ==9 Su{'s)v ( """'? _5"0(3) : ? ) 
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Flavor currents 

• The diagonal vector currents of quarks and leptons are 
conserved at tree level, and are broken only by Higgs 
effects. 

• For example, turn off the weak and electromagnetic gauge 
couplings to see the origin of flavor violation. In that limit, 
e.g., the electron becomes unstable: 

w 
e - -~ !-_(ov.3t,..,t"J_) 
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• We will attempt to use Occam's razor to construct toy 
models of the dark sector. 

• This is work in progress. Not much has been done (or 
accomplished!) yet. 

• Introduce a single self-conjugate Higgs triplet. 

~ ~ !: ~ ~+ 
'\<J; 

• Couple it off-diagonally to the quarks and leptons via 
the divergence of the vector current: 

--14-



• After an integration by parts, one might have an effective 
interaction of Yukawa form: 

~ 

• We anticipate that these scalar bosons f are described by 
a scale-dependent Higgs potential v ( cp I r ). (Note that 
the above coupling is suggestive of this interpretation.) 

• We assume that a prominent component of this potential is 
a coupling term which is cubic in the Higgs fields. In the 
extreme limit of only including this term, one would have 

-- / 5'~-



• This is known in the literature as the ABC model (Per 
Kraus and David Griffiths, Am. J. Phys 60,1013 {1992)) . 

• Kraus and Griffiths only do perturbation theory; we 
need to do more. 

• But they identify a running mass emergent from the 
only divergent Feynman diagram in the theory: 



• But the o/3 
theory is unstable-something Kraus and 

Griffiths ignore. 
• It is easily stabilized by adding in a quartic term to the cubic 

potential. There are various ways of doing this; e.g. 

• The simplest is to include only the most symmetric 
contribution. Write 

V(Cf) ~ (tt,'+ c(+~/"l- - 12-F~lf;_~ 

• Then minimize: 

lf M~~~~~ I~ 
~ If. ~ ~ 5p4a : fvl,~ r'MVUM 6C.CLVfS ai < rp~ F 
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• Now compute oscillations about the minimum. 
This is accomplished by use of tribimaximal 
m1x1ng: 

X J l - -{3 f3 
v ....- 0 - L 1 - ~ 
t 1- J 

-~ ..rr;-

• At the minimum, we have 

x~ DF 
Y::: l: ~o 

l ~ -6 
_!-
'fi= '1*1, 

' YJ ---.16 

(we ~~ n>tJ-~J -h 0- ~~e w'rt~ e.~ is Jo fu ~{J dttcJa:J) 
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• There is a bit of algebra needed to get the Higgs 
potential V (X, Y, Z ): 

V:: ('l+Y ... t-tf- 12.f [1_ -31~- ~yl - ~y~ + !!.] 
36 tff 2-~ rr '3.u:-

• Now expand to quadratic order in Y and Z 

s 
' I ~ v 4 - 4f X - + .. , 
y - I' -{3 

• Only the mass associated with oscillations in the (radial) 
X direction is nonvanishing: 

WnTe X :: f3 t== + ~ 
lt~ V(x)~ -3flf ;- C, FL~l-



• There is much more to do: 

Induced mass terms (with scale dependence) 
Scale-dependent vertex parts: 

1. 
'5 

~ 

Vacuum stabilization via quartic terms. 

X 
• It is an interesting theory! 

• Our desideratum: a strong enough scale dependence to 
create a phase transition at 7 MeV. 



• A possible schematic: 
\{ (lf) 

• There are many detailed options even within this simple 
model. 

• A close analogue is finite temperature field theory 
("compactification of a Euclidean time variable on a torus"). 
As sketched below, we will try to do the same thing, but with 
the space degrees of freedom. 

• Perhaps the ABC parameters "lock" to the Zeldovich scale in 
a way similar to that conjectured above for the QCD scale. 

-- :Z/ -



\N hoJ- ts !Vle(}.Mt b~ 5~~ ~ 
• Consider -1-h(.. rtAYml~ eo~\ IVtd c.ovtst"a.Vt-l; ,-n. Q.E D. li is related 

to the photon propagator; 

~ 

'b( 'b.._) ~ - e~ -- - = ~y f) . 
t.f'·r 1_ 4. t.. £ J q': 
() ~ t1..1t.... ~ (J 

• The scale-dependence a Ia Wilson is induced by looking at 
the effect on the renormalized coupling e~ as one varies 
the UV cutoff with fixed bare coupling e~ . 

• Such scale dependence and the actual q'l. dependence of 
the propagator carry essentially the same information. 

• I am thinking of looking at the theory at fixed bare coupling, 
but as a function of varying the infrared cutoff. In QED, this 
point of view again carries essentially the same information 
as varying q ~ . 



What is meant by "infrared cutoff"? 
• Quantize the theory in a small box of size;i'with periodic boundary 

conditions. 

• Consider/"' as the renomalization-group scaling variable. 

• For QCD, when )A >> 1\:zc~ the theory is perturbative and the 
description is in terms of quarks and gluons. 

• For QCD, when p << ~' the theory is non-perturbative and is 
described approximately by the chiral effective Lagrangian (Gasser­
Leutwyler) whose degrees of freedom are pions and nucleons. 

• Thus this description contains a confinement/deconfinement "phase 
transition" (loosely speaking) as a function of r . 

• Note: all experimental data are taken within the limiting description 
when fi'l .. ' 0 (very large size of the quantization box). This is 
similar to saying that all our laboratory experiments are taken at a 
temperature very small compared to the Zeldovich/QCD scales. 

-73 ...__.-.._.--· ' 



Consequences 

• The theory flat a large momentum scale f II is NOT directly 
phenomenological. It is an abstraction. 

• The effective potential for Higgs condensates can be (and 
has to be!) scale dependent. 

J- .,...?, ,.f. 
'~"-~ )....'" 

• ~~~ A ~ ~ '?:t-ro hl&to'ltt,J\Ml>v 

'ro.;t.tf111e eon-eci-"1\: '{(.~)!"-~~ <.;t- Ol'\ .tll.te.'\-\'1& ~. Qle-v 's) 

• Therefore tadpole contributions to fermion masses can also 
be scale dependent. >f. 

r~~ ~ Q * ~ ;-x ft~ kitmtfl'l\-t~--f~. 
'-t­
• 
' ~ ~ I 

f~~DY\ 
• Such contributions are less threatening to the precision 

electroweak experimental constraints on these ideas, and 
may be expected to play a prominent role. 



Ill. The Mixing Matrix 

• The motivation for what follows comes directly from 
considering the gravity sector via MacDowell and Mansouri. 

• A natural question which arose was what the emergent 
Zeldovich scale had to do with the masses and mixings of 
quarks and leptons. 

• I was led to work of Hong-Mo Chan and his collaborators 
via an endorsement by Roger Penrose in one of his books. 
What follows is directly based on their idea~. 

• Alternatives are a variety of braneworld scenarios scattered 
through the literature, but I found them less promising. 
(This may be a big mistake on my part, but so far I have no 
regrets with my choice.) 

-2~-



Hong-Mo's Rule I for two generations 
• Consider the mass matrix M for f- and L : 

M tf = ( fV/1.'2.. M'Z...~) ( lf1-) ~ 2v.J 3e111er-~1r~ 
f\.1?>2- f'vr'!,"} Cf3 ... 3t1 ~~~ 

• Call the eigenvalues m r-" and m-r . 

• Introduce scale-dependence to the mass matrix M 

/V7 ----1 tvJf) 
• Assume that, when f >m~, M{ f-t ) is rank 1. 

• This is implemented via a simple mixing matrix: 

fVl ~ /YY77: 
'o( [1. ot(~)) 
o<~0) 

- 2~ 



Hong-Mo's Rule II 
• The way the mixing runs with scale is (approximately): 

6LftJ ~ ~ 
• This feature is universal, i.e. the same mixing 

parameter occurs for the down-quark sector and the 
up-quark sector: 

( M f~~) ;J = /liYl-bufi ~- 'J1! 

( M I,Wtt) ~j ~ IYJ1 1o rJ. i cJ./' 

( M -!,f) ·~ ::: /JIY/-f.r ~i o<'j '* 
• The third-generation masses are input, and of course 

their values do not share this universality feature. 



Hong-Mo's Rule Ill 

• The mass eigenvector for the physical tau lepton (which 
does not run with seale) is equated with the running unit 
eigenvector evaluated at r- = n1-c. 

• The mass eigenvector for the physical muon (in this two­
generation scenario) is the unit vector orthogonal to the 
tau eigenvector: 



• By definition, CW\ ~ r HCt) - /Wl'L. r -

~ l 
l 

• Since \LDt4) ~ ( ~J 

• it follows that r 1 \ 

t'h1.1A) ~ l C)) 

• The eigenvalue condition is then (-tv joel et?fYD)(t~W-f1~) 

tYYlr ::_ <: qytiA [ M l f' ""~!'-} l 41-10 ~ 111-r ( ~~) ~ Yn ~~~lto~W 
• Similar arguments for the quarks clearly lead to the results 

5~~~l7oM~V] [~~~~ 
• The CKM mixing angle Vc~ is dominated by the down-sector 

rotation, and is alredy determined at the third -generation scale, 
namely when p. = mb . One obtains 

tVcL\ ~ ~-~~ ~ ~. D4-

-?1-



I interpret the rules in a slightly different way. Below the 
tau mass scale, )A < wT, I assume the mass matrix 
becomes rank 2: kJ~q i-- _____ M---=.,::~3~ 

I 
M~ 

W1 r }111: 

~ 
Cf~o) -r-~~~ 

~ WV!fl" rMT f2~s- r 
This matrix can be diagonalized and the scale dependence of 

the eigenvalues and the mixing parameter is determined 
as shown below: 

r 



Three generations 
• Hong Mo et. al. have more trouble when including the 

first generation. {So do I!!) 
• My own try remains somewhat sketchy, and deviates 

from theirs. But a generalization for the mass­
eigenvalue plot that works is as follows: 

~W\(r) ~~3 ~1~~2 ~ ~,___, 

~ * ~3(0 
I 

~ ~-e, V)1 Wl p )Mop ~ ~ 

• The rank of M remains two until the scale parameter 
is less than 7 MeV. 



• The mixing behavior is generalized as follows: 

Mlt) -= U ~~-' 

r o D o( 0 ~ ~ 

~ ---

~ <!. fl,\ >'II,. 1M"' ~ r 
• For obscure notational reasons, the parameter beta is 

to be identified with the previously defined alpha. I'm 
sorry about that. 

• Alpha eventually "freezes out" at low enough scales. 
What it does in the interval ~ < fA- < m~ is problematic. 
We will come back to that problem later. 

• Note that the physical mass eigenvectors are a I read 
determined at the second-generation scale ~r ¥YI,- . 
Therefore the rank-3 physical mass matrix for ~ = 0 is 
already fixed when f = m,u >> m = 7 MeV. 

:2) --- ,,_ 



• In order to get the electron mass to come out correctly, 
I assumed a "reciprocity relation": 

• This is motivated by a curious empirical fact, namely 
that for the charged leptons there is (on a logarithmic 
scale) an "equal-spacing rule": 7: 

f 
~~71W 

t - ------

• The reciprocity assumption successfully implements 
this. 

.-*") . 
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• M is 

Vlt.- .~ t"' 

• The details of this plot seem doubtful even to me. 

• In addition, the equal spacing rule give up and down 
quark masses mu-ch too small: 

1 Vll\,'1- . 1 1M'l. N 3 ,_ -V 
IVYl ,, -= - ~ ~ 0 ke.V fYJ!1 J_ ~ - ::::: oo /«.J 
~ ~t ~ 

• So there are some clear deficiences to be addressed. 

·; ;/ __ ),-



• At this point I backed off of this approach, 
because it was getting too rococo. I think that if 
one speculates at this extreme, toxic level at all, 
one should strive to keep the description as 
simple and austere as possible. 

• The motivation for the revised approach is that 
the numerical successes associated with the 
previous arguments are more provocative and 
suggestive of underlying simplicity than the 
arguments themselves. 

• So the new approach just describes the end 
results at the fA = 0 scale in as direct and simple 
a way as possible. 

-3s--



Just the facts: 
• A change of language: start by assuming the previous 

answer for the mass matrix. 
• Define 

• Assume 

M ~ !W/7: 
t 

(vcJJW--~ f~ D) 

• Diagonalize : 

0 

e' 
0 

84 ~ !!!1_ 
M1-r: 

N~c.tr~b-i; s~ tt- << e~((}) 

-\ 
M :::. U IWl~. U 

V\4j 

l G u 

0 ~ 

' -e o o 
0 

0 

'a, 0 

0 \ 



• For the down sector, change the assumption slightly: 

AHIAW\e e4- ~ - (';") 
• Introduce a kludge factor Z 4 t in the mass matrix: 

:z:' sl4 te11-e o 
M ~ VVL t t et'-e * t~t'l. t 9\').. 

0 \ $\'l- ' 

• The same matrix U (e) as used for the leptons diagonalizes 
the mass matrix. 

() D D 

u~ I -e~ t 

-l el'l.- r 0 0 l 
• However, 

(?:-~ \ e\'f 0 

mDia ~ 0 lee- )\1b 

\. 0 0 

~7 ,... -
-./ 



• This leads to satisfactory results provided the kludge 
factor Z is order unity, but not exactly unity: 

11111 ~ ( ~.~ -~ 1 e 11 
m?J -=' {l-J -1) vn =- (~J ... 0QMeV) :t.pv /,7 

• Do the same for the up sector: 
~ 

IYiJIL ~ (-l.;0!~tkt~(.zuDm ~-t)(7Mev) ~~I( "' lH 

• Now construct the CKM matrix, which is the relative 
rotation between up and down species: 

!.-_, -eu l ef4.J eu l 9J 0 

VCKM :::: U~.~, UJ. .=:: G~ J -1 Gul'" -G;. I { e,,-z. 
0 Jail- I [~)'"~ -(eJt I 

I (@;_-a:) Oe.l-{BJ/,8u 
=- l~-e,o 1 (r eJt-1 e(I.J~ 

Q~~leJ)e; d41~{8,t) J 

---39-



• The magnitudes of crucial CKM elements also come out very 
well. rPDG 

/ V 4 I ~ ! G,L\'L x . o'f (, o!fi:) 
I Vub I ~ I ~;.\,.le,J ~ , 003 (. oo3') 
[ V-t-,tl ~ [ ~Jtl,_ f BJl ~ . 00~ (~ oo<t rt) 

• In addition, the phases of the corner elements must be 
some fourth root of -1, than ks to the original definition of s1 
and eaD.own· 

• Therefore it is easy to choose successful phases: 

• Th is is the unitarity triangle, but drawn upside down. 
_rPPli-

tJ(_-=- '1oo ( Uo:!: b o) 



Hong-Mo's Rule IV 
• What is going on? 
• Hong Mo suggests that the mass matrix is influenced by the 

presence of strong CP violation. 
• In particular, if Sad) were zero, the unitarity triangle would be 

degenerate, and there would be no CKM induced CP violation. 
• I interpret this as follows: 

The dark sector contains a Peccei-Quinn-like mechanism that 
removes CP violation from the strong sector. 

The properties of the mass matrix are a function of the input e~~.t>. 

In the limit 9QcD= 0, the kludge factor Z equals 1 to good 
accuracy, and the up and down quark masses take on the 
unacceptably small values associated with equal spacing. 

Only for large input values of 9q,c.t>does Z deviate significantly 
from 1, and the up and down masses move upward near the 7 MeV 
scale. 

Consequently, in this picture the input value of 8~ct> is indeed 
of order maximal. 

-- '40-



Neutrinos 

• Assume M t -1 
~~ = (llllilt~~e- M~ MD~ 

• This assumption is made for real-life applications: 
the renormalization scale factor r = 0 . 

• But what is the scale dependence? 

• Maybe it is like the other mass matrices, but where the 
third generation Dirac mass scale is near the 7 MeV 
scale. 

-4/-



• The motivation fo r this is that mixings in the neutrino 
sector are large, and that there is no second-generation 
stopping point tor; >> »1::::7 MV/, 

• A scenario for the two-generation case: 

(
o o) .eoJM ~· 

fll C,J ~ 0 I 'm f»w. il1 

('WI =7 M-eV) 

M(f)~i-C ;)rm r~W\ 
• MAYBE, the 3-generation matrix evolves toward a 1cJ t' 

democratic mass matrix at r = 7 MeV. 

!~7. l 1 J l 
MCf) · ~ {3 1 1 J 

r ~\')"\ 1 1 1 

• If so, the rotation matrix would be tribimaximal. 

t-1-·)­- (~ 



Where is the seesaw mechanism? 

• MAYBE it only is originated below the 7 MeV 
scale. 

• A motivation is that CP violation is only 
manifested when the mass matrix becomes 
rank 3, when the scale factor }A < 7 MeV. 
Maybe this is the case for lepton number 
violation as well. 

• If so the scale dependence of neutrino masses 
would be very dramatic. 



Scale dependence of neutrino masses lsc:l 'm~ 
() // ?.II/ 
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• 

• 
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Implications 
The Majorana masses increase inversely with scale as the scale parameter r 
decreases. 

The neutrino masses decrease linearly with scale as f decreases . 

Perhaps it is some property of the "cosmological vacuum" which interrupts the 
running when the scale factor ft approaches the dark energy scale of 2.4 meV, 
thereby freezing the neutrino masses at their observed values. 

Perhaps above the 7 MeV scale the Majorana mass matrix and the Dirac mass 
matrix are the same. Then in fact the seesaw mass matrix also is the same as the 
other two. 

It is very likely that such strong scale dependence must also occur in the bosonic 
"dark sector". Therefore the behavior of the neutrino mass matrix may provide 
the most direct guideposts on how to construct models of the dark sector. 

In any event, if the seesaw mechanism is confined to the infrared, there is no 
question that very serious things must happen near the 7 MeV "phase 
boundary.'r 



Summary: my homework problems 
• There is no shortage of big ideas. 
• There is a severe shortage of serious computations and modeling to 

back them up. 

• MacDowell- Mansouri: 
Geometry of the six extra dimensions (Calabi-Yau?) 
Understanding the "density of topology" 
Gauss-Bonnet flow (rift and subduction zones,etc.) 
Including standard model degrees of freedom . 

• Hong-Mo Chan: 
Is there a link to the gravity description? 
Working out the ABC model. 
Convincingly coupling the bosons to the quarks and leptons. 
Exploring low energy theorems and current algebra constraints. 
Confronting the model with precision electroweak data . 

/1 / 
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Thanks again for listening and for 
your criticisms I 
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