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Abstract 

Let H be an infinite dimensional Hilbert space. In this paper, we employ operator techniques, polar 

decomposition, Halmos generalization formula and derivation inequalities to establish orthogonality in 

normed spaces. An operator A is hyponormal and B* is m-hyponormal if T is a generalized nilpotent 

hyponormal operator. Properties of operators in the closure of the range of the inner derivation have 

been used to establish orthogonality of finite rank derivations. 
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Introduction 

In the present work, authors presented range-

kernel orthogonality conditions for finite rank 

generalized derivations implemented by 

hyponormal operators. As an active area of 

research, studies on derivations and range-kernel 

orthogonality has attracted many mathematicians 

[1-4]. Different notions of orthogonality; 

Pythagorean, isosceles, Roberts, Birkhoff, James 

and a Carlsson have been dealt by a number of 

mathematicians [5,6]. Here orthogonality is 

defined in [7] in the sense of Birkhoff where x ϵ 

H is said to be Birkhoff orthogonal to y ϵ H if ǁx 

+ λyǁ ≥ ǁxǁ for all λ ϵ . Operator norm for 

generalized derivation, ǁ (X)ǁ = inf{ǁA - λǁ + 

ǁB - λǁ} where λ ϵ  [8]  and for normal 

operators. In [9] they characterized generalized 

derivation with orthogonality by establishing the 

inequality; ǁ(AX – XB) + Tǁ  ǁTǁ for all X ϵ 

B(H) [10] which implies range-kernel 

orthogonality for generalized derivation. The 

same inequality has been established by [11] in 

three different conditions; 

i) B is invertible 

ii) A is isometric and B is a contraction 

iii) A is a contraction and B is co-isometric. 

With respect to unitarily invariant norms [12] 

established ǁ(AX – XB) + Tǁp  ǁTǁp  for a pair 

(A, B) having  property i.e. Fuledge-

Putnam property restricted to Schatten p-class 

and if the pair (A, B) has the  property, 

then ǁ(AX – XB) + Tǁ2  ǁTǁ2 for all X ϵ B(H) 

and for all T ϵ ker  .  Using polar 

decomposition of T i.e T = U│T│ where U is a 

partial isometry such that kerU = ker│T│, [13] 

established ǁ(AX – XB) + Tǁ∞  ǁTǁ∞  which 

guarantees range-kernel orthogonality restricted 

to a pair of compact operators with . By 

algebraic direct sums of A =  with 

respect to H =  =    and B 

=   with respect to H =  = ker   

ker(T), [14] established a similar inequality. For 

non-normal operators with (FP) property, [15] 

used orthogonal decomposition of H to establish 

range-kernel orthogonality inequality for self-

commutator operators restricted to   classes, 

where  is the von Neumann Schatten p-class 

through global minimization.  

 The properties of a class of operators,  ϵ 

 where  is the commutator of 

A ϵ   are instrumental in operator theory and 

has been of interest to investigate the properties 

of operators in   and further establish 

quasinilpotent operators in . With 

this interest Mecheri [16] proved that every 

operator in  is nilpotent if P(A) is 

normal, isometric or co-isometric for some 

polynomial P and in particular every normal 

operator in  vanish and also if A ϵ 

B(H) satisfies one of the following conditions: 

(1). A is sub-normal and has a cyclic vector 
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(2). A is isometric i.e. A
*
A = I. Then 

 ={0}. Furthermore, for normal 

operators [17] established a sufficient condition 

under which ker  = {0} and a 

sufficient condition for 

which ker  = {0}. 

 Hyponormal operators being a larger 

class of operators contains finite, normal and 

log-hyponormal operators. Range-kernel 

orthogonality conditions for such class of 

operators have been established via operator 

matrices, polar decomposition and minimization 

procedures. For instance if A ϵ B(H) is k-

quasihyponormal operator and B
*
 ϵ B(H) is an 

injective p-hyponormal operator, then by Bachir 

[18] R(  is orthogonal to ker( .  

 To establish the required result we use 

fundamental inequality tools due to Anderson for 

normal operators [19], orthogonal decomposition 

[20], algebraic direct sum of operators [21], 

algebraic properties of projections and their 

adjoint operators [22], matrix decomposition of 

operators [23], computational skills and 

techniques to establish range-kernel 

orthogonality inequalities for finite rank 

hyponormal operators. We take   to denote 

the algebra of all finite rank hyponormal 

operators acting on an infinite dimensional 

Hilbert space H,  the commutator of A ϵ 

, R(  to denote the range of A, B ϵ  

and  ker(  their respective kernel.  

Methodology 

Preliminaries 

In this section, we start by defining some key 

terms that are useful in this paper. 

Definition 2.1 ([18], Definition 1.2.26). The 

rank of operator A is the dimension of its range. 

A finite rank operator is a bounded linear 

operator between Banach spaces whose range is 

of finite dimention. 

Definition 2.2 ([14], Definition 2.1). 

Orthogonalities:  

Let x, y ∈ H be vectors then;  

(i). x is in general orthogonal to y written as 

x ⊥ y , if   = 0 

(ii). x is Birkhoff orthogonal to y denoted as 

x ⊥B y if ∥x + λy∥ ≥ ∥x∥ for all λ ∈ . 

(iv). x is Roberts orthogonal to y denoted as 

x ⊥R y if ∥x + λy∥  = ∥x - λy∥ for all λ ∈ . 

(v). x is isosceles orthogonal to y denoted as 

x ⊥i y if ∥x + y∥ = ∥x - y∥ 

(vi). x is James orthogonal to y denoted as x 

 y if ∥y + λx∥ ≥ ∥x∥ for all λ ∈ . 

(vii). x is Singer orthogonal to y denoted as 

x  y if x = 0 and y = 0. 

Definition 2.3 ([1], Definition 1.3.3) The 

orthogonal complement A⊥ of a subset A is 

the set of vectors orthogonal to A i.e A⊥ = x 

∈ H : x ⊥ y ∀ y ∈ A. Subsets A and B of H 

are orthogonal written as A ⊥ B if x ⊥ y for 

every x ∈ A and y ∈ B. 

Definition 2.4 ([11], Theorem 4) Let B(H) 

be the algebra of all bounded linear 

operators acting on Hilbert space, H. The 

mapping  : B(H)  B(H) is called  

generalized derivation defined as  (X) 

=AX – XB. 

Definition 2.5 ([12], Definition 4.5) Let H 

be a Hilbert space and B(H) be equipped 

with the operator norm. The operator  

defined on the Banach space B(H) is 

equipped with the operator norm ǁ Xǁ = 

inf{ǁA - λǁ + ǁB - λǁ} for all λ  and for all X 

ϵ B(H). 

Definition 2.5 ([13], Definition 3.10) A 

bounded operator T on  a Hilbert space H  is 

said to be trace class ( or lies in ) if 

tr│T│  ∞ where trace of T is defined as trT 

=  for some orthonormal basis . 

Furthermore if trT  ∞ then T is compact. 

Definition 2.6 ([13], Definition 78) Let s1(T) 

s2(T)  … 0 be singular values of a compact 

operator T ϵ B(H) arranged in their decreasing 

order. Then T is said to be belong to the Schatten 

p-class, Cp i.e p=  = 

 for 1  p  ∞.  

Definition 2.7 ([14], Definition 1.8.5) Let H1 

and H2 be both Hilbert spaces. A ϵ B(H1) and B ϵ 

B(H2) are called unitarily equivalent, if there 

exist a linear unitary map U of H1 into H2 such 

that A = U
*
BU. 

Definition 2.7 ([16], Definition 3.1) Let A, B ϵ 

B(H). The pair (A, B) is said to possess the 
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Fuglede-Putnam property , , if AX = 

XB implies A
*
X = XB

*
 for all X ϵ B(H). 

Definition 2.7 ([19], Definition 12.11) If T 

is an operator on Hilbert space H and T
*
 is 

the respective adjoint then: 

i) T is normal if TT
*
 = T

*
T 

ii) T is self adjoint or Hermitian if T = T
*
  

iii) T is unitary if TT
*
 = I = T

*
T 

iv) T is idempotent if T
2
 = T 

v) T is nilpotent if T
n
 = 0 for all n ϵ  

vi) T is a projection if T
2
 = T and T

*
 = T 

vii) T is binormal if (T
*
T)(TT

*
) = 

(TT
*
)(T

*
T) 

viii) T is hyponormal if  TT
*
 ≤ T

*
T  

ix) T is semi-normal if TT
*
 ≤ T

*
T or TT

*
 ≥ 

T
*
T i.e. either T or T

*
 is hyponormal. 

x) T is quasinormal if it commutes with T
*
T 

i.e. T(T
*
T) = (T

*
T)T. 

Definition 2.7 ([20], Definition 4) An 

operator T ϵ B(H) is called dominant if R(T 

– λ)  R(T – λ)
*
 for all λ ϵ  i.e. if there is a 

real number   1 such that ǁ(T – λ)
*
xǁ ≤ 

ǁ(T – λ)xǁ for all x ϵ H, consequently if 

there is a constant k such that   k for all 

λ, T is called m-hyponormal and if m=1, 

then T is hyponormal. 

Results and discussion 

In this section we give the main results. First we 

establish the necessary and sufficient conditions 

for orthogonality of the range and kernel of finite 

rank generalized derivations and then we 

establish range-kernel orthogonality of finite 

rank derivations implemented by hyponormal 

operators. 

At this juncture, we establish orthogonality of 

the range and kernel of finite rank generalized 

derivations. 

Theorem 3.1 Let A, B ϵ FH (H) be hyponormal 

operators. Suppose there exist T ϵ FH (H) such 

that AT = TB, then for all X ϵ  we have ǁT – 

(AX – XB)ǁ  ǁTǁ for all T ϵ ker . 

Proof. We apply Halmos [12] generalization 

formula for derivation;   

X – X   + (T - (AX –XB) 

)  =n T       (1) 

For n = 1, we have AX – XB + T – (AX – XB) = 

T 

ǁ AX – XBǁ + ǁT – (AX – XB)ǁ ≥ ǁTǁ 

For n = 2 we have X – X  + 2(T – (AX – 

XB))A = 2AT 

ǁ X – X ǁ + 2ǁAǁ ǁT – (AX – XB)ǁ ≥ 

2ǁAǁǁTǁ 

  + ǁT – (AX – XB)ǁ  ǁTǁ 

Similarly  for n = 3 we have; ǁ X – X ǁ + 

3ǁ ǁ ǁT – (AX – XB)ǁ ≥ 3ǁ ǁǁTǁ 

   + ǁT – (AX – XB)ǁ  ǁTǁ 

Hence for an arbitrary n ϵ  we have;   

+ ǁT – (AX – XB)ǁ  ǁTǁ 

Taking n  ∞ we have; ǁT – (AX – XB)ǁ  ǁTǁ 

Theorem 3.2 Let A, B ϵ FH (H) be hyponormal 

operators such that A is contractive. Suppose 

there exist T ϵ FH (H) such that AT = TB. Then 

for all X ϵ  we have ǁT – (AX – XB)ǁ  ǁTǁ 

for all T ϵ ker . 

Proof. Equality (1) can be written as; 

 X – X   + (T - (AX –XB) 

)  =n T   

For n = 1, we have AX – XB + T – (AX – XB) = 

T 

ǁ AX – XBǁ + ǁT – (AX – XB)ǁ ≥ ǁTǁ 

For n = 2 we have X – X  + 2(T – (AX – 

XB))A = 2AT 

ǁ X – X ǁ + 2 ǁT – (AX – XB)ǁ ≥ 2ǁTǁ 

  + ǁT – (AX – XB)ǁ  ǁTǁ 

 Similarly for n = 3 we have; ǁ X – X ǁ + 3 

ǁT – (AX – XB)ǁ ≥ 3ǁTǁ 

  + ǁT – (AX – XB)ǁ  ǁTǁ 

For an arbitrary n ϵ  we have;   + ǁT – 

(AX – XB)ǁ  ǁTǁ 

Taking n  ∞ we have; ǁT – (AX – XB)ǁ  ǁTǁ 

Theorem 3.3 Let A, B ϵ FH (H) be hyponormal 

operators. Suppose there exist T ϵ FH (H) such 

that AT = TB, TA = BT and T is unitarily 

equivalent to an isometric operator S ϵ B(H). 

Then for all X ϵ  we have ǁ  – (  – )ǁ 

 ǁ ǁ for all  ϵ ker . 

Proof. First we show that T is also 

isometric. Since S and T are unitarily 

equivalent it implies existence of a unitary 

operator U such that T = U
*
SU 

   T
*
T = (U

*
S

*
U)( U

*
SU) = U

*
S

*
SU 

But S is isometric, implying S
*
S = I and 

hence T
*
T = U

*
U = I, implying T is also 

isometric.  

Using [17, Theorem 3.3] we let  = , 

 =  and  =  be the polar  

decomposition of ,  and  on H  H. T 

is an isometry on H implying  =  is  
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also an isometry on H  H and also 

  =  =  = 

 =  =   

  = .  

Since A and B are hyponormal on H it 

implies  is also hyponormal on H  H.  

With  =  we have  =  =  

  =  where  is the polar 

decomposition os B on H  H.  

Thus the equation; 

    –   + (  - (  –

) )  =n  holds.  

By applying the equation and the workings 

of the previous Theorem 3.1 we have the 

result. 

Lemma 3.4 Let A ϵ FH (H), then the following 

are equivalent; 

(i) I ϵ  

(ii) There exist T ϵ  such that T ϵ  

(iii)  contains all positive invertible 

hyponormal operators in  

(iv)  = FH (H). 

Proof. i)  ii) Suppose I ϵ  then also I ϵ 

 implying existence of an invertible  

operator T ϵ FH (H) such that T  = T = I ϵ 

.  

Then we have a polynomial P of degree n such 

that  –  (A)   I 

where P 
k
 is the k

th
 derivative of P and (Xn) 

is a sequence of operators of FH (H)  [24] 

⇒ P 
k
(A)Xn − XnP 

k
(A) → P 

k+1
(A)T T 

−1
 

Multiplying each term from the right by T we 

have 

P 
k
(A)XnT − XnP 

k
(A)T → P 

k+1
(A)T T 

−1
T 

By polynomial properties we have, P (A)XnT − 

XnP (A)T → P 
1
(A)T. 

⇒ P (A)XnT − T XnP (A) → P 
1
(A)T 

⇒ T ∈ {A}
♯
.        

Also I ϵ  implying existence of a sequence 

of operators (Xn) such that AXn − XnA → I  

and since A is finite hyponormal operator we 

have ∥AXn − XnA − I∥ ≥ ∥I∥ implying existence  

of an invertible operator T ∈ FH (H) such that 

∥AXn − XnA − T T 
−1∥ ≥ ∥T T 

−1∥ 

⇒ ∥AXn − XnA − T ∥∥T 
−1∥ ≥ ∥T ∥∥T 

−1∥ 

⇒ ∥AXn − XnA − T ∥ ≥ ∥T ∥ 

⇒ T ∈ . 

ii)  i) Suppose there exist an operator P such 

that P ϵ   {A}
♯
.      

Then there exist a sequence of operators {  of 

 such that ǁP – (A  - A)ǁ  0 as setting 

n  ∞. 

Setting  =  we have; ∥P 
−1

P −P 
−1

(AXn−XnA)∥ = ∥I−(AP 
−1

Xn−P 
−1

XnA)∥ =  

∥I−(ATn−TnA)∥ and since P ϵ  implies that 

 ϵ  we have; ∥I − (ATn − TnA)∥ = ∥I − (P 
−1

AXn − P 
−1

XnA)∥ 

= ∥P 
−1

(P − (AXn − XnA))∥ ≤ ∥P 
−1∥∥P − (AXn − 

XnA)∥. 
Since ∥P − (AXn − XnA)∥ → 0 as n → ∞ it 

follows that ∥I − (ATn − TnA)∥ → 0 as n ∞ 

and  

hence I ∈ . 

 iii) If I ∈ , then there exist a 

sequence (  of operators of FH (H) such that  

∥I − (AXn − XnA)∥ → 0 as n ∞ and also since 

I ∈  then for every invertible operator  

B ∈  there exists  ∈  such that I 

= B  and hence 

∥I − (AXn − XnA)∥ = ∥ B − (AXn − XnA)∥ 

ǁ ǁǁB - (AXn − XnA)∥ 

 ǁB - (AXn − XnA)∥  0 as n  ∞ which 

implies that (A  - A)  B ∈ ,  

by definition and by setting ( )  B as n  ∞ 

we have BA = AB for an arbitrary positive  

invertible hyponormal operator B ϵ .  

iii)  iv) Let B ∈ FH (H) then by definition  

= { B ∈ FH (H) : AB = BA} for all A ∈ FH (H). 

Implying that FH(H)   then by iii) we have 

FH (H)   and hence A ∈ FH (H)  . 

On the other hand, let X ∈  then we need 

to show that X ∈ FH (H). Let B ϵ  be a 

positive invertible hyponormal operators such 

that by iii) we have B ∈  then there exist a 

sequence ( ) such that AXn − XnA  B  ǁB 

- (AXn − XnA)∥  0 as n  ∞ and by the 

vanishing properties of all operators in  we 

have AXn = XnA as n  ∞ and by setting (Xn) 

 X as n  ∞ then AXn = XnA becomes AX = 

XA implying that  X ∈ FH (H) hence  = FH 

(H).  

Theorem 3.5 Let A, B ϵ  be finite rank 

hyponormal operators such that ǁ  =   

where n ϵ . Suppose I ϵ  then for all X ϵ 

 we have ǁT – (AX – XB)ǁ  ǁTǁ for all T ϵ 

ker . 

Proof. Since I ϵ  then by Lemma 3.4 

there exist T ϵ FH (H) such that AT = TB and 

hence the equation; 
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X – X   + (T - (AX –XB) )  = 

n T holds. 

Following the workings of Theorem 3.2 we have 

the result as follows; 

For n = 1, we have AX – XB + T – (AX – XB) = 

T 

ǁ AX – XBǁ + ǁT – (AX – XB)ǁ ≥ ǁTǁ 

For n = 2 we have X – X  + 2(T – (AX – 

XB))A = 2AT 

ǁ X – X ǁ + 2 ǁT – (AX – XB)ǁ ≥ 2ǁTǁ 

  + ǁT – (AX – XB)ǁ  ǁTǁ 

Similarly for n = 3 we have; ǁ X – X ǁ + 3 ǁT 

– (AX – XB)ǁ ≥ 3ǁTǁ 

  + ǁT – (AX – XB)ǁ  ǁTǁ 

For an arbitrary n ϵ  we have;   + ǁT – 

(AX – XB)ǁ  ǁTǁ 

Taking n  ∞ we have; ǁT – (AX – XB)ǁ  ǁTǁ 

Theorem 3.6 ([30], Theorem 5) Let T  ϵ  be 

hyponormal operator such that  = N where n 

is a positive integer. If N  is a normal operator, 

then T is also normal. 

Theorem 3.7 Let A, B ϵ FH (H) be hyponormal 

operators. Suppose there exist a unitary operator 

U such that  = U and  = U where n and m 

are distinct positive integers. Then for every X ϵ 

 we have ǁT – (AX – XB)ǁ  ǁTǁ for all T ϵ 

ker . 

Proof.  With  = U and  = U implies  and 

 are similar to unitary operators [25]. Thus (A, 

B) reduces to a pair of normal operators. This is 

also true by the fact that A and B are 

hyponormal operators such that  = U and  = 

U implying that A and B are normal operators by 

Theorem 3.6.  

Let A ==  be the matrix representation 

of A relative to the orthogonal decomposition H 

=  =    and B ==  be 

the matrix representation of B relative to the 

orthogonal decomposition H =  = ker   

ker(T).  

Now taking operators T, X :    having 

matrix representations;  

X =  and T = . 

Then AX – XB – T = 

  

Since the norm of an operator matrix supersedes 

the norm of its diagonal entry we have; 

ǁ (AX – XB) – Tǁ  ǁ ǁ  

ǁ ǁ  ǁT  

 ǁ (AX – XB) – Tǁ   ǁT . 

Theorem 3.8 Let A, B ϵ FH (H). If A is 

hyponormal B
*
 is m-hyponormal, then for all X ϵ 

 we have ǁT – (AX – XB)ǁ  ǁTǁ for all T ϵ 

ker . 

Proof. Yoshino [32] shows that if A is 

hyponormal and B
*
 is m-hyponormal, then AT = 

TB  A
*
T = TB

*
 i.e the pair (A, B) has 

Fuglede-Putnam (FP) property. Yusun [33, 

Theorem 1] shows that if (A, B) is (FP) pair then 

for all X ϵ  we have ǁT – (AX – XB)ǁ  ǁTǁ 

for all T ϵ ker . 

Theorem 3.9 Let A, B ϵ FH (H) be hyponormal 

operators. If T ϵ  is generalized nilpotent 

hyponormal operator, then for all X ϵ  we 

have ǁT - (AX – XB)ǁ  ǁTǁ for all T ϵ ker . 

Proof. With T being a generalized nilpotent ( 

 = 0) hyponormal operator, then 

its norm is necessarily zero [7], then by basic 

properties of operator norm we have; 

ǁT – (AX – XB)ǁ  ǁTǁ for all T ϵ ker . 

 

 

Orthogonality of finite rank derivations 

Here we establish range-kernel orthogonality of 

finite rank derivations implemented by 

hyponormal operators. 

Theorem 3.10 ([25], Theorem 2.7.1) Let A, B ϵ 

B(H). If every positive operator in  vanish, 

then   ker  = {0}, for every 

operator B ϵ B(H). 

Theorem 3.11 Let A ϵ FH (H) be a nilpotent 

hyponormal operator of index two and if I ϵ  

 , then   ker  = {0}, for 

every operator B ϵ FH (H). 

Proof. Since A ϵ FH (H) and I ϵ   the by 

Lemma 3.4 there exist a positive operator T ϵ  

 such that for a sequence ( ) of operators 

in FH (H) we have;  

A  - A  T           (1)  

Hence  -   AT + TA this follows 

from [25].   

Since A is nilpotent of index two we have;  

0 =   -   AT + TA  AT + TA = 0 

and so we have AT = TA = 0. 



Kaunda et al., 2019.                                                                                     Orthogonality of finite rank generalized derivations 

©2019 The Authors. Published by G. J. Publications under the CC BY license. 243 

 Applying T from the right and left on (1) we 

obtain TA T - T AT    which implies 

that  = 0 thus T = 0. 

We have shown that T ϵ   vanishes and 

thus by Theorem 3.10 above we have the result. 

Theorem 3.11 Let A, B ϵ FH (H) be finite rank 

hyponormal operators such that A and B
*
  are 

isometric. Then   ker  = {0} vanish. 

Proof. Since   ker  = {0}       (1) 

Then there exist a sequence ( ) of operators 

such that A  - B  T 

Multiply each term to the right by  to obtain; 

A  - B   T     (2) 

Also from (1) we have AT = TB        (3) 

Multiply each term to the left by  and to the 

right by  to get, 

 AT  = TB      

 T  = T 

Taking adjoint we have; B  = A    (4) 

Applying (4) to (2) we obtain A  – 

( A  T      TT
*
 ϵ      (5) 

From the left we apply T both sides to line (4) 

TB  = (T A       (6) 

From the right we apply T
*
 both sides to line (3)  

A(TT
*
) = TBT

*
    (7) 

Comparing (6) and (7) we have (T A =  

A(TT
*
)   TT

*
 ϵ    (8) 

By (5) and (8) we have TT
*
 ϵ     = 

{0} 

Therefore TT
*
 = 0 implying T = 0. 

Theorem 3.11 Let A ϵ FH (H) and B ϵ FH (H) be 

similar. Suppose  ϵ    = {0} then 

 ϵ    = {0}. 

Proof. A and B are similar then by Nzimbi [27, 

Theorem 2.11] A
*
 and B

*
 are also similar and 

hence by [67] and hence by Mohamed [26, 

Theorem 2.4] there exist an invertible operator S 

ϵ FH (H) such that B
* 
= S. 

Then for all X ϵ FH (H)  we have 

)S = B
*
 S) - S)B

*
 

Thus  S =  

Hence    ={  S}  

} 

                ={    

 } = {0}       

Theorem 3.11 Let A, B ϵ FH (H) be such that A 

is similar to B. Suppose that    

 = {0} for some polynomial P. Then the 

set T =   is nilpotent. 

Proof. Let P be a polynomial of degree n for 

which  denotes the k
th

 derivative of P and 

suppose T =  . 

Then there exist a sequence of operators ( ) in 

FH (H) such that   - B  T ϵ  

Then by Mecheri [19, Theorem 2] we have; 

 - B)   (B)T  

But A is similar to B implying existence of an 

operator S ϵ FH (H) such that B
 
= S 

Then  - S)   

( S)T 

By polynomial properties we have;  - 

)   ( )T  

This shows that ( )T ϵ    = 

{0} 

Also  - B)   (B)T 

    - S)   

( S)T 

   - )   ( )T 

  T - )T   ( )  

Repeating the process we have  = 0 hence T is 

nilpotent. 

Theorem 3.11 Let A ϵ FH (H) be k-

quasihyponormal and B
*
 ϵ FH (H) be injective p-

hyponormal operator, then   ker  = 

{0}. 

Proof. According to Bachir [4, Theorem 3.3] if A 

ϵ FH (H) is k-quasihyponormal and B
*
 ϵ FH(H) is 

injective p-hyponormal operator then the pair (A, 

B) has the (FP) property. But A ϵ FH(H) being k-

quasihyponormal implies A is hyponormal and 

B
*
 ϵ FH (H) being injective p-hyponormal 

implies B is also hyponormal. Hence (A, B) is a 

pair of hyponormal operators with Fuglede-

Putnam (FP) property such that B is injective 

and then by Mohamed [26, Lemma 3.3] we have  

  ker  = {0}. 

Conclusions 

In the present work, authors have studied and 

established range-kernel orthogonality inequality 

for finite rank generalized derivations 

implemented by hyponormal operators. Here 

orthogonality is in Birkhoff sense defined on 

generalized derivation  FH (H)  FH (H) 

defined as (X) = AX – XB.   Considering the 

same sense of orthogonality, it would be 

interesting to establish range-kernel 

orthogonality inequality for hyponormal 

operators for the adjoint of generalized 

derivation;  FH (H)  FH (H) defined as 
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(X) = A
*
X – XB

*
.   Since there are different 

kinds of orthogonality such as Pythagorean, 

Isosceles, Roberts, Singer, James orthogonality, 

it would be interesting to establish range-kernel 

orthogonality for hyponormal operators using 

any other kind of orthogonality in the Hilbert 

space. In fuctional analysis, like many fields of 

science, mathematics and technology, 

orthogonality is central. In operator theory, 

Birkhoff orthogonality and semi-inner product 

have been used to characterize best 

approximation and existence of best 

approximation and best co-approximation in a 

normed space. Also in normed spaces, studies 

show that Birkhoff orthogonality implies best 

approximation and best approximation implies 

Birkhoff orthogonality. By polar decomposition 

and -Gateaux derivative of the norm, it has 

been established orthogonal operators in -

classes and further established best 

approximation in a complex Banach space. All 

these can be considered for other forms of 

orthogonality. With regard to von Neumann 

Schatten p-class, mathematicians have used 

polar decomposition of T, i.e. T = U│T│to 

establish range-kernel orthogonality for normal 

operators with (FP) property. It would be of 

interest to establish operators with (FP) property 

for subnormal, m-hyponormal and dominant 

operators and further establish orthogonality for 

Schatten p-class and compact operators. 
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