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Abstract - The use of floating point unit has lot of application 

in real time embedded systems. Algorithms like Fast Fourier 

Transform(FFT) from the digital signal processing (DSP) 

domain often make extensive use of floating-point arithmetic. 

This paper presents the design and implementation of an 

efficient single precision floating-point processor in FPGA. 

This processor can be dynamically configured, loaded, and 

executed when needed by software applications. The system is 

binary compliant with the conventional microprocessor 
without interlocked pipelining (MIPS) architecture and the 

IEEE-754 standard. Here the hard-ware design is done in a 

way to optimize the area and delay. The design is coded in 

Verilog hardware description language at Register Transfer 

Level (RTL) and synthesized in Virtex 5 device with the help 

of Xilinx ISE tool. 

I. INTRODUCTION 
Floating-point arithmetic is widely used in many areas, 

especially in scientific computation; numerical processing and 

signal processing (like digital filters, FFT, image process-ing, 

etc.)[8]. The IEEE-754 defines the standard for single-

precision and double-precision formats.The range & precision 

of numbers that can be represented using IEEE-754 format is 

higher than that of fixed point representation with the same 

number of bits.Implementation of arithmetic operations for 

IEEE floating-point standard in hardware becomes a crucial 

part of almost all processors. The applications are always 

look-ing for high-performance and area efficient 

implementation of floating-point arithmetic operation. Due to 
progression in VLSI technology nowadays we have FPGA’s 

with high speed, more embedded modules and more number 

of logic.These make them suitable for implementing complex 

applications and also we can go for improved implementation 

of application’s like floating point arithmetic. If the 

performance of floating point arithmetic in FPGA is 

improved, Then FPGA is a attractive platform for scientific 

and real time applications.By embedding our floating point 

processor we can easily improve the speed of floating point 

application. our goal is to create a flexible, generic embedded 

floating point processor, which over floating point 
applications will improve performance and save a significant 

amount of FPGA real estate when compared to 

implementations on current FPGAs. With this goal of 

flexibility in mind, our processor was designed so that it can 

be configured to perform several useful functions. Since 

multiplication and addition are two of the most commonly 

used arithmetic operations, these operations are included in 

the ALU, both in integer and floating-point mode.Our 

processor has 512 MB of data memory,256 KB of program 

memory,32 number of 32 bit register file,32 bit A and B 

register.32 bit ALU,32 bit PC(program counter),32 bit 

IR(instruction register).It has two modes of operation floating 

point mode and normal integer mode.In floating point mode 
operations like adder ,subtracter,multiplier and multiply-add 

are performed and it also handles 5 floating point 

exceptions.For effective implementation the ALU uses 

merged datapath for floating point addition and multiplication 

and efficient algorithm for multiplier and adder design. The 

design is implemented in verilog HDL and synthesized for 

Xilinx virtex-5 device.The design is synthesized using Xilinx 

ISE tool. 

II. SINGLE PRECISION FLOATING POINT 

NUMBER 

Single-precision floating-point format is a computer number 

format that is specified in the IEEE-754-2008 standard.fig:1 

shows a single precision floating point format.where sign bit 

determines the sign of the number. It is the sign of the 

mantissa as well. Exponent is an 8 bit signed integer from -

128 to 127 (2’s Complement) or can be an 8 bit unsigned 

integer from 0 to 255 which is the accepted biased form in 

IEEE 754 single precision definition. In this case an exponent 

with value 127 represents actual zero. The true mantissa 
includes 23 fraction bits to the right of the binary point and an 

implicit leading bit (to the left of the binary point) with value 

1 unless the exponent is stored with all zeros. Thus only 23 

fraction bits of the mantissa appear in the memory format but 

the total precision is 24 bits[6]. 

 

A. Processor Design 

The first step in design is choosing an efficient instruction set 

architecture for our processor.Here we uses MIPS 

ISA(instruction set architecture).MIPS is a load-store RISC 

(Reduced Instruction Set Computer) instruction set with three 
operands .Remaining of the design is divided into two part 

• Data path performs the data operations as commanded by 

the program instructions. 
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• Controller design controls the datapath, memory and I/O 

according to the program instructions. 

 

B. Control unit design 

The control unit of the MIPS single-cycle processor examines 

the instruction opcode bits [31:26] and decodes the instruction 
to generate 12 control signals to be used in the datapath. 

The controller uses FSM to generate the control signal.Here 

the FSM consist of one initial state and 3 operating states. The 

states are start, fetch, decode, execute  

START : All control signals are assigned to zero. 

FETCH : Control signals are assigned in way to fetch the 

instruction from program memory. The control signal active 

in this state are: PCen, memread, Iren 

DECODE: In this state the instruction is decoded and the 

datapath control signals prepared for next cycle.The control 

signal active in this state are:Iren, write, Bsel, ACCen, Ben. 

EXECUTE: In this state the data from the file register is 

passed to ALU for the desired operation and the result is 

written back to the destination register.The control signal 

active in this state are: ALUfz, d memrd, d memwr, 
memtoreg, dstsel C. Datapath design Here the datapath is 

based on MIPS (microprocessor without interlocked pipeline 

stages). It also utilizes the features of the Harvard architecture 

(separate memory for instruction and data).In this scheme 

instructions are executed in multi clock cycles. The datapath 

consist of 512 MB of data memory,256 KB of program 

memory,32 number of 32 bit register file,32 bit A and B 

register.32 bit ALU with floating point support,32 bit PC 

register,32 bit IR register. To incorporate pipelining the 

datapath is clearly divided into three section(fetch, decode, 

execute). And operation of each section is controlled by the 

control signal generated from the controller. 

C. Fetch unit 

The function of the instruction fetch unit is to obtain an 

instruction from the instruction memory using the current 

value of the PC and increment the PC value for the next 

instruction . The instruction fetch component contains the 

following logic elements that are implemented in Verilog: 16-

bit program counter (PC) register, an adder to increment the 

PC by one, the instruction memory, and an Instruction 
register. 

D. Fetch 

Instruction decode unit: The main function of the instruction 

decode unit is to decode the 32-bit instruction fetched in 

previous state (fetch state) to index the register file and obtain 

the register data Values as seen in Figure:4 . This unit also 

sign extends instruction bits [15 - 0] to 32-bit. The logic 

elementsimplementedinVerilogincludemultiplexersanda32 bit 

register file,16 to 32 bit sign extender and A & B register. 

E. Decode 

Execution unit: The execution unit of the MIPS processor 

contains the arithmetic logic unit (ALU) which performs the 

operation determined by the ALUfz signal in the case of 

arithmetic operation. The branch address is calculated by 

adding the PC+1 to the sign extended immediate field shifted 

left 2 bits by a separate adder. And obtaining the address of 

data memory in case of load and store instruction. The logic 

elements implemented in Verilog include a multiplexer, an 

adder, the ALU and the ALU consist of datapath for floating 

point arithmetic.fig:5 shows the datapath for execute unit and 
the corresponding floating point ALU  

F. Execute 

The execution unit of the MIPS processor contains the 

arithmetic logic unit (ALU) which performs the operation 

determined by the ALUfz signal in the case of arithmetic 

operation. The branch address is calculated by adding the 

PC+1 to the sign extended immediate field shifted left 2 bits 
by a separate adder. And obtaining the address of data 

memory in case of load and store instruction. The logic 

elements implemented in Verilog include a multiplexer, an 

adder, the ALU and the ALU consist of data path for floating 

point arithmetic.fig:5 shows the data path for execute unit and 

the corresponding floating point ALU is shown in  

ALU is a single precision IEEE-754 compliant integrated unit. 

It can handle basic floating point operations like floating point 
addition, subtraction, multiplication and multiply-add in 

floating point mode and 23 bit normal addition, subtraction & 

multiplication in integer mode of operation. The mode of 

operation can be indicated by 27th bit of instruction and if the 

bit is set to one then floating point operation is performed. 

ALU control signal from the controller select the desired ALU 

operation corresponding to the instruction. The input to the 

ALU is 32 bit value from A & B register. for floating point 

operation these are floating point numbers represented in 

IEEE-754 format and in the case of integer operation first 23 

bit of these operand is used as input values to the ALU. 

III. SIMULATION RESULT 

A. Multiplier 

A1(shown in diagram) is the accumulator and the value stored 

in accumulator is: 

32’b00000000000000000000000000000001.B1(shown) is 

another general purpose register of 32 bit in which we have 

stored 32’b00000000000000000000000000000010.These 2 

values are multiplied using the multiplier and the 
result(shown) is obtained after simulation is 

32’b00000000000000000000000000000010  
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which correspondins to the required result.   

 

Fig 1. Simulated Waveform of Multiplier 

B. Adder 
The value stored in accumulator is 

32’b00000000000000000000000000000001.B1(shown) is 

another general purpose register of 32 bit in which we have 

stored 32’b00000000000000000000000000000010.These 2 

values are added using the adder and the result(shown) is 
obtained after simulation is 

32’b01110101010000000000000000000000 which is 

obtained post normalisation and thus correspondins to the 

required result. 

 

Fig 2. Simulated Waveform of Adder 
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C. Divider 

The value stored in accumulator is 

32’b00000000000000000000000000000010.B1(shown) is  

register of 32 bit in which we have stored 

32’b00000000000000000000000000000001.These 2 values 

are divided using the divider and the result(shown) is obtained 

after simulation is 

32’b11110101110000000000000000000000 which is 

obtained post normalisation which correspondins to the 

required result.  

 

Fig 3. Simulated Waveform of Divider 

Table 1: Performance comparison Table 

Feature Earlier result Optimised  result 

Power 9.54 W 8.76 W 

LUT used 14500 13977 

Registers 

used 

3000 2116 

 

IV. CONCLUSION 

This project deals with development of a efficient Floating 

Point adder, Subtractor and Multiplier for ALU in Verilog 
.That ALU is used to design a single precision floating point 

processor. Here the processor uses MIPS and Harvard based 

architecture. The whole design is performed with the help of 

Xilinx and synthesized with Xilinx tools. The experimental 

result shows that area and delay of the processor is reduced 

with the help of suitable hardware design for the datapath. 

Efficiency is again improved by reconfiguring the datapath for 

two modes of operation, integer mode and floating point 

mode. A simple program to add and multiply two floating 

point numbers is stored in program memory and 

corresponding floating point data is stored in data memory.  
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